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Abstract

Background: In medical studies with recurrent event data a total time scale perspective is often needed to
adequately reflect disease mechanisms. This means that the hazard process is defined on the time since some starting
point, e.g. the beginning of some disease, in contrast to a gap time scale where the hazard process restarts after each
event. While techniques such as the Andersen-Gill model have been developed for analyzing data from a total time
perspective, techniques for the simulation of such data, e.g. for sample size planning, have not been investigated so far.

Methods: We have derived a simulation algorithm covering the Andersen-Gill model that can be used for sample
size planning in clinical trials as well as the investigation of modeling techniques. Specifically, we allow for fixed and/or
random covariates and an arbitrary hazard function defined on a total time scale. Furthermore we take into account
that individuals may be temporarily insusceptible to a recurrent incidence of the event. The methods are based on
conditional distributions of the inter-event times conditional on the total time of the preceeding event or study start.
Closed form solutions are provided for common distributions. The derived methods have been implemented in a
readily accessible R script.

Results: The proposed techniques are illustrated by planning the sample size for a clinical trial with complex
recurrent event data. The required sample size is shown to be affected not only by censoring and intra-patient
correlation, but also by the presence of risk-free intervals. This demonstrates the need for a simulation algorithm that
particularly allows for complex study designs where no analytical sample size formulas might exist.

Conclusions: The derived simulation algorithm is seen to be useful for the simulation of recurrent event data that
follow an Andersen-Gill model. Next to the use of a total time scale, it allows for intra-patient correlation and risk-free
intervals as are often observed in clinical trial data. Its application therefore allows the simulation of data that closely
resemble real settings and thus can improve the use of simulation studies for designing and analysing studies.
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Background
Recurrent event data are multivariate failure time data
where the individuals experience repeated occurrences of
the same type of event. In clinical applications, recurrent
events are often particular medical conditions, such as
hospitalizations due to a particular disease, cardiovascu-
lar events, epileptic seizures, episodes of multiple sclerosis
or falls in elderly people. Many survival models have
been proposed to handle recurrent event data [1], and
simulations are commonly used to investigate statistical
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methods or to plan the sample size of a clinical trial [2]. A
survey of PubMed indicates 36 articles within the last five
years that feature the term recurrent event and simulation
in the title or abstract.
Whereas some authors have demonstrated the need

to investigate statistical methods under different event
generation processes and correlation structures [3,4], lit-
tle attention has been given to the time scale that is
applied for subsequent events. In particular, simulation
studies often generate data from a gap time perspec-
tive, where the time and thus the risk process is reset
after each event, which simplifies the simulation pro-
cess. Conversely, in many clinical applications a total time
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perspective is appropriate, i.e. where the hazard for expe-
riencing a particular recurrent medical condition depends
on the time since some starting point. To improve the
accordance between the simulation models applied to
investigate statistical techniques and the statistical models
used to analyze clinical data, we have derived a flexi-
ble simulation algorithm that implements a total time
perspective.
The definition of time that is used as the argument of

the hazard function is a fundamental step in modeling
data and affects the statistical results and their interpreta-
tion [5,6]. The starting point 0 in a total time perspective
may be the onset of a disease, the beginning of some
treatment, entering a clinical trial or birth (age-dependent
risks) [7,8]. A total time scale is, for example, commonly
applied when analyzing the efficacy of pneumococcal vac-
cines to prevent recurrent episodes of acute otitis media
[9-12] because the risk of acute otitis media is known
to be age-dependent [13,14]. Schneider et al. encourage
the use of a total time scale when re-estimating the sam-
ple size for trials in relapsing multiple sclerosis [15], as
total time trends of the event rates seem to be present
[8]. Some authors use the term counting process time [6]
or calendar time [5] to further specify the risk intervals
that are to be used in the regression analysis. The time
scale is the same as total time. A total time scale (counting
process) also underlies the Andersen-Gill model, proba-
bly the most frequently applied model used to analyze
recurrent failure time data in medical science. Conversely,
in simulation studies often a gap time scale is used
[3,4,6,16], sometimes by defining constant hazards. This
may be due to a lack of information on how to simulate
recurrent event data using a total time scale as opposed
to published simulation algorithms for gap time [3,4]
and other multivariate [17,18] or univariate [19] failure
time data.
Furthermore, in simulation designs, the individuals are

usually assumed to be continuously at risk for experi-
encing recurrent events. In real-life situations, individ-
uals might be temporarily insusceptible to a recurrent
incidence of the event (risk-free intervals). An exam-
ple are relapsing diseases where effective treatments
are available that prevent disease progression, but the
treatments can only be discontinuously administered
because of adverse side effects. Individuals experi-
ence disease relapses outside the treatment courses
but are considered to be insusceptible to events under
treatment.
The aim of this article is to provide a general approach

for simulating recurrent event data when considering
an Andersen-Gill model with a total time scale. We
allow for arbitrary time-varying hazard functions, risk-
free intervals, and incorporate inter-patient heterogeneity
by including covariates and frailty terms.

The article is organized as follows: We start with clinical
examples that characterize settings where total time mod-
els should be considered. Then, in the Methods section,
we introduce the recurrent event model, derive the simu-
lation algorithm and provide closed form solutions. In the
Results section we demonstrate the implementation and
illustrate the use of ourmethods on power and sample size
planning for trials with complex recurrent event data. We
discuss our methods and results and finally we finish the
article with concluding remarks.

Examples for total time scale settings
We illustrate the rationale behind the use of a total time
scale on two clinical examples. In addition to a total time
model, we will further assume that increments in the
frequency of events over time do not depend on previ-
ous events (Andersen-Gill model). Only in the case of
a constant hazard rate does this model reduce to a gap
time model due to the memorylessness of the exponen-
tial distribution. When analyzing recurrent failure time
data, individuals usually are assumed to be continuously
at risk for experiencing events during follow-up. Different
circumstances can prevent individuals from experiencing
events within certain intervals within the observational
period. These risk-free intervals have to be considered in
the statistical model. In both examples risk-free intervals
are present.

Episodes of otitis media
Acute otitis media (AOM) is one of the most com-
monly diagnosed childhood infections. The disease is
most prevalent in children younger than two years of
age. The efficacy of a conjugate pneumococcal vaccine to
decrease the attack rate of AOM has been evaluated in a
randomized controlled clinical trial on 4968 children. The
trial has been designed and conducted by GlaxoSmithK-
line Biologicals and has been reported fully elsewhere [12].
It was done according to the Declaration of Helsinki and
the protocol was reviewed and approved by the appropri-
ate independent ethics committees or institutional review
boards (NCT00119743). Infants aged between 6 weeks
and 5 months were enrolled after informed consent had
been obtained from a parent or legal guardian. For the
2452 children in the control group, who received a Hep-
atitis A vaccination, Figure 1 shows the cumulative hazard
rates for the time from 2 weeks after the third vaccine
dose (at 5 months of age) to the first clinical episode of
AOM and for the gap time between the first and the sec-
ond clinical episode of AOM. The cumulative hazards
strongly differ from each other; this is contradictory to
results we would expect in a gap time model. In addi-
tion to the known age-dependency of the risk for AOM
[13,14], this calls for a total time modeling approach. It
should be noted, that differences in gap time hazards can
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Figure 1 Cumulative hazards in POET data. Cumulative hazard for
the time from 2 weeks after the third vaccine dose to first clinical
episode of AOM and for the time from first to second clinical episode
of AOM. Control group only of the randomized controlled clinical
POET trial.

also result for other reasons, such as a violation of the
independent increment assumption and/or confounding.
Here, an episode of AOM is not assumed to affect the risk
for subsequent events, at least in the long-run. Confound-
ing might be present as children with a history of AOM
may be, in general, more prone to experience episodes of
AOM due to physiological or social circumstances. We
will not cover confounding in the present manuscript.
Interestingly, we observe a zero hazard for the gap time to
the second event within the first 30 days. A new episode
of otitis media was judged to have started only if more
than 30 days had elapsed since the beginning of a previ-
ous episode. Thus, children are risk-free 30 days after each
event by definition.

Falls in elderly people
According to theWorld Health Organization (WHO) falls
are the second leading cause of accidental or uninten-
tional injury deaths worldwide. Adults older than 65 suffer
the greatest number of fatal falls. Recently, the fall rate
in elderly Australian adults was evaluated over a three
year follow-up period [20]. The fall rate increased within
three years from 0.33 falls per person-year to 0.55 falls per
person-year. The difference in fall rates demonstrates the
age-dependent risk to fall and thus the need of a total time
modeling approach. In contrast, in a gap time model, the
yearly fall rate would be expected to not differ between
both observational periods. If a fall is followed by a period
of hospitalization or bed rest, further falls will most prob-
ably not occur within these periods. As a consequence,

patients are to be considered not at risk for further falls
until they have restarted usual living.

Methods
Consider the situation where individuals are followed for
the times of occurrence of some recurrent event and a
total time scale shall be used. We define Ti as the time
from starting point 0 to occurrence of the i-th event. Let
N(t) = #{i;Ti ≤ t} denote the counting process repre-
senting the number of events experienced before time t.
Assuming that prior events do not affect the risk for future
events, the hazard process of N(t) is given by

λ(t)dt = E [N(t + dt) − N(t−)|Ft− ] = E [dN(t)|Ft− ] (1)

with Ft− being the history up to time t. The cumulative
hazard function is defined by �(t) = ∫ t

0λ(s)ds.

Distributional derivations
As recurrent events are naturally ordered, event times Ti
can be derived from the inter-event times Ui := Ti −Ti−1
with T0 = 0 by Ti = ∑i

k=1Uk . Therefore we aim to iden-
tify amethod for simulating inter-event times. For that, we
will first identify the distributions of inter-event times for
an arbitrary hazard process of N(t). As the risk for events
depends on total time, the distribution of an inter-event
time depends on the time of the preceeding event unless
we deal with the simple situation of constant hazards.
Therefore, we consider the distributions of inter-event
times conditional on the time of the preceeding event. Let
Ui|Ti−1 = t denote these conditional inter-event times.
The conditional hazard function λ̃i of Ui|Ti−1 = t can be
derived for i > 1 by

λ̃i(u|Ti−1 = t)du = P(u ≤ Ui < u + du|Ui ≥ u,Ti−1 = t)
= P(u + t ≤ Ti < u + t + du|Ti ≥ u

+ t,Ti−1 = t)
= E[ dN(u + t)|Ti ≥ u + t,Ti−1 = t]
= λ(u + t)du

and λ̃1(u) = λ(u).
Accordingly we can derive the cumulative hazard of
Ui|Ti−1 = t for i > 1 by

�̃i(u|Ti−1 = t) =
∫ u

0
λ̃i(s|Ti−1 = t)ds

=
∫ u

0
λ(s + t)ds

= �(u + t) − �(t)

and �̃1(u) = �(u).
Note that the conditional (cumulative) hazards λ̃i and �̃i

do not depend on i. This is caused by the assumption that
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the risk to experience events is not affected by previous
events. Thus, we can define

�̃t(u) := �̃i(u|Ti−1 = t) = �(u + t) − �(t) (2)

For a specific time to recurrent event model, closed form
solutions can be found for �̃t derived from λ. Examples
will be presented in the section ‘Closed form solutions for
common distributions’.
Transferring the arguments of Bender et al. [19] to con-

ditional survival distributions we reveal for i > 1 that
the conditional random variable (exp(−�̃t(Ui))|Ti−1 = t)
follows a uniform distribution on the interval from 0 to 1.
Therefore

Ui|Ti−1 = t ∼ �̃−1
t (− log(A))

with A ∼ U[ 0, 1]. For i = 1, U1 = T1 ∼ �−1(− log(A)).

The recursive simulation algorithm
Using the derivations in the ‘Distributional derivations’
section, a random realization (ti) of (Ti) can be generated
as follows

1. Specify the hazard λ(t) as a function of total time.
2. Derive �̃t and �̃−1

t according to (2).
3. Simulate independent random numbers ai following

a uniform distribution on the interval from 0 to 1.
4. Apply the recursive algorithm

i = 1 : t1 = �−1(− log(a1))
i → i + 1 : ti+1 = ti + �̃−1

ti (− log(ai+1)).

As illustrated in the section ‘Examples for total time scale
settings’, an event imight be followed by a period of length
d within which no further events are expected. Thus, the
hazard within [Ti,Ti + d] is assumed to be zero. The
recursive simulation algorithm can easily be adopted to
consider risk-free intervals by applying

i → i + 1 : ti+1 = ti + d + �̃−1
ti+d(− log(ai+1))

in step 4 of the algorithm. Here, in analogy to (2), �̃−1
ti+d(u)

is defined as �(u + ti + d) − �(ti + d).

Closed form solutions for common distributions
Step 2 of the recursive simulation algorithm requires
knowledge of the (inverse) conditional cumulative haz-
ard function of the inter-event times, �̃t(u) and �̃−1

t (u),
which can be derived from the hazard process λ(t). We
will exemplarily derive these functions for the Weibull,
Log normal and Gompertz distribution [21]. For the

Weibull hazard with λ(t) = λ · ν · tν−1 and �(t) = λ · tν
we derive

�̃t(u) = λ · ((t + u)ν − tν)

�̃−1
t (u) =

(
u + λ · tν

λ

)1/ν
− t

For the Log normal hazard with λ(t) = 1
tσ φ

(
log(t)−μ

σ

)
/

�
(
− log(t)−μ

σ

)
and �(t) = − log

(
1 − �

(
log(t)−μ

σ

))
with

φ(·) and �(·) being the probability density function and
the cumulative distribution function of the standard nor-
mal distribution, respectively, we derive

�̃t(u) = log

⎛
⎝ 1 − �

(
log(t)−μ

σ

)

1 − �
(
log(t+u)−μ

σ

)
⎞
⎠

�̃−1
t (u) = exp

(
−�−1

(
exp

(
log

(
1 − �

(
log(t) − μ

σ

))
− u

))
·

σ + μ

)
− t

And for the Gompertz hazard with λ(t) = λ exp(αt) and
�(t) = λ

α
(exp(αt) − 1) we derive

�̃t(u) = λ

α
(exp(α(u + t)) − exp(αt))

�̃−1
t (u) = 1

α
log

(α

λ
u + exp(αt)

)
− t

Simulation in the Andersen-Gill model
A common total time model allowing for fixed covari-
ates is the Andersen-Gill model [1,22], where the intensity
process is modeled as

Y (t) · λ(t) = Y (t) · λ0(t) · exp(βtX), (3)

with X and β being p-dimensional vectors of fixed covari-
ates and regression coefficients, respectively. Y (t) is the
predictable process that equals one as long as the indi-
vidual is under observation and at risk for an event.
The baseline hazard λ0(t) can be an arbitrary non-
negative function, e.g. defined by the Weibull or Gom-
pertz parametrization as specified in the section ‘Closed
form solutions for common distributions’, which leads to
the hazard functions

λ(t) = λ · ν · tν−1 · exp(βtX) (4)

and

λ(t) = λ · exp(αt) · exp(βtX), (5)

respectively. In combination with the Andersen-Gill
model, we do not use the Log normal parametrization due
to its non-proportional behavior of the hazards.
The Andersen-Gill model assumes within-patient inde-

pendency in the sense that the hazard for experiencing
an event does not depend on previous events and that all
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individuals have a common baseline hazard λ0(t). Yet for
many situations it may be more realistic that the base-
line risk varies between individuals, for example if there
are unobserved or unobservable characteristics affecting
the time to event outcome. This can be modeled by intro-
ducing a frailty variable Z to the hazard function with
E(Z) = 1 and Var(Z) = θ , defining the frailty model [23]:

λ(t) = λ0(t) · Z · exp(βtX) (6)

When fitting a misspecified Andersen-Gill model (3) to
data that follow the frailty model model (6) (and thus are
subject to unobserved inter-patient heterogeneity) regres-
sion coefficients are estimated unbiasedly [16]. However,
to account for the intra-patient correlation that is caused
by the frailty term, standard errors used for calculat-
ing statistical tests and confidence intervals have to be
replaced by robust versions [1,24] to control level α.
The derived recursive simulation algorithm can easily

be extended to simulate recurrent event data following an
Andersen-Gill model with time-invariant covariates (3) or
the frailty model extension (6). Although the hazard func-
tion will differ for each realization (x, z) of (X,Z), we can
simplify the derivations of �̃t(u) and �̃−1

t (u) for differ-
ent (x, z) and thus step 2 of the simulation algorithm. Let
�0(t) = ∫ t

0λ0(s)ds denote the cumulative baseline haz-
ard. Assuming we have derived the (inverse) conditional
cumulative baseline hazard of inter-event times �̃0,t(u)

and �̃−1
0,t (u) corresponding to λ0(t) (X = 0,Z = 1) once,

the (inverse) conditional cumulative hazard of inter-event
times corresponding to λ(t) (6) can be derived for any
realization (x, z) of (X,Z) by

�̃t(u) = �(u + t) − �(t)
= z · exp(βtx) · (�0(u + t) − �0(t))
= z · exp(βtx) · �̃0,t(u)

�̃−1
t (u) = �̃−1

0,t (z
−1 · exp(−βtx) · u) (7)

Simulation of Ti for different realizations of (x, z) can
therefore be performed by first deriving �̃0,t(u) and
�̃−1

0,t (u), then for each (x, z) calculating �̃−1
t (u) by (7) and

afterwards applying step 3 and step 4 of the recursive
simulation algorithm.
This approach will in particular simplify the simula-

tion of data representing a sample of individuals each
experiencing recurrent events and each differing in their
covariate values. Examples will be presented in the section
‘Results’.

Results
First, we will illustrate the implementation of the derived
algorithm on two exemplary simulation studies. There-
after, we will provide an example, that demonstrates the
use of our methods for sample size planning.

Implementation
As already noted by Bender et al. [19] random numbers
following a U[ 0, 1] distribution are frequently available
in statistical program packages. Therefore, the recursive
algorithm can easily be implemented within common
software. We implemented the simulation algorithm in
the open-source statistical environment R, version 3.1.0
(2014-04-10) [25] and provide the stand-alone R func-
tion as Additional file 1 with a detailed description as
Additional file 2. The output dataset is provided in count-
ing process style as required by most software packages
when analysing data applying the Andersen-Gill model.
We illustrate this implementation on two simulation stud-
ies. In the first study, we evaluate the effect of discontin-
uous risk intervals on the precision of cumulative hazard
estimation. We randomly generate 1000 datasets, each
with N = 100 observational units experiencing events
over a period of two years, that follow a Weibull distribu-
tion with scale λ = 4/

√
2 and shape ν = 0.5 by multiple

calls of

simrec(N=100,fu.min=2,fu.max=2,
dist.rec="weibull",
par.rec=c(4/

√
2, 0.5))

A further 1000 datasets are generated with the same
underlying distributional assumptions but incorporating
the presence of risk-free intervals that follow events and
last three months by multiple calls of

simrec(N=100,fu.min=2,fu.max=2,
dist.rec="weibull",
par.rec=c(4/

√
2, 0.5),pfree=1,

dfree=3/12)

Figure 2 shows the pointwise mean cumulative haz-
ard estimates with 2.5% and 97.5% quantiles as derived
from the simulated data. As expected, risk-free intervals
will not affect the point estimates if the statistical analy-
sis method accounts for the discontinuous risk intervals.
However, risk-free periods reduce the observed number
of events which is the main determinant for efficiency
in time to event analysis. As a consequence the preci-
sion of estimation is decreased as indicated by the broader
interquantile range.
In a second simulation study, we evaluate the impact

of unadjusted inter-patient heterogeneity on the bias
and precision of regression parameter estimation when
applying the Andersen-Gill model (3) for data analy-
sis. Inter-patient heterogeneity is realized by including
a random frailty term when simulating data. Indepen-
dent datasets are randomly generated, each with N =
100 observational units that experience events over time
[0,2] following an event generation process according to

simrec(N=100,fu.min=2,fu.max=2,
dist.rec="weibull",dist.rec="weibull",

4/
√
2, 0.5))par.rec=c(4

simrec(N=100,fu.min=2,fu.max=2,
dist.rec="weibull",dist.rec="weibull",

4/
√
2, 0.5),pfree=1,par.rec=c(4 ),pfree=1,

dfree=3/12)
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Figure 2 Effect of risk-free intervals on cumulative hazard
estimation. Pointwise mean cumulative hazard estimates (solid lines)
and corresponding 2.5% and 97.5% quantiles derived from 1000
simulated datasets with 100 observations each, that are observed
over the follow-up period [ 0, 2]. Data are generated without risk-free
intervals (continuous risk intervals) and with risk-free intervals of
length d = 3/12 following each event (discontinuous risk intervals),
respectively. Data distribution is Weibull with scale=4/

√
2 and

shape=0.5. Mean estimates derived from the two simulation models
are overlapping.

model (6). We underlie a Weibull baseline hazard with
scale λ = 4/

√
2 and shape ν = 0.5, incorporate a ran-

dom Bernoulli distributed covariate X ∼ B(1, 0.5) with
regression coefficient β = 1 and a Gamma-distributed
frailty term with mean 1 and variance θ [21]. For each
θ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} we randomly generate 1000
datasets by multiple calls of

simrec(N=100,fu.min=2,fu.max=2,
dist.x="binomial",par.x=0.5,
beta=1,dist.z="gamma",par.z=θ,
dist.rec="weibull",
par.rec=c(4/

√
2, 0.5))

The standard error of β̂ is estimated using the sec-
ond derivatives of the partial log likelihood (naive) and
using robust sandwich estimates that take potential inter-
patient heterogeneity into account (robust), respectively.
Figure 3 demonstrates that regression parameters are esti-
mated in an unbiased manner irrespective of the degree of
inter-patient heterogeneity (θ ). Naive standard errors do
not account for θ and are therefore known to provide erro-
neously narrow confidence intervals and inflated type I
errors. In contrast, the robust standard errors indicate that
increased inter-patient heterogeneity is associated with
an increased variability of effect estimates and therefore
provide adjusted broader confidence intervals.

θ

mean beta estimates
mean robust 95%−CI limits
mean naive 95%−CI limits

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
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Figure 3 Regression parameter estimation of Andersen-Gill
model in the presence of unadjusted inter-patient
heterogeneity.Mean regression coefficient estimates with mean
95% confidence interval limits as derived from Andersen-Gill analysis
applying naive and robust standard errors, respectively. Results are
derived from 1000 simulated datasets each reflecting recurrent event
data from 100 individuals with binary covariate X and regression
coefficient β = 1 and with gamma-distributed frailty term with mean
1 and variance θ , that reflects inter-patient heterogeneity. Baseline
hazard is defined as Weibull with scale=4/

√
2 and shape=0.5.

Application: Sample size determination for complex
recurrent event data
In the planning phase of a clinical trial the sample size
N0 has to be determined, that is required to obtain a spe-
cific power under a prespecified clinically relevant effect
size. Sample size formulas exist and can safely be applied
for many trial designs and statistical tests. However, with
increasing complexity of trial data, appropriate sample
size formulas are often missing. For these situations simu-
lation algorithms provide a useful statistical tool to derive
the required sample size N0. Random samples each of size
N are simulated and statistically analyzed while N varies
iteratively until the sample power approximately coincides
with the targeted power.
We will illustrate the use of the recursive simulation

algorithm for sample size determination in a clinical trial
with complex time to recurrent event data. As a hypo-
thetical illustrating example, we consider a balanced ran-
domized controlled trial aimed at investigating whether a
particular intervention will reduce the incidence of falls in
elderly people (section ‘Falls in elderly people’). Individu-
als are to be followed for a period of two years after start-
ing the intervention. As the fall rate is expected to change
with total time, the Andersen-Gill model with a single
binary covariate indicating the randomized intervention

simrec(N=100,fu.min=2,fu.max=2,
dist.x="binomial",par.x=0.5,
beta=1,dist.z="gamma",par.z=θ,
dist.rec="weibull",dist.rec="weibull",

4/
√
2, 0.5))par.rec=c(4
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will be applied, and the null hypothesis of no interven-
tion effect, H0 : {β = 0}, is to be tested at a two-sided
significance level of 5%. It is assumed that the two-year-
incidence can be decreased from 3.72 in the control group
to 2.74 in the intervention group. These assumptions are
based on results observed in a controlled trial on vitamin
D supplementation [26], where person-years rates of 1.86
and 1.37 have been observed in the control and vitamin
D group, respectively. Furthermore, we assume that the
risk to fall is expected to increase with time (see section
‘Falls in elderly people’), and therefore we assume the fail-
ure time data to follow a Weibull-distribution with shape
parameter ν > 1. We illustrate sample size derivations for
an assumption of ν = 2. The scale parameter is derived as
3.72/2ν = 0.93 in the control group and 2.74/2ν = 0.69
in the intervention group to be consistent with the two-
year-incidence rates of 3.72 and 2.74. The hazard ratio
between intervention and control group is 0.69/0.93 =
0.74. Furthermore, it has to be considered that some of the
individuals will drop-out early for example due to death or
the onset or deterioration of a disease that prevents fur-
ther participation in the trial. For illustrative reasons, we
assume a high lost to follow-up rate of 50% and assume
this early drop-out to follow a uniform distribution on
the interval [0, 2]. If data follow this distributional pattern,
known sample size formulas, for example as proposed by
Bernardo and Harrington [27], can be applied indicating
that a sample size of 160 individuals is required for the
detection of a statistically significant intervention effect
with a power of 80%.
However, closed and simple to apply sample size for-

mulas often fail if the complexity of the data distribution
increases. In the present clinical trial example, it must be
further considered that falls can be followed by a period
of hospitalization or bed rest. As a consequence, these
patients are considered insusceptible to subsequent falls
until they have restarted usual living (risk-free intervals).
For illustrative reasons we consider two scenarios. In the
first one we assume that falls are followed by relatively
short risk-free intervals of length d = 2 weeks with prob-
ability p = 0.2. In the second scenario prolonged risk-free
intervals of d = 8 weeks are expected, which arise with a
higher probability of p = 0.5 after each event. According
to the results of the section ‘Implementation’ (Figure 2),
the presence of risk-free intervals affects the precision of
parameter estimation and, as a consequence, the power of
a trial. We do not know of a sample size formula that takes
risk-free intervals into account and therefore apply the
simulation algorithm to determine the required sample
size. For each setting, 10000 datasets are randomly gener-
ated and statistically analyzed using the Wald test statistic
within the Andersen-Gill approach. Simulation results
indicate that a few small risk-free intervals only marginally
affect the required sample size, whereas the presence of

longer and more frequent risk-free intervals increases the
sample size requirements to N=184 individuals.
We further expect that data distribution and thus sam-

ple size requirements will be affected by unobserved
inter-patient heterogeneity: The risk of falling is known to
not only depend on known and measured covariates but
also on further unknown or unobserved patient charac-
teristics as for example neuromuscular functioning, bone
fragility or the frequency of going outdoors. For this rea-
son, we expect the fall rate to vary between individuals
even if important covariates are taken into account. It
is a known result that unobserved inter-patient hetero-
geneity causes intra-patient correlations and thus has to
be considered in statistical analysis to control the type
I error. For that, the use of robust standard errors has
been recommended [1,24], but it is expected to increase
sample size requirements according to the results of the
section ‘Implementation’ (Figure 3). Therefore, we fur-
ther adapt our simulation study and incorporate inter-
patient heterogeneity using a Gamma-distributed random
frailty term with mean 1 and variance θ . We run sim-
ulations for each θ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} to reflect
different degrees of heterogeneity. Results are summa-
rized in Table 1 and demonstrate a relevant increase
in the required sample size with increasing inter-patient
heterogeneity.
Example code for derivation of these results is given

in the Appendix along with the stand-alone R function
simrec.

Discussion
We have presented a general method for simulating recur-
rent event data when the hazard is defined on a total
time scale. In particular, this method allows the simula-
tion of recurrent event data following an Andersen-Gill
model by incorporating fixed and random covariates. Our
application demonstrates the use of the simulation design
for planning a clinical trial, in particular if trial data

Table 1 Sample size calculation results

Number of patients N0

θ d = 2, p = 0.2 d = 8, p = 0.5

0 160 184

0.1 204 226

0.2 252 274

0.3 296 320

0.4 340 366

0.5 380 422

The simulation algorithm was applied to derive the number of individuals
required for 80% power applying the robust two-sided Wald test at a 5%
significance level for different frailty variances θ and risk-free intervals of length
d (weeks) following an event with probability p. Each result was derived from
10000 simulation runs.
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are expected to be complex. We have also applied the
simulation algorithm to evaluate the impact of risk-free
intervals and unobserved inter-patient heterogeneity on
time to event estimates. The proposed simulation algo-
rithm can also be applied to simulate the recurrence
process in joint models for recurrent events and a termi-
nal event [28,29]. We have considered models with a total
time scale as this will be reasonable in many clinical set-
tings. Gap time models are defined by the distribution of
the inter-event times, thus simplifying their simulation.
Pietzner and Wienke [30] proposed a trend-renewal pro-
cess to include both a total time scale and a gap time
scale and Duchateau et al. [5] applied both time scales
to analyze recurrent asthma events in a parametric frailty
model. It will be interesting for further research to extend
our simulation algorithm to incorporate more than one
time scale. It should be noted that there is a long his-
tory of methods for simulating inhomogeneous Poisson
processes, with time-scale-transformations of homoge-
neous Poisson processes [31] and thinning [32] being two
prominent methods. Conversely, we have derived an algo-
rithm to simulate the inter-event times. We think that this
approach has two advantages that are relevant for med-
ical science: first, risk-free intervals can be incorporated
in the simulation design, which will be useful for many
applications where individuals are temporarily insuscep-
tible to a recurrent incidence of the event; and second,
simulating inter-event times allows for simulating haz-
ards that change with the number of previous events.
Metcalfe [3] demonstrated the need to randomly gen-
erate these kind of data for the evaluation of statistical
methods. We provided an R function simrec for sim-
ulating recurrent event data under a total time scale in
the counting process style. This function fills the gap
between existing R packages for simulating gap timemod-
els (covered by complex.surv.dat.sim [33]) and for
simulating inhomogeneous Poisson processes using time
scale transformations (covered by NHPoisson [34]). We
aim to extend this function to an R package that will be
available from the standard CRAN repository for the R
environment.

Conclusions
We have derived an algorithm for simulating data fol-
lowing an Andersen-Gill model defined on a total time
scale. The use of a total time scale provides a bet-
ter fit to many medical trial data than the commonly
applied gap time simulation models. Furthermore, our
method allows for a complex data structure by incorpo-
rating intra-patient correlation and/or risk-free intervals.
Its application therefore allows the simulation of data
that closely resemble real settings and thus can improve
the use of simulation studies for designing and analysing
studies.

Additional files

Additional file 1: Provides a readily accessible R function, that
implements the derived technique for simulating recurrent event
data following an Andersen-Gill model. Number of individuals,
minimum and maximum length of follow-up and censoring probability
can be passed to the function as arguments. Furthermore, distributions for
fixed and random covariates and the corresponding regression coefficients
can be determined. The baseline hazard is to be specified either as Weibull,
as Gompertz or, if no covariates are present, as Log normal and will be
defined on a total time scale. Events might be followed by a risk-free
interval of length d with a probability p, and these parameters can also be
passed to the function as arguments. For example, for the simulation of
100 individuals with a follow-up of 2 time-units, a binomially distributed
covariate, a random covariate and Weibull distributed event data, the
function simrec.R can be called as:

simdata <- simrec(N=100,fu.min=2,fu.max=2,
dist.x="binomial",par.x=0.5,beta=1,
dist.z="gamma",par.z= θ,
dist.rec="weibull",par.rec=c(4/

√
2, 0.5))

This call will provide a dataframe simdata that contains the simulated
data in counting process style, where the covariate is denoted as x.V1.
Then the data can be analysed by use of the coxph-function in the
survival-package, where cluster(id) indicates that robust
standard errors are computed for the model:

coxph(Surv(start, stop, status)∼ x.V1 +
cluster(id), data = simdata)

Further details are given in the manuscript and the annotated script with
vignette.

Additional file 2: Provides a detailed description of the provided R
function simrec.R including some exemplarily R code for calling
that function.
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