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Abstract

Background: In many medical studies the likelihood ratio test (LRT) has been widely applied to examine whether
the random effects variance component is zero within the mixed effects models framework; whereas little work
about likelihood-ratio based variance component test has been done in the generalized linear mixed models
(GLMM), where the response is discrete and the log-likelihood cannot be computed exactly. Before applying the
LRT for variance component in GLMM, several difficulties need to be overcome, including the computation of the
log-likelihood, the parameter estimation and the derivation of the null distribution for the LRT statistic.

Methods: To overcome these problems, in this paper we make use of the penalized quasi-likelihood algorithm and
calculate the LRT statistic based on the resulting working response and the quasi-likelihood. The permutation
procedure is used to obtain the null distribution of the LRT statistic. We evaluate the permutation-based LRT via
simulations and compare it with the score-based variance component test and the tests based on the mixture of
chi-square distributions. Finally we apply the permutation-based LRT to multilocus association analysis in the
case–control study, where the problem can be investigated under the framework of logistic mixed effects model.

Results: The simulations show that the permutation-based LRT can effectively control the type I error rate, while
the score test is sometimes slightly conservative and the tests based on mixtures cannot maintain the type I error
rate. Our studies also show that the permutation-based LRT has higher power than these existing tests and still
maintains a reasonably high power even when the random effects do not follow a normal distribution. The application
to GAW17 data also demonstrates that the proposed LRT has a higher probability to identify the association signals
than the score test and the tests based on mixtures.

Conclusions: In the present paper the permutation-based LRT was developed for variance component in GLMM. The
LRT outperforms existing tests and has a reasonably higher power under various scenarios; additionally, it is
conceptually simple and easy to implement.
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Background
LRT for variance component in LMM
In many medical researches the main interest often lies
on the problem of testing whether a random effects vari-
ance component is equal to zero within the mixed ef-
fects models framework. The variance component test
has long been a statistical challenge and received much
attention in the literature; see for example, Self and
Liang [1], Stram and Lee [2], Liang and Self [3], more re-
cently Lindquist, et al. [4], Drikvandi, et al. [5], Nobre,
et al. [6], and many others. Beyond the direct interest,
some other scientific problems under investigation can
be also transformed into this similar issue. For example,
to test a parametric null model against a nonparametric
alternative in the penalized spline regression, Claeskens
[7] first constructed a mixed effects model so that the
hypothesis testing was reduced to the problem that
whether the variance component of random effects was
zero, and then performed a restricted likelihood ratio lack-
of-fit test. Analogous transforms and hypothesis testing
problems were also studied by Crainiceanu and Ruppert
[8-10], Crainiceanu, et al. [11] and Greven, et al. [12].
The variance component test is nonstandard in the

sense that under the null the variance component is on
the boundary of the parameter space. In this situation it
is not easy to obtain the null distribution of the likeli-
hood ratio statistic. Under some regularity conditions
Self and Liang [1], Stram and Lee [2] and Liang and Self
[3] proved that the likelihood ratio statistic followed a
0.50:0.50 mixture of χ20 and χ21, where χ20 is a point mass
at zero and χ21 is a chi-square distribution with one de-
gree of freedom. Whereas Crainiceanu and Ruppert [8] ar-
gued that the assumed conditions in these papers were
often not guaranteed in practice, they showed the mixture
proportion parameter is actually dependent on specific
contexts and the equal-weight mixture can lead to conser-
vative type I error control. To obtain the null distribution
of the likelihood ratio test (LRT) statistic, Crainiceanu and
Ruppert [8] developed a simulation-based algorithm using
the spectral representation of the LRT statistic.
Instead of using the equal-weight mixture as done in

Self and Liang [1] and Liang and Self [3], Pinheiro and
Bates [13] found that a nonequal-weight one may be bet-
ter and suggested the 0.65:0.35 mixture for some specific
longitudinal datasets. Fitzmaurice, et al. [14] evaluated
the 0.50:0.50 and 0.65:0.35 mixtures via simulations and
concluded that the appropriate mixture is not straight-
forward to derive.
The work aforementioned shows clearly that it is diffi-

cult to obtain an analytical expression for the null distribu-
tion of the likelihood ratio statistic. On the other hand,
when encountering complex hypothesis testing scenarios
in practical data analyses, resorting to resampling-based
methods is a very natural and effective strategy. Faraway
[15] and Samuh, et al. [16] applied the parametric boot-
strap approach for testing the variance component. Lee
and Braun [17] and Samuh, et al. [16] used the permuta-
tion procedure to resolve this problem. Their results dem-
onstrated that the bootstrap and permutation tests can
control the type I error rate correctly and are more power-
ful compared to the tests that are based on the usual
asymptotic mixture.

LRT for variance component in GLMM
At present most of the work concerning the likelihood-
ratio based variance component test has been mainly in-
vestigated under the context of linear mixed models
(LMM), in which the response variable is continuous
and the closed-form log-likelihood function is easily ob-
tained and calculated [18,19]. However, little literature
has been published about LRT of variance component in
the generalized linear mixed models (GLMM) frame-
work [20,21], where the response variable is discrete,
such as the binary or count variable, and the calculation
of the log-likelihood function is not straightforward.
The difficulty of performing the likelihood ratio vari-

ance component test in GLMM arises in several aspects:
(i) unlike in LMM for the continuous data, the closed-
form log-likelihood function of GLMM can be no longer
yielded except in some extremely limited situations, thus
the computation of the likelihood ratio statistic is not easy;
(ii) the exact parameter estimation in GLMM is often
impossible because of the need of high-dimensional nu-
merical integration; (iii) the null distribution of the like-
lihood ratio statistic in GLMM is complicated, and similar
to the case in LMM it cannot be obtained analytically.
Lee and Braun [17] mentioned in their Discussion Sec-

tion that the permutation test can be applied to the
problem of testing for variance components in GLMM,
but did not formally give any further results to date.
Fitzmaurice, et al. [14] investigated the permutation vari-
ance component test in GLMM to detect the cluster effect
in a multilevel binary dataset and showed that the permu-
tation test can effectively control the type I error rate and
has a higher power compared with the tests based on the
asymptotic mixture of chi-square distributions.
Lin [22] developed a global score test to examine vari-

ance components in GLMM via the manner of Taylor ex-
pansion of the integrated quasi log-likelihood, derived the
analytical null distribution of the score statistic, and dis-
played that this score test was a locally asymptotically
most powerful test under some assumptions; see also
Zhang and Lin [23] for similar presentations where the
score test was constructed for the semi-parametric gener-
alized additive mixed models [24]. Sinha [25] constructed
a score-type statistic for the variance component test in
GLMM via parametric bootstrap procedure and showed
that the bootstrap score test was valid.
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A motivating application for the variance component test
in GLMM
In this paper we attempt to perform the likelihood ratio
variance component test in GLMM via the permutation
procedure. To present the permutation-based LRT, we
now give an example motivating from genetic statistics
concerning multilocus association analyses in case–con-
trol studies. One of the main objectives in genetic asso-
ciation studies is to identify the causal markers (e.g.,
single nucleotide polymorphisms, SNPs) that are signifi-
cantly related to diseases. Two commonly used methods
in genome-wide association studies are respectively sin-
gle marker analysis and multiple markers analysis [26].
Compared with the single marker analysis, the multiple
markers analysis is generally more powerful since some
useful information among markers is taken into account.
More specifically, suppose that in multilocus association

analyses K SNPs within a functional gene are grouped into
an SNP set. The objective is to test whether these K SNPs
are jointly associated with the disease of interest, say y.
Here we assume y is a binary variable. If the number of
SNPs (i.e., K) is small, we can perform traditional fixed ef-
fects model and test to achieve this aim; however, if the
number of SNPs is large, the traditional test such as the
Wald test or the score test is typically underpowered for
the null due to the large number of degrees of freedom,
and the fixed effects model may be subject to some nu-
merical issues, e.g., the problem of multicollinearity since
the SNPs within a gene may be highly correlated due to
the linkage disequilibrium.
As an effective alternative, if the effects of SNPs are as-

sumed to be random with a common variance component
[27], then the fixed effects model becomes the mixed ef-
fects model and the test is converted into the variance
component test under the framework of GLMM (i.e., the
logistic mixed effects model). And now the numerical
problems encountered in the fixed effects model men-
tioned above can be avoided because of the use of mixed
effects model [27-31].
It should be emphasized that our main objective is fo-

cused on the hypothesis testing of variance component
in GLMM instead of the parameter estimation. In this
paper we attempt to explore the application of LRT in
logistic mixed effects model based on the well-developed
theories for GLMM.
The organization of this paper is given as follows. The

likelihood ratio statistic is constructed by taking full of
the working response generated in the estimation
process of GLMM. To circumvent the derivation of the
analytical expression for the null distribution of the like-
lihood ratio statistic, we use the permutation procedure.
We implement simulation studies to evaluate the per-
formance of the proposed permutation-based LRT in the
context of genetic association studies. Finally we apply
the proposed LRT to multilocus association analysis for
the binary genetic data.

Methods
Logistic mixed effects model and the variance component
test
Let X = [X0, X1, …, Xp] and Z = [Z1, Z2, …, ZK] be n × (p +
1) and n ×K matrices for covariates, respectively, where
X0 = 1 corresponds to the intercept term, n is the total
sample size; and let y = [y1, y2, …, yn]’ be a n-dimensional
vector for a binary response variable coded as 0 and 1,
such as y = 0 for the control and y = 1 for the case in
case–control studies. Assume the relationship between y,
X and Z is characterized via the following logistic model

μ ¼ E yð Þ; logð μ�
1 − μÞ

¼
Xp
j ¼ 0

Xjαj þ
XK

k ¼ 1

Zkβk

¼ Xα þ Zβ; βk e N 0; τ2
� �

;

ð1Þ

where α = [α0, α1, …, αp] are considered as fixed effects,
while β = [β1, β2, …, βK] are considered as random ef-
fects following a normal distribution with mean zero
and variance component τ2. Under these settings model
(1) becomes the logistic mixed effects model which has
been widely studied in the literature [20,21,32,33]. Our
aim is to test βs simultaneously to determine the overall
significance of variables Z. Based on these specifications,
the test of β = 0 is immediately equivalent to the test of
variance component H0: τ

2 = 0 in model (1).
Note that model (1) is different from the one consid-

ered by Fitzmaurice, et al. [14] and Sinha [25], in which
only one random effect was included so that the approx-
imated calculation of the log-likelihood function via nu-
merical integration was feasible; whereas in model (1)
there are K random effects with the same variance com-
ponent and the calculation of the log-likelihood function
via numerical integration is generally not possible [21].

Definition of the likelihood ratio statistic
A lot of algorithms have been developed for estimating
GLMM, including approximate approaches and Monte
Carlo methods [20,21,34]. Here we use the penalized
quasi-likelihood (PQL) algorithm [20,34] since it has the
conceptual and computational advantage compared to
others and can be implemented via existing software, such
as the glmmPQL function in the R package MASS [35].
We build LRT for the null of H0: τ

2 = 0 in model (1)
by using the working response variable, denoted as Y’ to
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distinguish the original response variable y, generated
after the convergence of PQL algorithm

Y ′ ¼ Xα þ Zβ þ e; β e N 0; τ2
� �

; e eN 0; Rð Þ;
ð2Þ

where R is a n × n diagonal matrix with elements being
1/[μ(1-μ)]. Following Breslow and Clayton [20], the cor-
responding quasi log-likelihood up an unrelated con-
stant for the working response variable Y’ is

L τ2
� �

≈ −
1
2

log Vj j þ Y ′ −Xα̂
� �′

V−1 Y ′ −Xα̂
� �h i

;

ð3Þ

with V = τ2ZZ′ + R and α̂ ¼ X′V−1X
� �−1

X′V−1Y ′ :

By carefully inspecting we can easily find that Formula
(3) is actually the log-likelihood function of LMM with
residual term ε and random effects β if Y’ is treated as a
continuous response variable. Based on the log-
likelihood given in (3), the likelihood ratio statistic for
H0: τ

2 = 0 can be defined as

T ¼ 2 supτ2 ≥ 0L τ2
� �

− L τ2 ¼ 0
� �� �

: ð4Þ

Here we have some remarks about the LRT statistic
given in (4): (i) we calculate T via the working response
variable Y’ instead of the original response variable y; (ii)
for fair comparisons, the log-likelihood of the null
model, i.e., the value of L(τ2 = 0), is also calculated ac-
cording to the quasi log-likelihood, although the null
model with τ2 = 0 reduces to the general logistic
regression whose log-likelihood can be computed dir-
ectly; in fact we find that negative values of the likeli-
hood ratio statistic are obtained if the log-likelihood of
the reduced logistic regression is adopted; more import-
antly, we indeed do not see any problems with the use
of Formula (4) to compute the likelihood ratio statistic in
our simulations; (iii) here we only consider LRT, although
the restricted likelihood ratio test [8-10] can be also ap-
plied; the difference between the two likelihood ratio tests
is generally ignorable as the sample size increases.

Resampling algorithm for the null distribution of T
To obtain the null distribution of the likelihood ratio
statistic T, we now use the permutation procedure
[36-38]. The more general resampling algorithm is de-
scribed as follows.

Resampling algorithm for the null distribution of T
step 1: Calculate the observed value of T according to
(4) using the original data D = [y, X, Z], say Tobs;
step 2: Generate a new dataset D* by resampling;
step 3: Calculate the new value of T according to
(4) using D*, say T*;
step 4: Repeat the steps 2–3 above B times, get T*b,
b = 1, 2, …, B;
step 5: The resampling-based null distribution of T can
be approximated by T*b, and the Monte Carlo p value
of T is estimated by the proportion of T*b equal to or
greater than Tobs.

In step 2 of the resampling algorithm, if we randomly
permute y and X as a whole while keeping Z fixed, then
we are performing the permutation test [14,38]. Here we
implicitly assume that no correlation between X and Z
exists. If we only generate the new response variable y
(say y*) from the fitted null model (i.e., the fixed effects
logistic model with only covariates X) while letting both
X and Z unchanged, then we are performing the para-
metric bootstrap test [15,16,25,36,37]. The permutation
and bootstrap algorithms are almost the same except the
production of the new resampling dataset in the second
step. In this paper we only discuss the permutation test
since it requires fewer assumptions compared with the
parametric bootstrap test.
Usually, the number of replicates B in the permutation

test is set to 1000 ~ 2000 for a relatively large signifi-
cance level, say α = 0.05. Whereas some authors [14,16]
empirically found that much smaller values of B (e.g.,
200 or 500) could also behave satisfactorily.

Simulation study and real application
In this section we implemented simulation studies to
evaluate the proposed permutation-based LRT method
and then applied it to the real genetic data. The simula-
tion data was generated via the following logistic model

log
E yð Þ

1 − E yð Þ
� �

¼ − 1 þ 0:5X1 þ 0:5X2ð Þ

þ
XK

k ¼ 1

Zkβk ;

ð5Þ
where X1 is a binary variable with a probability of 0.5
and X2 is a standard normal variable, and they are mutu-
ally independent. To correspond to the motivating ex-
ample of multilocus association studies described before
and to mimic the true genetic data, in this paper we use
the additive genetic model so that Z = 0, 1 and 2 repre-
sents the count of the minor allele [31].
For comparisons, besides the proposed permutation-

based LRT, the methods of LRT based on the 0.50:0.50
and 0.65:0.35 mixtures and the score-based variance
component test are also implemented. It should be men-
tioned that the 0.65:0.35 mixture suggested by Pinheiro
and Bates [13] is only reasonable for some specific data-
sets and may not apply to the present simulation set-
tings; but it has been shown that it provided a useful



Table 1 Estimated type I error rates for simulation 1 with
varying number of random effects

n Method K

20 30 40

400 Permutation 0.046 0.055 0.054

Score 0.043 0.045 0.048

Mixture (0.50) 0.016 0.020 0.021

Mixture (0.65) 0.020 0.026 0.027

600 Permutation 0.052 0.047 0.044

Score 0.045 0.042 0.037

Mixture (0.50) 0.016 0.016 0.013

Mixture (0.65) 0.020 0.021 0.017

800 Permutation 0.052 0.054 0.051

Score 0.048 0.052 0.047

Mixture (0.50) 0.014 0.015 0.012

Mixture (0.65) 0.020 0.019 0.020

1000 Permutation 0.051 0.041 0.053

Score 0.050 0.036 0.051

Mixture (0.50) 0.017 0.014 0.011

Mixture (0.65) 0.020 0.017 0.017

Note: Permutation is the proposed permutation-based LRT, Score is the
score-based sequence kernel association test given in Wu, et al. [31] that
was originally developed in Lin (1997), Mixture(0.50) and Mixture (0.65)
respectively correspond to the asymptotic 0.50:0.50 and 0.65:035 mixtures of
chi-square distributions. Here K is the number of random effects, i.e., the number
of SNPs included in a gene.
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reference in some cases [8,14], thus it is still consid-
ered here. The score variance component tests in
mixed effects models have been previously investigated
by many authors in a wide range of application areas
[22,23,28-31,39]; these score tests share a very similar
rationale to each other. In this paper we use the score
test originally developed by Lin [22], which was later
applied and called sequence kernel association test
(SKAT) by Wu, et al. [31] under the context of rare
variants association in sequencing data and is imple-
mented in the R package SKAT (version 0.91) [40]. All
the data analyses are performed within the R (version
2.15.3) statistical environment [41].
The sample size was set to 400, 600, 800 and 1000.

The value of B in the permutation-based LRT was
1000. The number of simulations was 2000 for con-
trolling the type I error rate and was 1000 for evaluat-
ing the statistical power. The estimated type I error
rate and power were calculated as the proportion of
the p-values less than the given significance level α =
0.05.

Simulation 1
We first evaluated the type I error and power of the pro-
posed LRT in the context of multilocus association ana-
lyses with different number of SNPs and various random
effects variance component. To obtain Z = [Z1, Z2, . . .,
ZK], we first generated G = [G1, G2, . . ., GK] via the
standard normal distribution with pairwise correlation
between Gk and Gk’ to be 0.5|k - k’|, and then set Zk = 0, 1
and 2 according to whether Gk < −c, −c ≤Gk ≤ c or Gk >
c, where c is the third quartile of the standard normal
distribution. We set K = 20, 30 and 40, and β = 0 in
model (5) for the type I error simulation and sampled β
from a normal distribution with mean zero and variance
τ2 = 0.15 and 0.20 for the power evaluation. The results
are given in Tables 1 and 2.

Simulation 2
This simulation is mainly designed to see the influence
of non-normally distributed random effects in multilo-
cus association studies. Here the variable Z in model (5)
was generated via the software COSI [42] based on a co-
alescent model for European population. Specifically, we
first generated a long region with COSI, from which a
continuous subregion was selected so that it contained a
reasonable number of SNPs; next this subregion was
treated as a gene, whose genotypes were specified to Z,
i.e., the SNPs included in this subregion are modeled
by variables Z. The average number of SNPs included
in the simulation is given in Table 3. Usually, not all of
the SNPs (i.e., Z) within a gene are causal [31], thus
some of them were assumed to have zero effects; i.e.,
only m out of K SNPs had an impact on the response
variable y in model (5). Here we set m = 0K, 0.1K, 0.3K
and 0.5K. The effects β were generated from the uniform
distribution U[0.60, 1.10] at random. The results are given
in Table 3.
Data analysis
We applied the permutation-based LRT to the well-
known Genetic Analysis Workshop 17 (GAW17)
mini-exome sequencing data [43], which was con-
structed based on the 1000 Genomes Project [44].
The GAW17 data contain a binary response variable
called affection status (say y here, and y = 1 represent-
ing affection and y = 0 representing non-affection) and
five covariates including age (X1, a continuous vari-
able), smoking status (X2, an indicator variable represent-
ing smoking or non-smoking), and three continuous
variables Q1, Q2 and Q4. The number of individuals is
697. The details of this data were described in Almasy,
et al. [43]. We implemented multilocus association
analysis for four genes ELAVL4, PRKCB1, PTK2B
and SOS2 across all the 200 replicates of the GAW17
data.
The logistic mixed effects model for the GAW17 data

is written as



Table 3 Estimated powers for Simulation 2 with different
proportion of the causal markers

n Method K Power with various m

0 K 0.1 K 0.3 K 0.5 K

400 Permutation 46 0.052 0.112 0.252 0.402

Score 0.046 0.103 0.241 0.396

Mixture (0.50) 0.042 0.096 0.226 0.371

Mixture (0.65) 0.066 0.130 0.262 0.414

600 Permutation 54 0.053 0.138 0.361 0.583

Score 0.046 0.125 0.345 0.576

Mixture (0.50) 0.046 0.121 0.329 0.550

Mixture (0.65) 0.063 0.153 0.388 0.604

800 Permutation 60 0.049 0.181 0.446 0.707

Score 0.040 0.173 0.425 0.685

Mixture (0.50) 0.039 0.149 0.406 0.669

Mixture (0.65) 0.057 0.192 0.471 0.721

1000 Permutation 65 0.051 0.181 0.528 0.754

Score 0.046 0.178 0.513 0.746

Mixture (0.50) 0.040 0.159 0.492 0.727

Mixture (0.65) 0.057 0.193 0.552 0.773

Note: Permutation is the proposed permutation-based LRT, Score is the
score-based sequence kernel association test given in Wu, et al. [31] that was
originally developed in Lin (1997), Mixture (0.50) and Mixture (0.65) respectively
correspond to the asymptotic 0.50:0.50 and 0.65:035 mixtures of chi-square
distributions. Here K is the number of random effects, i.e., the number of SNPs
included in a gene, and m is the number of causal SNPs; when m = 0 (i.e.,
corresponding to 0 K in the fourth column), the estimated power is actually the
type I error rate.

Table 2 Estimated powers for Simulation 1 with the
random effects variance component equal to 0.15 and
0.20 and varying number of random effects

n Method K with τ2 = 0.15 K with τ2 = 0.20

20 30 40 20 30 40

400 Permutation 0.296 0.380 0.433 0.506 0.577 0.704

Score 0.276 0.363 0.402 0.501 0.557 0.689

Mixture (0.50) 0.158 0.235 0.282 0.349 0.441 0.567

Mixture (0.65) 0.187 0.269 0.318 0.393 0.476 0.615

600 Permutation 0.436 0.566 0.630 0.712 0.837 0.878

Score 0.430 0.548 0.604 0.704 0.816 0.868

Mixture (0.50) 0.255 0.382 0.463 0.538 0.686 0.794

Mixture (0.65) 0.292 0.437 0.501 0.589 0.717 0.826

800 Permutation 0.559 0.704 0.777 0.840 0.922 0.951

Score 0.557 0.702 0.771 0.830 0.917 0.948

Mixture (0.50) 0.380 0.526 0.642 0.727 0.851 0.905

Mixture (0.65) 0.427 0.573 0.682 0.765 0.873 0.922

1000 Permutation 0.688 0.792 0.865 0.913 0.950 0.987

Score 0.679 0.787 0.864 0.909 0.949 0.983

Mixture (0.50) 0.517 0.637 0.774 0.828 0.914 0.966

Mixture (0.65) 0.562 0.677 0.801 0.852 0.926 0.970

Note: Permutation is the proposed permutation-based LRT, Score is the
score-based sequence kernel association test given in Wu, et al. [31] that was
originally developed in Lin (1997), Mixture (0.50) and Mixture (0.65) respectively
correspond to the asymptotic 0.50:0.50 and 0.65:035 mixtures of chi-square
distributions. Here K is the number of random effects, i.e., the number of SNPs
included in a gene, and τ2 is the random effects variance component.
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log
E yð Þ

1 ‐ E yð Þ
� �

¼ α0 þ α1 � X1 þ α2 � X2

þ α3 � Q1 þ α4 � Q2

þ α5 � Q4 þ
XK

k ¼ 1

Zkβk ;

βk e N 0; τ2ð Þ;
ð6Þ

here Z is the genotype of the selected gene, and α0 - α5
are set to be fixed effects while β are set to be random
effects. Our interest is to test H0: τ

2 = 0 in model (6) to
determine whether a given gene is associated with affec-
tion status. Since in this data we know which SNPs are
causal, the proportion of p-values less than the given sig-
nificance level provides a measurement of the empirical
power for these methods. The results are given in
Table 4.
To reduce computation time of the permutation-based

LRT, the simulations and data analyses were conducted
with the high performance computing at the School of
Public Health of Nanjing Medical University. More spe-
cifically, we use the function %dopar% in the R package
doMC (version 1.3.3) [45] with the function register-
DoMC having its argument cores = 30 for parallel
execution when implementing the permutation proced-
ure. Our experience showed that this parallel execution
could substantially reduce the computation compared to
the use of the simple R for-loop.

Results
From Table 1 it is observed that the type I error rate of
the permutation-based LRT is very close to the nominal
significance level 0.05 at various situations. On the other
hand, the score test is sometimes slightly conservative,
especially when the sample size is relatively small (e.g.,
400 and 600); the two tests respectively based on the
0.50:0.50 and 0.65:0.35 mixtures cannot control the type
I error rate correctly regardless of the sample size and
the number of random effects, and are much more con-
servative than the score test.
Table 2 shows that the permutation-based LRT is the

most powerful method among these tests and the score
test has higher power compared to the tests based on
mixtures. Typically, as expected the powers of these tests
improve as the sample size increases and the number of
random effects becomes larger. In Simulation 1 as the
sample size improves, the powers of the LRT and the
score test approach each other. Here an interesting



Table 4 Results of the four genes in GAW17 data

Gene Method K m The significance level α

0.05 0.01 0.001

ELAVL4 Permutation 10 2 0.725 0.630 0.395

Score 0.450 0.240 0.040

Mixture (0.50) 0.640 0.485 0.335

Mixture (0.65) 0.690 0.540 0.360

PTK2B Permutation 18 3 0.600 0.470 0.290

Score 0.085 0.030 0.000

Mixture (0.50) 0.515 0.355 0.245

Mixture (0.65) 0.540 0.405 0.255

PRKCB1 Permutation 20 1 0.550 0.355 0.255

Score 0.095 0.030 0.005

Mixture (0.50) 0.430 0.305 0.220

Mixture (0.65) 0.465 0.315 0.225

SOS2 Permutation 9 2 0.545 0.400 0.235

Score 0.160 0.030 0.005

Mixture (0.50) 0.420 0.285 0.165

Mixture (0.65) 0.450 0.325 0.185

Note: Permutation is the proposed permutation-based LRT, Score is the
score-based sequence kernel association test given in Wu, et al. [31] that was
originally developed in Lin (1997), Mixture (0.50) and Mixture (0.65) respectively
correspond to the asymptotic 0.50:0.50 and 0.65:035 mixtures of chi-square
distributions. In the last three columns of the table are the proportion of p-values
less than α among the 200 replicates. Here K is the number of SNPs included in
the gene, i.e., the number of the random effects contained in the logistic mixed
effects model (5) and m is the number of causal SNPs.
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finding in Table 2 is that the magnitude of the random
effects variance component τ2 has a greater influence on
the statistical power for these tests than the number of
random effects (i.e., K). For example, in Table 2 when K
becomes from 20 to 40 and τ2 = 0.15, the increasing
power for LRT is 0.137; when K = 20 and τ2 increases
from 0.15 to 0.20, the corresponding change of power of
LRT is 0.210.
In Table 3 for Simulation 2 where the random effects

are not normally distributed, as before the permutation
test holds the type I error rate effectively while the score
test is slightly conservative and the tests based mixtures
give incorrect control. For instance, the type I error rate
estimated from the 0.50:0.50 mixture is conservative and
the type I error rate from the 0.65:0.35 mixture is liberal,
and the incorrect control of the two mixtures does not
improve with the increasing sample size. The power of
the permutation-based LRT is higher than that obtained
from the 0.50:0.50 mixture and lower than that obtained
from the 0.65:0.35 mixture. But here only the results of
the LRT are valid and believable because the two mix-
tures cannot correctly control the type I error rate as
demonstrated.
In general, as expected the powers of these tests im-

prove as the proportion of causal markers increases. In
Table 3 we find that the permutation-based LRT always
outperforms the score test even when the sample size is
large (e.g., 1000 and 800). In conclusion in this simula-
tion we see that the proposed LRT can maintain a rea-
sonably higher power than the score test even if the
distribution of random effects is not normal.
From Table 4 we can see that the permutation-based

LRT has higher chance to detect the causal genes com-
pared the other three methods. Here it is somewhat sur-
prising that the score test is extremely underpowered
and has the lowest probability to identify the associated
genes. For example, when the significance level is 0.001
the chance that these four genes are deemed to be statis-
tically related to the disease status by the score test is
less than 5%; relatively, the LRT has a much larger prob-
ability than the score test.
As a reviewer pointed out that, in fact, the GAW17

data are not purely real data but rather 200 replicates,
which were simulated independently based on the true
genotype-phenotype association model with the same
genotypes but different phenotypes. Therefore, it may be
limited for evaluating the performance of these tests.
Nevertheless, according to the results presented in
Table 4, it seems to be reasonable to conclude that the
proposed permutation-based LRT has an empirical ad-
vantage to identify association signals compared with
other competing tests.

Discussion
In this paper we have applied the LRT to GLMM by tak-
ing full use of the PQL algorithm and the resulting
working response variable. The main difficulties of
using LRT in GLMM are the computation of the log-
likelihood function for the alternative model (e.g., the lo-
gistic mixed effects model) and the derivation of the null
distribution of the likelihood ratio statistic. To avoid the
direct computation we use the quasi log-likelihood of the
working response, which can be deemed to be linear. By
doing this the LRT in GLMM becomes computationally
feasible. To obtain the null distribution of LRT we use the
permutation procedure which has been extensively
employed in practice and has proved to be valid [14,17,38].
In the present paper we only consider the permutation

test for the likelihood inference, but extending to other
resampling-based methods is straightforward; for ex-
ample, the parametric bootstrap method. Still the per-
mutation test has an advantage that it requires few
model assumptions compared to other resampling-based
methods [14,17,38]. Via simulations it has been shown
that the permutation-based LRT can effectively control
the type I error rate under different situations. Similar to
the results demonstrated by others [8,14,17], the usually-
used asymptotic mixture distributions such as the
0.50:0.50 and 0.65:0.35 mixtures cannot maintain the
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type I error rate correctly at the nominal significance
level. The simulations show that the score test can con-
trol the type I error rate but is sometimes conservative,
especially for small sample sizes; the similar result has
also been observed by Wu, et al. [31] and Li, et al. [46]
under the context of multilocus association studies.
Our studies have shown that the permutation-based

LRT has higher power than the score test and the tests
based on mixtures under a wide range of scenarios and
it still maintains a reasonably high power even when the
random effects do not follow a normal distribution. The
LRT has the advantage that it is conceptually simple and
easy to implement, but the permutation-based LRT is
computationally intensive. However, as Lee and Braun
[17] pointed out that the computation burden can be re-
duced significantly via parallel computing; additionally,
some approximation methods suggested in linear mixed
effects models may be applied [8,12]. In contrast, the
tests based on mixtures are relatively rapid since they do
not require resampling, and the score test is the most
computationally efficient since it only needs to fit the
null model and its null distribution can be obtained
analytically [22-24]. Another advantage of the score test
is that its statistic is calculated much more straightfor-
ward [22-24].
The computation time for the permutation-based LRT

depends on the sample size, the number of random ef-
fects and the number of replicates B in the permutation
algorithm. Although having been performed the parallel
computation, we still find that the permutation-based
LRT is much slower than other methods, especially than
the score test. For example, in Simulation 1 when the
sample size is 400 and B = 1000 in the permutation-
based LRT, running one simulation requires respectively
975 s, 702 s and 1217 s if K = 20, 30 and 40; whereas the
score test only needs about 16 s, 23 s and 30 s if running
ten simulations. All the times are obtained via the use of
the function %dopar% as mentioned before.
Besides the increasing computational burden of the

permutation-based LRT, another disadvantage is that the
LRT may be numerically unstable to fit the alternative
model when the sample size is limited and the number
of the random effects is large. The third shortcoming of
the LRT is that its validity and efficiency rely largely on
the PQL algorithm, which had been already proved to be
seriously biased downward [20,22,47,48]. Although no
negative effect on the type I error controlling is observed
in our simulations, certainly it can result in power re-
duction due to the biased estimation. Therefore, designing
more efficient and faster algorithms for the proposed LRT
is necessary in the future, and developing likelihood-
ratio based variance component tests in GLMM with
the bias-corrected PQL estimation is another interest-
ing problem.
Finally, we note in Table 4 for GAW17 data analysis
that the overall power for these methods compared in
this paper is very low. For example, if we set the signifi-
cance level at 0.001, none of these methods has an em-
pirical power greater than 0.50. The reasons may be
that: (i) the effects of the markers are very weak; (ii) the
non-causal SNPs included in the gene lead to the reduc-
tion of power; that is, not all the random effects have
nonzero coefficients; (iii) the sample size is relatively
small for identifying the association signal; (iv) in the
GAW17 data most of the SNPs are rare variants, i.e.,
their minor allele frequencies are very low and typically
less than 0.01 [43], which are known to have an ex-
tremely limited power to be detected [31,49]. These re-
sults also suggest that developing more powerful
methods for the low-frequency variants in case–control
sequence data is an urgent demand [31,50-52].

Conclusions
In the present paper the permutation-based LRT was de-
veloped for variance component in GLMM. Via simula-
tions and real application it has been demonstrated that
the developed LRT method outperforms the existing
tests and has a reasonably high power under various sce-
narios; additionally it is conceptually simple and easy to
implement.
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