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Abstract

Background: Development of three classification trees (CT) based on the CART (Classification
and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies
for the calculation of probability of hospital mortality; the comparison of the results with the
APACHE Il, SAPS Il and MPM 1I-24 scores, and with a model based on multiple logistic regression
(LR).

Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set
(DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared
with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the
calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%).

Results: CTs are produced with a different selection of variables and decision rules: CART (5
variables and 8 decision rules), CHAID (7 variables and |5 rules) and C4.5 (6 variables and 10 rules).
The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of
chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT:
CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69-
75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART
(1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)).

Conclusion: With different methodologies of CTs, trees are generated with different selection of
variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital
mortality. The CTs should be taken into account for the classification of the prognosis of critically
ill patients.
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Background

Stratifying the patients into risk groups, according to their
severity, is essential for the comparison of treatments and
the establishment of differences between different units or
hospital centres. As a result, working in an intensive care
unit (ICU) necessitates making prognoses for patients
within the first 24 hours of their admission. Establishing
a prognosis consists of assigning a probability of death by
using variables commonly used for the diagnosis and
treatment of critically ill patients [1].

Severity scores are classic tools used in establishing this
probability. The most commonly used scores are the
APACHE II (Acute Physiology and Chronic Health Evaluation
IT), the SAPS 11 (Simplified Acute Physiology Score IT) and the
MPM 11-24 (Mortality Probability Models 11-24) scores [2-4].

Other systems of severity classification based on different
mathematical strategies have also been used [5].

In the last decade, classification trees (CT), which were
developed more than 20 years ago, have acquired greater
importance in the immediate interpretation of the deci-
sion rules that they generate, and they are readily accepted
by professionals in clinical practice [6].

A CT is a graphic representation of a series of decision
rules. Beginning with a root node that includes all cases,
the tree branches are divided into different child nodes
that contain a subgroup of cases. The criterion for branch-
ing (or partitioning) is selected after examining all possi-
ble values of all available predictive variables. In the
terminal nodes (the "leaves" of the tree), a grouping of
cases is obtained, such that the cases are as homogeneous

Table |I: Characteristics of the classification tree methods
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as possible with respect to the value of the dependent var-
iable [7].

The different CT types are distinguished by the manner of
node partitioning. In the specific case of CARTs (Classifi-
cation And Regression Trees), possibly the most widely used
CT in medicine, an impurity function (the so-called Gini
index) is calculated, and for each division of the tree, the
variable and its cut-off value are defined such that the
decrease in the impurity function is the greatest [8]. There
are many types of CTs (or improved versions) such as
CHAID (Chi-square Automatic Interaction Detection) and
C4.5 (developed from the so-called Concept Learning Sys-
tems). Table 1 illustrates, in a schematic fashion, the par-
ticularities of these CTs. A CT has a growth phase, a
pruning phase (removal of branches that do not provide
general information to the system) and a selection of the
optimal tree [8].

The aim of the present study was to develop (with a pop-
ulation of critically ill patients) three classification trees
(based on CART, CHAID and C4.5 methodologies) to cal-
culate the probability of hospital mortality and to com-
pare these trees with each other, with the classic scores
(APACHE 1I, SAPS II and MPM 11-24) and with a model
based on multiple logistic regression.

Methods

This is a retrospective study carried out using the database
of a mixed ICU (with medical and surgical services) of 14
beds located at the University Hospital Arnau de Vilanova
of Lleida. The ethical committee of the hospital was
informed that the study was being carried out, and
informed consent was not deemed necessary, since all the

CART

CHAID C4.5

Description Classification and Regression Tree

Chi-Square Automatic Interaction Detection

Concept Learning Systems

Version 4.5
Developer Breiman et al. (1984) Kass (1980) Quinlan (1993)
Primary Use Many disciplines with little data Applied statisticians Data miners
Splitting Method Gini reduction or twoing Chi-square tests Gain ratio

F test

Branch Limitations Best binary split

Number of values of the input Best binary split

Pruning Cross-validation Uses p-values Misclassification rates
Programs WEKA Answer-Tree (SPSS) WEKA
DTREG
Answer-Tree (SPSS)
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variables were collected for the diagnosis and treatment of
the patients and their anonymity was assured at all times.

Database
Data collected over ten years (from January 1997 to
December 2006) were used. In this study, all patients were
over the age of 16 years and remained in the ICU for more
than 24 hours. Patient records with incomplete data were
not used.

A random partition, in a 70:30 ratio, was made to estab-
lish the development and the validation sets, respectively.

Data concerning age, sex, length of stay in the ICU and
procedures specific to the ICU were used. The outcome
variable of interest was the probability of hospital mortal-
ity. The patients were divided according to their diagnostic
groups following the Knaus classification [9]. Six diagnos-
tic groups were established according to the case mix and
level of severity of the ICU, including two trauma catego-
ries of TBI (traumatic brain injury) and Multiple trauma
(multiple trauma without brain injury), Respiratory
(chronic respiratory problems with decompensation),
Neurological (ischemic or hemorrhagic strokes), Surgery
(surgical problems not included in other categories) and
Medicine (medical pathology not included in other cate-
gories).

Each patient's medical records and laboratory database
files were used to obtain information pertaining to base-
line (at ICU admission) demographics, pre-existing
comorbidities and scores (APACHE II, SAPS II and MPM
11-24). The data were then compiled (manual recording)
into single data using a relational database management
system (Microsoft Access®).

APACHE 1I, SAPS II and MPM 1I-24 scores were deter-
mined by the worst value found during the first 24 hours
after ICU admission [2-4].

The presence of acute renal failure was defined (according
to the model MPM 1I-24) by levels of serum creatinin
above 2 mg/dL [4]. The antecedents of chronic organ
insufficiency (defined according to the APACHE Il model)
were included in the variable COI [2].

Logistic models and classification trees
Models were created with the development set and were
subsequently checked in the validation set.

Working with the development set, first, a univariate anal-
ysis was performed for all the variables included in the
three scores to select those that predicted survival. Those
that were statistically significant predictors were included
in the development of the multivariable models.

http://www.biomedcentral.com/1471-2288/9/83

We used a model of multiple logistic regression (LR) with
forward stepwise selection of variables [10].

The computer programs used for creating the CTs are pre-
sented in Table 1. The program WEKA (a project of
Waikato University) is freely accessible and includes a CT
module, named J48, that includes CART and C4.5 [11].

Answer-Tree®, a module of SPSS (Statistical Package for the
Social Sciences), includes options for CART and CHAID,
and the program DTREG® (version 3.5) is based on a
CART-type methodology.

To create the three types of CTs, a cross-validation system
with ten partitions was used, and the only common
restriction for terminating the growth of the tree was the
minimum number of subjects in the terminal nodes
(which was fixed at 50 patients).

Statistical analysis

The variables are presented as the mean (standard devia-
tion), the median (interquartile interval) or as a percent-
age. For a comparison of the variables, the chi-squared
(x?) test was used for categorical variables, and the
ANOVA test or non-parametric Mann-Whitney test was
used for continuous variables, depending on the charac-
teristics of the distribution.

To compare the different models, we measured their pre-
cision (discrimination and calibration) with the Brier
score. The discrimination was measured by calculating the
percentage of correctly classified patients (PCC) with a
cut-off point with a probability of 0.5 and by the area
below the ROC curve (AUC) [12]. For calibration, the Hos-
mer-Lemeshow C test (HL-C) was used [13] by constructing
the calibration curve and calculating the standardized
mortality ratio (SMR) [14]. These calculations were made
both in the development set and in the validation set. We
used a correlation matrix (Spearman correlation coeffi-
cients) and the Bland-Altman test to analyse the individual
probabilities generated by the CT models [15].

The statistical analysis was carried out with the program
SPSS (version 14.0).

Results

Demographic characteristics

Among 2823 patients, 139 were excluded due to incom-
plete or erroneous data (4.9%), leaving 2684 eligible
patients. The development group consisted of 1880
patients (70%) and the validation group consisted of 804
(30%).

The demographic characteristics of the patients are shown

in Table 2; there were no major differences between the
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Table 2: Demographic characteristics of patients
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Group Development Validation p-valuec
(n =2684) (n =1880) (n=804)

Age (years)? 55.0 (19) 55.2 (19) 54.6 (19) 0.485

Sex, male (%) 66.9 66.8 67.3 0.786

Elective (%) 6.5 6.1 7.5 0.184
Diagnostic category 0414

TBI (%) 15.1 152 14.9

Trauma (%) 15.2 15.2 15.3

Neurological (%) 14.8 14.6 15.3

Respiratory (%) 19.0 18.1 21.1

Surgery (%) 18.7 19.4 17.0

O Medicine (%) 17.2 17.6 16.3

MV (%) 65.9 66.6 64.2 0.216

Inotropic therapy (%) 337 339 333 0.783

Acute renal failure (%) 19.9 19.8 20.3 0.773

Infection (%) 34.6 34.6 348 0.900

Coagulopathy (%) 12.2 12.1 12.6 0.724

COl (%) 16.0 16.3 15.4 0.582

HR2 107.8 (30) 108.3 (31) 106.5 (30) 0.253

Glasgow? 129 (4) 12.8 (4) 13.0 (4) 0.507

(A-2)O2 gradient? 244.1 (161) 241.7 (160) 249.5 (162) 0.250

APACHE IIb 18 (7-41) 18 (6-37) 16 (6-45) 0.805

SAPS IIb 15 (6-47) I5 (5-35) 14 (5-47) 0.742

MPM [1-24b 17 (7-43) 17 (6-37) 15 (6-38) 0.779

LOS (days)b 7 (3-16) 7 (3-16) 7 (3-15) 0.972

MORT (%) 314 30.7 328 0.308

TBI: Traumatic brain injury; O Medicine: Other Medical; MV: Mechanical ventilation; A. renal failure: Acute renal failure; COIl: Chronic organ
insufficiency; HR: Heart rate; (A-a)O2 gradient: Alveolar-arterial oxygen gradient; LOS: Length of stay; MORT: Hospital mortality; @: Mean (SD); ®):
Median (Interquartile range) pc: Determined by 2 test for percentages, t test for comparison of means or Mann-Whitney test for comparison of

medians.

Table 3: Outcome trend over the observation period

All 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 p-valueb

n 2684 176 191 201 223 279 297 303 319 337 E11: J——

MORT (%) 314 35.4 337 39.1 35.0 28.4 329 33.0 28.6 27.7 233 0.112

DEV (%) 700 70.8 61.7 69.0 70.9 724 68.9 75.4 66.8 70.4 726 0.146

APACHE Il I8 21 19 19 17 14 14 5 16 17 5 0361
(7-41)  (7-41)  (8-41)  (6-34)  (6-36)  (5-30)  (6-30)  (6-35)  (7-38)  (6-36)  (7-34)

SAPSII: 5 5 17 12 13 3 13 5 17 17 13 0415
(6-47)  (6-47)  (5-41)  (4-31)  (3-35)  (427)  (431)  (5-39)  (637)  (637)  (5-31)

MPM 11242 |7 17 16 14 3 14 13 18 18 17 14 0.389
(7-43)  (7-43)  (6-35)  (6-29)  (6-35)  (6-32)  (6-34)  (6-39)  (6-40)  (7-36)  (6-34)

MORT: Hospital mortality; DEV: Development set percentage @): Median (Interquartile range) pb: Determined by 2 test for percentages or Kruskal-

Wiallis test for comparison of medians.
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development and the validation groups. Some character-
istics are particular to the ICU, such as the low proportion
of scheduled patients (6.5%), the prolonged length of stay
(median of 7 days) and the high mortality rate (31.4%).

Table 3 shows the evolution (during the 10 years
observed) of hospital mortality, the severity scores and the
participation percentage in the development set. There are
no significant differences (only the evidence that the
number of admissions has kept on increasing).

Variable selection: univariate analysis

A total of 24 variables showed significant differences
between the survivors and non-survivors (Table 4). The
table also shows the scores for which the different varia-
bles were included. No significant differences were found
for respiratory frequency (APACHE II), serum potassium
(APACHE II and SAPS 1I), hematocrit (APACHE II)), leuck-
ocyte count (APACHE II y SAPS 1I), bilirubin (SAPS II),
PaO2 (MPM I1-24) or antecedents of cirrhosis and neopla-
sia (MPM 1I-24).

http://www.biomedcentral.com/1471-2288/9/83

Only the COl variable reflected the chronic illnesses of the
patient. For variables related to diagnoses, the surgery
group was associated with a greater possibility of hospital
mortality, while the trauma group was associated with a
lower likelihood of mortality.

Multiple Logistic Regression Model

Table 5 shows the LR model including 9 variables (Con-
tinuous: Age, HR, Glasgow and (A-a)O2 gradient. Dis-
crete: Inotropic therapy, MV, Acute renal failure, COI and
Trauma) selected from the 24 variables.

Classification Tree Models

The variables common to the three CTs and the LR model
are inotropic therapy (INOT), Glasgow value, (A-a)O2
gradient ((A-a)O2), age and COL.

Figure 1 shows the CT based on the CART methodology
(the three programs gave the same result). It used only five
variables and began with INOT. It generated eight deci-

Table 4: Univariate analyses of characteristics of patients at discharge, by survival status.

Variable Survivors Non-survivors p-value SCORE
(n=1302) (n=578)
Age (years) 51.2(19) 63.8 (16) <0.001 1,2,3
HR (ppm) 104.7 (29) 115.0 31) <0.001 1,2
MAP (mmHg) 82.8 (28) 72.4 (32) < 0.001 12
Inotropic therapy (%) 25.0 52.7 <0.001 3
Glasgow 13.4 (3) 11.8(5) <0.001 1,2,3
Intracranial mass (%) 3.0 6.3 0.001 3
FiO2 0.49 (0.2) 0.62 (0.2) <0.001 1,2
(A-a)O2 gradient (mmHg) 2123 (143) 304.5 (176) <0.001 1,2
MV (%) 53.6 79.9 <0.001 3
CO3H (mEq/L) 23.4 (5) 22.1 (6) <0.001 1,2
pH 7.36 (0.1) 7.34(0.1) <0.001 1,2
Urine output (cc/24 h) 2124 (1058) 1778 (1398) <0.001 2
Urea (mg/dL) 50.8 (41) 76.5 (53) <0.001 2
Creatinin (mg/dL) 1.34 (1.3) 1.81 (1.4) <0.001 1,3
Sodium (mEq/L) 139.5 (5) 140.5 (7) 0.015 1,2
Acute renal failure (%) 14.1 31.9 <0.001 3
Urine output < 150 cc/8 h (%) 33 17.3 <0.001 3
Temperature (°C) 382 (13) 383 (14) 0.036 1,2
Infection (%) 28.8 46.9 <0.001 3
Coagulopathy (%) 9.7 17.1 <0.001 3
COlI (%) 1.7 26.0 <0.001 1,2,3
Elective (%) 7.7 2.7 <0.001 1,2,3
Trauma (%) 36.6 23.2 <0.001
Surgery (%) 30.2 448 0.001

Development set.

HR: Heart rate; MAP: Mean arterial pressure; (A-a)O2 gradient: Alveolar-arterial oxygen gradient; MV: Mechanical ventilation; COI: Chronic organ
insufficiency; MORT: Hospital mortality; Data presented as the mean (SD) or percentages.

SCORE: (1) APACHE II, (2) SAPS Il and (3) MPM Il 24.

p: Determined by 2 test for percentages or Mann-Whitney test for comparison of medians.

Page 5 of 12

(page number not for citation purposes)



BMC Medical Research Methodology 2009, 9:83

Table 5: Results of multiple logistic regression
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Variable Coefficient SD p-value OR 95% ClI
Age (years) 0.041 0.004 <0.001 1.041 1.033 - 1.050
HR (ppm) 0.009 0.002 <0.00I 1.009 1.005 - 1.013
Inotropic therapy 0.730 0.137 <0.001 2.074 1.585-2.714
Glasgow -0.180 0.019 <0.001 0.835 0.805 - 0.867
MV 0.502 0.145 0.001 1.655 1.245 - 2.201
(A-a)O2 gradient 0.002 0.001 <0.001 1.002 1.002 - 1.003
Acute renal failure 0.459 0.160 0.002 1.582 1.180 -2.123
Ccol 1.026 0.156 <0.001 2.789 2.054 - 3.788
Trauma -0.357 0.160 0.026 0.700 0.511-0.957
Intercept -3.351

HR: Heart rate; MV: Mechanical ventilation; (A-a)O2 gradient: Alveolar-arterial oxygen gradient; COl: Chronic organ insufficiency.

sion rules with an assignment rank of probability ranging
from 5.9% to a maximum of 71.3%.

It is noted that a CT can use the same variables in various
decision rules and that, for continuous variables, different
cut-off points can be selected.

Figure 2 illustrates the CT based on the CHAID methodol-
ogy. It used seven variables, and it also began with the var-

All patients
n=1880
30.7 %

iable INOT. It generated fifteen decision rules with an
assignment rank of probability ranging from 0.7% to a
maximum of 86.4%. In this type of CT, the Glasgow value,
age and (A-a)O2 variables were divided into intervals with
more than two possibilities.

Figure 3 depicts the C4.5 model, which used six variables
(the five common variables and the MAP, which is not
included in the LR model) and generated ten decision

NO INOTROPIC
n=1242
21.0%

GLASGOW <=6
n=120
60.0 %

GLASGOW > 6
n=1122
16.8 %

AGE <=60 AGE >60
n =453

29.8 %

n =669
8.1%

INOTROPIC
n =638
49.7 %

(A-a)02 <= 254
n = 303
37.0%

(A-a)02 >254

AGE <= 64
n=154
49.4 %

AGE > 64
n=181
71.3 %

col NO col (A-a)02 <= 166
n =59 n=610 n =231
30.5% 5.9% 19.9 %
Figure |

(A-a)02 >166

n =222

40.1 %

Classification tree by CART algorithm. The gray squares denote terminal prognostic subgroups. INOT: Inotropic ther-
apy; (A-a)O2 gradient: Alveolar-arterial oxygen gradient (mmHg); MV: Mechanical ventilation; COI: Chronic organ insufficiency.
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All patients
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NO INOTROPIC
n=1242
21.0%

INOTROPIC
n =638
49.7 %

-

AYZ AYZ 4 N\ N\
GLASGOW <=6 |(GLASGOW 6-10|(GLASGOW > 10 (A-2)02 <= 98 (A-a)02 98-283 (A-2)02 >283
n=120 n =151 n=971 n =56 n=274
60.0 % 26.5% 153% 25.0 % 42.0 %
AGE <= 51 AGE 51-58 AGE 59-76 AGE >76 NO MV MV col NO COl
n =456 n=97 n =330 n=88 n=67 n =207 n=>59 n =249
44% 13% 24.8 % 40.9 % 29.9 % 45.9 % 86.4 % 55.0 %
— I 1 ———
NO TRAUMA TRAUMA || (A-2)02 <= 160 |[(A-a)02 161-283|[ (A-a)02 >283 AGE <= 64 AGE > 64
n=319 n=137 n=154 n=105 n=71 n=118 n=131
6.0% 0.7 % 143% 27.6 % 43.7 % 41.5% 67.2%
Figure 2

Classification tree by CHAID algorithm. The gray squares denote terminal prognostic subgroups. INOT: Inotropic ther-
apy; (A-a)O2 gradient: Alveolar-arterial oxygen gradient (mmHg); MV: Mechanical ventilation; COI: Chronic organ insufficiency.

rules. The probabilities ranged between 7.6% and 76.2%.
In contrast to the other CTs, in this CT, the first variable
was the point value on the Glasgow scale.

Comparison of model properties

The three CT models and the LR model were also com-
pared with those generated using the APACHE II, SAPS 11
and MPM I1-24 scores.

The severity scores were applied without making recali-
bration in all the population (development and valida-
tion sets).

Table 6 shows the values for the properties evaluated. It
can be seen that all models achieved an acceptable dis-
crimination (an AUC greater than 0.70) both in the devel-
opment and the validation set.

Figure 4 presents the calibration curves of the models. It is
notable that some curves were displaced to the observed
mortality; this coincided with an SMR greater than 1 (with
a CI of 95% that does not include 1) (Table 6). The mod-
els based on the CTs were better calibrated (this was
observed both in the calibration curves and in the
obtained SMR (see Table 6)).

All the models correctly classified approximately 75% of
the cases evaluated.

Comparison of individual probabilities generated by the
CT models

Table 7 shows the correlations between the probabilities
calculated with the 3 CTs and the LR model (all of them
statistically significant).

Figure 5 shows the Bland-Altman results obtained in the
validation set by comparing the probabilities determined
by the CART CT with those of the LR, CHAID and C4.5
CTs.

We observed that there were patients for whom the differ-
ence in the probabilities exceeded the acceptable limit of
the test. There were 116 patients included in the compar-
ison of the CART and CHAID CTs, and 245 in the compar-
ison of the CART and C4.5 CTs. The differences can be
partly attributed to the behaviour of the Glasgow variable
(different cut-off points or partitions) and to the influence
of the COI variable in the different divisions of the tree
branches.

The different models generate, in some patients, different
allocation of death provability. When performing a vali-
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All patients
n = 1880
30.7 %

GLASGOW <=5
n=126
76.2 %

n=1754
27.5%
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GLASGOW > 5

NO INOTROPIC
n=1173
18.1 %

INOTROPIC
n =581
46.5 %

AGE 56-81 AGE > 81 col
n =531 n=>56 n=108
26.9% 63.9% 68.5%
—— 1
(A-a)02 <= 231 (A-a)02 > 231 AGE <= 64 AGE > 64
n =347 N =164 n=216 n =257
19.6 % 42.0% 28.7 % 52.1%

MAP > 48 MAP <= 48 (A-2)02 <= 301 (A-a)02 > 301
n =159 n=>57 n=146 n=111
23.5 % 54.1 % 39.7 % 68.5 %

Figure 3

Classification tree by C4.5 algorithm. The gray squares denote terminal prognostic subgroups. INOT: Inotropic therapy;
(A-a)O2 gradient: Alveolar-arterial oxygen gradient (mmHg); MV: Mechanical ventilation; COI: Chronic organ insufficiency;

MAP: Mean arterial pressure.

dation with records not used in the phase of development,
the different allocation of probability determines in our
case a conservation of a similar discrimination but that
the calibration is different (being better for the AC).

Discussion

The results illustrate that the ICU had particular demo-
graphic characteristics due to its case mix, with a low per-
centage of scheduled patients, a long length of stay and
high mortality. These data are important when it comes to
appraising and generalising the results obtained with our
database [16].

The results yielded mortality rates that were higher than
expected (according to the classic APACHE II, SAPS II and
MPM 11-24 scores), which can be partly attributed to these
individual characteristics [17]. However, this finding also
necessitates a recalibration of these models in order to
achieve a correct stratification of the patients' risk of hos-
pital mortality [18].

Previously, CTs have been used with critical patients, e.g.,
for the calculation of the probability of death from coro-
nary pathology [19], intracerebral haemorrhages [20] or
traumatic brain injuries [21], for the prediction of persist-
ent vegetative states [22] or (as in our study) for stratifying
the probability of death in a general population of ICU
patients [23,24].

The common variables selected by the three CT types (and
also by the model based on LR) were: the necessity of ino-
tropic therapy, the point value on the Glasgow coma scale,
the alveolar-arterial gradient in oxygen, age and the pres-
ence of antecedents of important chronic diseases. This
group of variables included information concerning
chronic health and age (which were variables specific to
the patient), the point value on the Glasgow coma scale
and the (A-a)O2 gradient as deviations from the normal
state as well as a variable specific to the intensive treat-
ment (INOT). The selection of some of these variables has
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Table 6: Performance of the classification models: development and validation sets

http://www.biomedcentral.com/1471-2288/9/83

DEVELOPMENT (n = 1880)

Models AUC (CI 95%) HL-C  Brier PPV (ClI 95%) PCC (Cl 95%) SMR (CI 95%)
APACHE Il 0.81 (0.79 - 0.83) 68.2 0.17 0.72 (0.66 - 0.78) 0.75 (0.73 - 0.77) 130 (1.23 - 1.37)
SAPS II 0.82 (0.80 - 0.84) 772 0.16 0.74 (0.68 - 0.79) 0.74 (0.68 - 0.75) 131 (1.24 - 1.38)
MPM Il 24 0.81 (0.79 - 0.83) 742 0.16 0.75 (0.70 - 0.80) 0.77 (0.75 - 0.79) 129 (1.22 - 1.36)
Logistic R 0.83 (0.81 - 0.85) 16.8 0.16 0.75 (0.70 - 0.80) 0.77 (0.76 - 0.79) 1.00 (0.92 - 1.10)
CART 0.78 (0.76 - 0.80) - 0.17 0.67 (0.61 - 0.72) 0.75 (0.73 - 0.77) 1.00 (0.94 - 1.06)
CHAID 0.80 (0.78-0.82) - 0.16 0.68 (0.63 - 0.73) 0.75 (0.73 - 0.77) .00 (0.93 - 1.08)
C4.5 080 (0.78-0.82) - 0.16 0.69 (0.65 - 0.74) 0.78 (0.76 - 0.80) 1.00 (0.94 - 1.06)
VALIDATION (n = 804)
APACHE I 0.77 (0.74 - 0.81) 74.1 0.18 0.69 (0.60 - 0.70) 0.73 (0.70 - 0.76) 136 (1.26 - 1.47)
SAPS Il 0.79 (0.76 - 0.83) 783 0.18 0.71 (0.63 - 0.78) 0.74 (0.71 - 0.77) 139 (1.28 - 1.49)
MPM Il 24 0.79 (0.75 - 0.82) 66.9 0.18 0.71 (0.63 - 0.78) 0.74 (0.71 - 0.77) 136 (1.25 - 1.46)
Logistic R 0.81 (0.78 - 0.84) 415 0.17 0.73 (0.66 - 0.81) 0.75 (0.73 - 0.78) 122 (1.16 - 1.29)
CART 075 (0.71-08l) - 0.18 0.64 (0.57 - 0.72) 0.72 (0.69 - 0.75) 1.04 (0.95 - 1.31)
CHAID 076 (0.72-079) - 0.18 0.64 (0.56 - 0.72) 0.72 (0.69 - 0.75) 1.06 (0.97 - 1.15)
C45 076 (0.73-0.80) - 0.18 0.70 (0.63 - 0.76) 0.76 (0.73 - 0.79) 1.08 (0.98 - 1.16)

AUC: Area under ROC curve; Cl: Confidence interval; HL-C: Hosmer-Lemeshow test C (eight degrees of freedom); Brier: Brier score; PPV:
Positive predictive value (cutoff 0.5); PCC: Percentage correctly classified (cutoff 0.5); SMR: Standardized mortality ratio. The severity scores

(APACHE I, SAPS Il and MPM Il 24) were not developed in the development phase and recalibration was not performed.

We also observed that the three CT types exhibited differ-
ences. Even when incorporating the five common varia-
bles mentioned earlier, these CTs differed in the first
variable to be selected, in the details of "branching", in the
cut-off points (and subgroups), in the order of variable
selection and in the incorporation of other variables.

also been reported in other studies of mortality in other
groups of critical patients [25].

These five variables are capable of stratifying the exam-
ined population of critical patients (for example, as in the
CART CT), using eight simple decision rules, with accept-
able properties of discrimination and calibration.

100 100 100 100
" APACHE - 1l " SAPS -1 T MPM-1l-24 ! Logistic R
80 80 80 80 g
70 70 70 70
> 60 > 60 > 60 > 60
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= w K] s
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Figure 4
Calibration curves for the classification models. Validation set.
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Table 7: Correlation matrix of the probabilities (CTs and LR models)

DEVELOPMENT SET (n = 1880)

VALIDATION SET (n = 804)

LR CART CHAID
LR e
CART 0872 e e
CHAID 0.803 (1X: 7 R —
c4.5 0.768 0.796 0.789

LR CART CHAID
0877 e e
0.788 0810 e
0.777 0.794 0.801

LR: Logistic Regression. Numbers represent Spearman correlations coefficients.

All values with a p-value < 0.001.

We have already seen that the CART CT includes the five
general variables. The C4.5 CT adds the MAP (Mean Arte-
rial Pressure) variable and the CHAID CT includes MV
(Mechanical Ventilation) variables and the fact of belong-
ing to the trauma group. The LR model uses those of the
CHAID CT model, also including the Acute Renal Failure
and HR (Heart Rate) variables.

The CT software allows to adjust the levels and the
number of partitions for each branch in order to get more
complex models [7]. In our case, our only restriction (in
the 3 CT models) was that the minimum number of sub-
jects in the terminal nodes should be of 50 patients.

We cannot state which CT was optimal (since they had
similar general properties). The CART and CHAID CTs
were similar in their order of partitioning, although the
CHAID CT (due to its inherent characteristics) separated
the continuous variables into more than two possibilities
and generated more decision rules. The CART CT was sim-
pler, while the CHAID CT showed greater complexity

(and also selected more variables). Different CTs can
select different first variables, and in the C4.5 CT, the first
variable, the Glasgow point value, was different from that
of the other CTs; the C4.5 CT also incorporated different
variables. The analysis of the individual probabilities gen-
erated by the different CTs (in spite of a good correlation)
assisted in the identification of possible "problem" varia-
bles, e.g. the Glasgow point value and the COI variable, in
their order of appearance in the decision rules generated.

The CTs most widely used for medical applications have
been based on the CART methodology, but studies that
use other CT types have started to appear [26-28].

When there is a classification problem, there is no model
that can be chosen a priori to be the best [29]. Even with
the same information, different CTs develop models with
different interpretations [30]. Based on our data, the CTs
do not compete with the classic scores in their function of
calculating individual probabilities. In the case of a large
database, the CTs generated would be too complex to

1,0 1,0 1.0
8 b 8 Cc
.6 6
X
4 X 4 X >e
’2___>X<K___X.___X _______ 2 X XX x
X % 0% xX
o‘g& ----- >f<>§é><>< ---------- 0f - == X----- K3 s Xse e
Xy X X
o — g — X — — —— — — — X ___ 2 XX x X
o [ TTTUR B N, XX L x—X _
g o 4 X X 4 X « X
2 £ 3
i 5 8 3 -6
Eo-8 i E -8
z s z
O 10 S 10 S 10
0,0 2 4 6 8 1,0 00 > 5 8 10 0,0 2 4 6 8 1,0
(CART + Logistic R) / 2 (CART + CHAID) / 2 (CART + C4.5)/2
Figure 5

Bland-Altman plot analysis. (a) CART vs Logistic Regression. (b) CART vs CHAID. (c) CART vs C4.5. The dotted lines are

the limits of agreement (mean * 2 SD). Validation set.
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interpret and use with regularity (many branches and
decision rules). The immediate interpretative advantage
of CTs is only obtained with simple trees [31,32].

Our study had several limitations. In the first place, it was
carried out in only one ICU and within a ten-year span
database (although no variation was observed during the
period of study). It would also have been possible to
employ more methodologies for comparison or to
improve those that were used, by incorporating relations
and/or ranks of a priori variables, as do the classic scores.

As exposed by one of the reviewers, we found a great dif-
ference between the observed and expected mortality in
the validation group in the LR model. The LR-based
model could have been carried out using the variables as
categorical, thus minimizing the possible effect that out-
lier values (using the variables as continuous) have on the
predicted outcome. One of the advantages of CT-based
models is that they automatically change the continuous
variables into categorical ones and that their cut-off points
could also be used to create a LR model with discreet var-
iables

We must mention the effort at Waikato University (New
Zealand) regarding the free-access program WEKA, which
strives to collect (in a single tool) the majority of the
methodologies that are used to classify, select and group
variables [11].

There are models, with different methodologies that
could improve the individual properties and achieve
greater precision in classification [33,34].

The principal advantage of CTs is that they are easy to
interpret. However, this advantage could turn into an
obstacle, since we tend to choose the optimal CT as that
which more closely approaches the clinical reasoning that
coincides with that of the program user [35]. An under-
standing of the clinical problem is necessary in order to
adequately interpret CTs.

One contribution of our effort was the demonstration that
the CT methodology is not unique and that different CTs
could be generated according to various methodologies.
The CTs assisted in both selecting variables of greater
importance in the problem of classification and determin-
ing the best cut-off points for the continual variables.

We believe that CTs (e.g., the model based on CART) are
mainly useful in obtaining homogenous groups for the
assignation of the probability of hospital mortality. These
groups with different characteristics (defined by rules of
classification that can be interpreted) can serve, for exam-
ple, as a basis for the creation of new scores.

http://www.biomedcentral.com/1471-2288/9/83

We intend to do further research including a multi-centre
study, with the incorporation of more methodologies and
the possible use of hybrid models. In order to generalise
our results, external validation will be required [36].

Conclusion

The main benefits to CT analysis are to identify a relatively
small number of groups that are reasonably homogene-
ous with regard to the outcome. The CTs can be used in
intensive care medicine for assisting in diagnosis and
prognosis [37,38]. Those less familiar with CTs should
realise that this us a class of methods including many dif-
ferent approaches, and that these different approaches
may result in considerable differences in classifications.
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