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Abstract

Background: A frequently used statistic for testing homogeneity in a meta-analysis of K independent studies is
Cochran’s Q. For a standard test of homogeneity the Q statistic is referred to a chi-square distribution with K − 1
degrees of freedom. For the situation in which the effects of the studies are logarithms of odds ratios, the chi-square
distribution is much too conservative for moderate size studies, although it may be asymptotically correct as the
individual studies become large.

Methods: Using a mixture of theoretical results and simulations, we provide formulas to estimate the shape and
scale parameters of a gamma distribution to fit the distribution of Q.

Results: Simulation studies show that the gamma distribution is a good approximation to the distribution for Q.

Conclusions: Use of the gamma distribution instead of the chi-square distribution for Q should eliminate inaccurate
inferences in assessing homogeneity in a meta-analysis. (A computer program for implementing this test is provided.)
This hypothesis test is competitive with the Breslow-Day test both in accuracy of level and in power.
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Background
The combination of the results of several similar stud-
ies has many applications in statistical practice, notably
in the meta-analysis of medical and social science studies
and also in multi-center medical trials. An important first
step in such a combination is to decide whether the sev-
eral studies are sufficiently similar. This decision is often
accomplished via a so-called test of homogeneity. The out-
comes of the studies may be expressed in a variety of
effect measures, such as: sample means; odds ratios, rel-
ative risks or risk differences arising from 2 × 2 tables;
standardized mean differences of two arms of the studies;
and many more. A variety of statistics for use in tests of
homogeneity have been proposed; some are specific to the
type of effect measure, and some are applicable to several
measures.
This paper has its main focus on the test statistic first

introduced by Cochran [1] and [2] and its application
to testing homogeneity when the effects of interest are
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odds ratios arising from experiments with dichotomous
outcomes in treatment and control arms. Cochran’s Q
statistic is defined by Q = ∑

i ŵi(θ̂i − θ̂w)2 where θ̂i is the
effect estimator of the ith study, θ̂w = ∑

i ŵiθ̂i/
∑

i ŵi is
the weighted average of the estimators of the effects, and
the weight ŵi is the inverse of the variance estimator of ith
effect estimator. The use of inverse variance weights has
the appealing feature of weighting larger and more accu-
rate studies more heavily in the weighted mean θ̂w and
in the statistic Q. This statistic was investigated for the
case that the study effects are normally distributed sam-
ple means by Cochran and also by Welch [3] and James
[4]. Perhaps the first application of the Q statistic to test-
ing homogeneity of the logarithm of odds ratios is due to
Woolf in 1955 [5]. DerSimonian and Laird [6] extended
the use of Q for studies with binomial outcomes to dif-
ference of proportions as well as to log odds ratios in the
context of the random effects model in which the studies
are assumed to be sampled from a hypothetical popula-
tion of potential studies. However, the use of Q in a test
of homogeneity is the same whether a random effects or
fixed effects model is used.

© 2015 Kulinskaya and Dollinger. Open Access This article is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-015-0034-x-x&domain=pdf
mailto: e.kulinskaya@uea.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Kulinskaya and Dollinger BMCMedical ResearchMethodology  (2015) 15:49 Page 2 of 19

Under fairly general conditions, in the absence of het-
erogeneity, Q will follow asymptotically (as the individual
studies become large) the chi-square distribution withK−
1 degrees of freedom where K is the number of studies.
It is common practice to assume that Q has this null dis-
tribution, regardless of the sizes of the individual studies
or the effect measure. But this null distribution is inaccu-
rate (except asymptotically), and its use causes inferences
based on Q to be inaccurate. This conclusion of inaccu-
racy should also apply to inferences based on any statistics
which are derived from Q, such as the I2 statistic (see
[7] and [8]). Little is known of a theoretical nature about
the null distribution of Q under non-asymptotic condi-
tions. In our previous work, together with Bjørkestøl, we
have provided improved approximations to the null dis-
tribution of Q when the effect measure of interest is the
standardized mean difference [9] and the risk difference
[10]. In this paper we use a combination of theoretical
and simulation results to estimate the mean and variance
of Q when the effects are logarithms of odds ratios. We
use these estimated moments to approximate the null dis-
tribution of Q by a gamma distribution and then apply
that distribution in a homogeneity test based on Q (to
be denoted Qγ ) that is substantially more accurate than
the use of the chi-square distribution. We also compare
the accuracy and power of this test with those of other
homogeneity tests, such as that of Breslow and Day [11].
Briefly, both the accuracy and the power of our test are
comparable to those of the Breslow-Day test (see Sections
“Accuracy of the level of the homogeneity test” and
“Power of the homogeneity test)”.
After introducing notation and the main assumptions

in Section “Notation and assumptions”, we proceed to
our study of the moments of Q for log odds ratios in
Section “Themean and variance ofQ” and to their estima-
tion in Section “Estimating the moments and distribution
of QLOR”. Results of our simulations of the achieved level
and power of the standard Q test, the Breslow-Day test
and the proposed improved test of homogeneity based
on Qγ are given in Sections “Accuracy of the level of
the homogeneity test” and “Power of the homogeneity
test”. Section “Example: a meta-analysis of Stead et al.
(2013)” contains an example from the medical literature
to illustrate our results and to compare them to other
tests. Section “Conclusions” contains a discussion and
summary of our conclusions. We provide information on
the design of our simulations in the Appendix; and more
results of the simulations for various sample sizes, includ-
ing unbalanced designs and unequal effects, are contained
in the accompanying ‘Further Appendices’, together with
additional information about the derivation of our pro-
cedures. Our R program for calculation of the Qγ test
of homogeneity can be downloaded from the Journal
website.

Methods
Notation and assumptions
We assume that there are K studies each with two arms,
which we call ‘treatment’ and ‘control’ and use the sub-
scripts T and C. The sizes of the arms of the ith study are
nTi and nCi; let Ni = nTi + nCi and let qi = nCi/Ni. Data
in the arms have binomial distributions with probabilities
pTi and pCi. The effect of interest is the logarithm of the
odds ratio θi = log[ pTi/(1 − pTi)]− log[ pCi/(1 − pCi)].
The null hypothesis to be tested is the equality of the odds
ratios (or equivalently their logarithms) across the several
studies, i.e., θ1 = · · · = θK := θ .
To estimate θi, we follow Gart, Pettigrew and Thomas

[12] who showed that if x successes occur from the bino-
mial distribution Bin(n; p), then among the estimators of
log[ p/(1− p)] given by La(x) = log[ (x+ a)/(n− x+ a)],
the estimator with a = 1/2 has minimum asymptotic bias;
and indeed, this is the only choice of a for which all terms
for the bias in the expansion of La(x) having order O(1/n)

vanish. Gart et al. [12] also show that

Var[ L1/2]= 1
np(1 − p)

+ (1 + 2p)2

2n2p2(1 − p)2
+ O

(
1/n3

)
(1)

and suggest the use of the following unbiased estimator of
the variance: (x+ 1/2)−1 + (n− x+ 1/2)−1. Accordingly,
if xi and yi are the number of successes in the treatment
and control arms of the ith study, we estimate θi by θ̂i =
L1/2(xi) − L1/2(yi). We estimate the variance of θ̂i by

V̂ar[ θ̂i]= 1
xi + 1/2

+ 1
nTi − xi + 1/2

+ 1
yi + 1/2

+ 1
nCi − yi + 1/2

.
(2)

A weight wi is assigned to the ith study as the inverse
of the variance of θ̂i, and the weight is estimated by ŵi =
V̂ar[ θ̂i]−1. The weighted average of the log odds ratio
effects is given by θ̂w = ∑

i ŵiθ̂i/
∑

i ŵi. Then Cochran’s
Q statistic is defined as the weighted sum of the squared
deviations of the individual effects from the average; that
is,

Q =
K∑
i=1

ŵi(θ̂i − θ̂w)2. (3)

The “standard” version of the Q statistic, denoted Qstand
does not add 1/2 to the number of events in both arms
when calculating log-odds unless this is required to define
their variances.
The distribution ofQ under the null hypothesis of equal-

ity of the effects θi depends on the value of the common
effect θ , the number of studies K and the sample sizes
nTi and nCi. However additional information is needed
to specify a unique distribution for Q. For example, the
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common effect θ = 0 (that is, the probabilities for the
treatment and control arms are equal), could arise with
all probabilities equal to 1/2 (in both arms of all studies)
or with some of the studies having probabilities of 1/4 in
both arms and others having probabilities of 1/3 in both
arms. To uniquely specify a distribution for Q, we need
to introduce a ‘nuisance’ parameter ζi for each study. It is
convenient to take ζi = log[ pCi/(1 − pCi)] to be the log
odds for the control arm of the ith study and to estimate it
as described above, i.e., ζ̂i = L1/2(yi).

Themean and variance of Q
The Q statistic has long been known to behave asymptot-
ically, as the sample sizes become large, as a chi-square
distributed random variable withmeanK−1 and variance,
which is necessarily twice the mean, 2(K − 1). However,
the choice of effect (e.g., log odds ratio, sample mean,
standardized mean difference) has a substantial impact on
the distribution of Q for small to moderate sample sizes,
which in turn affects the use of Q as a statistic for a test
of homogeneity. For this section, we shall use the notation
QSM for Q when the effect is a normally distributed sam-
ple mean and QLOR when the effect is the logarithm of the
odds ratio.
Assuming that the data from the studies are distributed

N(μ, σ 2
i ), Welch [3] and James [4] first studied the

moments of QSM under the null hypothesis of homo-
geneity; using the normality properties, they calculated
asymptotic expansions for the mean and variance of QSM,
andWelch matched these moments to those of a re-scaled
F-distribution to create a homogeneity test now known
as the Welch test. It is useful, for comparison with QLOR,
to examine Welch’s mean and variance for QSM. Omitting
terms of order 1/n2i and smaller, Welch found

E[QSM]= (K − 1) + 2
∑ 1 − 1/

(
Wσ 2

i
)

ni − 1
(4)

Var[QSM]= 2(K − 1) + 14
∑ 1 − 1/

(
Wσ 2

i
)

ni − 1
(5)

where W is the sum of the “theoretical” weights ni/σ 2
i .

Notice the following facts about these moments. 1) They
converge to the chi-square moments as the sample sizes
increase. 2) Both moments are larger than the corre-
sponding chi-squaremoments.We shall call the difference
between the moments of Q and the corresponding chi-
square moments: ‘corrections’. 3) The variance is more
than twice the mean. 4) The moments depend on the nui-
sance parameters σ 2

i , which are estimated independently
of the effects of interest (the sample means).
Based on a combination of theoretical expansions and

extensive simulations, we have determined that, when the
effect entering into the definition ofQ is the log odds ratio,

the mean and variance of QLOR (under the null hypoth-
esis of equal odds ratios) have the following properties.
1) They each converge to the corresponding chi-square
moments of K − 1 and 2(K − 1) as the sample sizes
increase. 2) Both moments are less than the correspond-
ing chi-square moments. That is, the ‘corrections’ are
negative rather than positive as for QSM. 3) The variance
is not only less than the chi-square variance, it is less than
twice the mean. 4) The moments depend on nuisance
parameters, which are not independent of the effects.
The two plots of Figure 1 show the relation of the

variance of QLOR to its mean for a representative set of
simulations. (See Appendix A for a complete description
of the simulations conducted). The two plots have iden-
tical data, but the points are colored according to the
value of N in the left plot and according to the value of
K in the right plot. The mean and variance of QLOR have
been divided by K − 1 in order to place the data on the
same scale. The main message of the right plot (and a
key finding of our simulations) is that this re-scaling is
effective—the different values of K (5, 10, 20 and 40) are
fairly uniformly distributed throughout the plot, indicat-
ing that after this re-scaling the moments of QLOR have
little dependence on the number of studies.
In the plots, we see that the mean of QLOR is less than

K − 1, that the variance of QLOR is less than 2(K − 1), and
that the variance is less than twice the mean. We also see
in the left plot that the departure of the mean and variance
from the chi-square values of K − 1 and 2(K − 1) (that
is, the ‘corrections’) are greater for the study size N = 90
(i.e., 45 in each arm) than for the study size N = 150. It is
not evident from the graphs, but the ‘corrections’ needed
are also greater when the binomial probabilities pT and pC
are more distant from the central value of 1/2.

Estimating the moments and distribution ofQLOR
In this section, we outline a method for estimating the
mean and variance of QLOR. The method involves fairly
complicated formulas, but in the Appendix we provide
more details and a link to a program in R for carrying out
the calculations.
Kulinskaya et al. [10] presented a very general expansion

for the mean of Q for arbitrary effect measures in terms
of the first four central moments of the effect and nui-
sance parameters as well as the weight function expressed
in terms of these parameters.
Necessary formulas for the application of this expansion

to the first moment of QLOR can be found in Appendix
B.2. The resulting expansion provides an approximation to
the mean of QLOR, which we will denote Eth[QLOR] where
the subscript ‘th’ indicates that this expectation is entirely
theoretical. It depends on the number of studies K, the
sample sizes of the separate arms of the studies, the esti-
mated values of the nuisance parameters ζ̂i, the values of



Kulinskaya and Dollinger BMCMedical ResearchMethodology  (2015) 15:49 Page 4 of 19

a

b

Figure 1 Variance vs mean of Q. This scatter plot of Var[Q] /(K − 1) vs. E[Q] /(K − 1) contains the results of simulations of the moments of QLOR for
the 144 configurations of parameters: K = 5, 10, 20, 40; N = 90, 150, divided equally into the two arms; log odds ratios: 0, 0.5, 1, 1.5, 2, 3; and control
probabilities: 0.1, 0.2, 0.4. The studies in each simulation all have the same parameters. The simulations for each configuration were replicated 10,000
times. The grey reference line (Var[Q]= 2E[Q]) indicates the relation that would be expected if Q followed a chi-square distribution. (a): N = 90
black and N = 150 red. (b): K = 5 (black), K = 10 (red), K = 20 (blue) and K = 40 (green). The black curve corresponds to the fitted quadratic
equation Var[QLOR] /(K − 1) = 4.74 − 12.17E [QLOR] /(K − 1) + 9.42

[
E [QLOR] /(K − 1)

]2.

the estimated weights and the estimated value of the effect
θ̂ under the null hypothesis.
When we compared Eth[QLOR] with the simulated val-

ues for the mean of QLOR, we found that it does an
excellent job of identifying the situations where ‘correc-
tions’ are needed to the chi-square moment, but that it
over-estimates the size of the ‘correction’ by a constant
percentage of slightly more than 1/3 (R2 = 97.0%). More
precisely, denoting the mean ofQLOR by E[QLOR], we have
the relation

(K −1)−E[QLOR]= 0.687[ (K −1)−Eth[QLOR] ] . (6)

Although this equation is based partly on theoretical
calculations and partly on the results of simulations (the
“0.687” factor), we note that after deciding on the use of
the “0.687” factor we conducted new simulations to verify
that it was not just a random consequence of the origi-
nal simulations. More details on our simulations for this
formula can be found in Appendix B.1.
Kulinskaya et al. [10] also deduced a very general theo-

retical expansion for the second moment of Q, but when
we applied this expansion to QLOR and compared it to
our simulations, we found that the expansion is much
too inaccurate to be of any use. We conjecture that this
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inaccuracy is due to non-uniform convergence of the
expansions with respect to both the number of studies
K and the values of the binomial parameters. Accord-
ingly we have chosen to estimate the variance of QLOR
using a quadratic regression formula from our simula-
tions, as seen in Figure 1, but using more complete data
than shown in those plots. As in the regression for the
mean of QLOR we fitted a formula for the variance and
then checked it against additional simulations (See the
Appendix B.2 for more details on our procedures). Our
formula for estimating Var[QLOR] is

Var[QLOR]= 4.74(K − 1) − 12.17E[QLOR]
+ 9.42E[QLOR]2 /(K − 1)

(7)

The quadratic regression fit, using 487 of our more
than 1400 simulations, had an R2 value of 98.5%. In using
this equation, we first need to calculate E[QLOR] using
Equation 6. This quadratic regression is depicted by the
black curve on the plot (b) of Figure 1.
Although we do not have a theoretical justification for

using a quadratic relation between the mean and variance
of Q, such a functional relation between the mean and
the variance of Q is often found under various conditions.
For examples, in the asymptotic chi-square distribution of
Q, the variance (twice the mean) is a linear function of
the mean; and in the normally distributed sample mean
situation of Equations (4) and (5), a little algebra shows
that again the variance is a linear function of the mean.
Further, in a common one-way random effects model,
Biggerstaff and Tweedie [13] show that the variance of Q
is a quadratic function of the mean.
Our simulations show that the family of gamma dis-

tributions fits the distribution of QLOR quite well. By
matching the mean and variance of QLOR with the mean
and variance of a gamma distribution, we arrive at an
approximation for the distribution of QLOR which can be
used to conduct a test of homogeneity for the equality
of log odds ratios using QLOR as the test statistic. (The
shape parameter α of the gamma distribution is estimated
by α = E[QLOR]2 /Var[QLOR], and the scale parameter
β is estimated by β = Var[QLOR] /E[QLOR].) The accu-
racy of this test statistic and a comparison with other test
statistics are discussed in the next section.

Results and discussion
Accuracy of the level of the homogeneity test
In this section we present the results of extensive simu-
lations designed to analyze the accuracy of the levels of
the test of homogeneity of log odds ratios using the Q
statistic together with the gamma distribution estimated
from the data by the methods of Section “Estimating the
moments and distribution of QLOR”. We denote this test
by Qγ . The use of simulations to determine the accuracy

of various different tests of homogeneity of log odds ratios
has often been discussed in the literature. See, for exam-
ple, Schmidt et al. [14], Bhaumik et al. [15], Bagheri et al.
[16], Lui and Chang [17], Gavaghan et al. [18], Reis et al.
[19], Paul and Donner [20,21], and Jones et al. [22]. Our
simulations included comparisons with some of the tests
proposed by these authors. The comparisons of ours con-
firmed (as several of the above authors also discovered)
that the Breslow-Day [11] (denoted by BD) is often the
best available among the previously considered tests.
The Breslow-Day test for homogeneity of odds-ratios is

based on the statistic

X2
BD =

K∑
j=1

(xj − Xj(ψ̂))2

Var(xj|ψ̂)
,

where xj, Xj(ψ̂) and Var(xj|ψ̂) denote the observed num-
ber, the expected number and the asymptotic variance
of the number of events in the treatment arm of the jth
study given the overall Mantel-Haenszel odds ratio ψ̂ ,
respectively. Its distribution is approximated by the χ2

distribution with K − 1 degrees of freedom. We found
that using the Tarone [23] correction to the Breslow-
Day test had such small differences from BD that the
two were virtually equivalent. In addition to the BD and
Tarone tests, we simulated proposals by Lui and Chang
[17] for testing the homogeneity of log odds ratios based
on the normal approximation to the distribution of the z-,
square-root and log-transformed Qstand statistic. The log-
transformation was also suggested by Bhaumik et al. [15].
We do not report these results due to our conclusion that
none were superior to BD. Accordingly, in our compara-
tive graphs below, we compare our Qγ test with BD and
with the commonly used test (denoted Qχ2 ), which uses
the standard statistic Qstand (calculated without adding
1/2 to the numbers of events when calculating log-odds)
together with the chi-square distribution.
Our simulations for testing the null hypothesis of equal

odds ratios (all conducted subsequent to the adoption of
the regressions of Equations 6 and 7) are of two types.
For the first type, the parameters of all studies are iden-
tical; these simulations include the following parameters:
number of studies K = 5, 10, 20 and 40; total study sizes
N = 90, 150, and 210; proportion of the study size in
the control arm q = 1/3, 1/2, 2/3; null hypothesis value
of the log odds ratio θ = 0, 0.5, 1, 1.5, 2, and 3; and the
log odds of the control arm ζ = –2.2 (pC = 0.1), –1.4
(pC = 0.2) and –0.4 (pC = 0.4). The second type of
simulation fixes the null hypothesis values of equal log
odds ratio at θ = 0, 0.5, 1, 1.5, 2, and 3, but the individ-
ual studies are quite heterogeneous concerning all other
parameters. For example, for a null value of θ = 0.5
and K = 5 studies, one configuration with an average
study size of 150 has different sample sizes of 96, 108,
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114, 120, 312, each divided equally between the two arms
(q = 1/2) and different control arm probabilities pC
of 0.15, 0.3, 0.45, 0.6, and 0.75; note that the condition
θ = 0.5 when used with the five different control arm
probabilities then uniquely specifies five probabilities pT
for the treatment arms. A complete description of the
heterogeneous simulations can be found in Appendix A.
When K = 5, 10 and 20, all simulations were replicated
10,000 times and thus approximate 95% confidence inter-
vals for the achieved levels are ±0.004; but when K = 40,
the simulations were replicated only 1,000 times, giving
approximate 95% confidence intervals for the levels of
±0.014.
The first panel of graphs (see Figure 2) shows the

achieved levels, at the nominal level of 0.05, for the three
tests plotted against the different null values of θ in the
range 0 to 3 under the configuration in which all K studies
have identical parameters and the study sizes are N = 90
with the subjects split equally between the two arms (q =
1/2). The twelve graphs in the panel use K = 5, 10, 20
and 40; and pC = 0.1, 0.2, and 0.4. Note that the achieved
levels for both BD and Qγ are almost always in the range
0.04 to 0.06, with BD slightly better for many situations,
but with Qγ occasionally slightly better. The test Qχ2 is
almost always inferior; and when pC = 0.1, it is much too

conservative (not rejecting the null hypothesis frequently
enough); indeed, when θ = 0, the achieved levels for Qχ2

are less than 0.01. In the four right graphs, when pC = 0.4,
we see that all three tests perform well when 0 ≤ θ ≤ 1.5;
these parameters correspond to pT = 0.4, 0.52, 0.64 and
0.75.We also note that in the fairly extreme situation when
θ = 3 and pC = 0.4 (and hence pT = 0.93) the quality of
all the tests worsens, however BD performs best here and
Qχ2 performs very badly.
These results for the test Qχ2 are perhaps more eas-

ily understood when expressed in terms of the natural
parameters, the binomial probabilities pC and pT , rather
than the log odds ratio θ . We see that Qχ2 is extremely
conservative whenever either binomial parameter is far
from the central values of 0.5, but that its performance
is reasonable when the binomial parameters are relatively
close to the central values of 0.5.
Figure 2 is representative of a number of additional pan-

els of graphs for equal study sizes which can be found in
Appendix B.1, Figures 9 and 10. There we have included
panels of graphs first for balanced arms with study sizes
of 150 and 210. These panels are quite similar to the one
presented in Figure 2 except that all levels become closer
to the nominal level of 0.05 as the study size increases
from 90 to 150 to 210. This behavior is consistent with the

Figure 2 Achieved levels for homogeneous studies, N = 90. Comparison of achieved levels, at the nominal level of 0.05, for the three tests Qγ

(solid line), BD (dot-dash), and Qχ2 (dash) plotted against the log odds ratio θ . Here all studies have the same parameters: 90 subjects in each study
with equal arms of 45 each (N = 90 and q = 1/2).
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known fact that the tests are asymptotically correct as the
study sizes tend to ∞. However, we note that even when
N = 210, the test Qχ2 is still quite conservative when
pC = 0.1.
Appendix B.1 contains two additional panels of graphs

(Figures 11 and 12) which are analogous to the panel in
Figure 2 except that the two arms of each study are unbal-
anced. In the first of these, all studies have twice the
number of subjects in the treatment arm (q = 1/3) and the
second is reversed with all studies having twice the num-
ber of subjects in the control arm (q = 2/3). The results
are similar to those of Figure 2 with the following modi-
fied conclusions. When q = 1/3 and pc = 0.1, the Qχ2

test is particularly conservative, rejecting the null hypoth-
esis less than 1% of the time, independent of the number
of studies K. Generally both the BD test and the Qγ tests
are reasonably close to nominal level, but the BD test is
mostly (but not always) somewhat better than theQγ test.
When θ = 3, all tests experience a decline in accuracy,
with the BD test mostly superior.
Figure 3 is a typical example showing the achieved lev-

els for one set of configurations in which all the studies are
distinct. Here the studies are of average size 150. When

K = 5, the total study sizes are 96, 108, 114, 120, 312;
in selecting these sizes, we have followed a suggestion
of Sánchez-Meca and Marín-Martínez [24] who selected
study sizes having the skewness 1.464, which they con-
sidered typical for meta-analyses in behavioral and health
sciences. For a given θ the five studies had different values
for the control arm and treatment arm probabilities (see
Appendix for details). For K = 10, 20 and 40, the parame-
ters for K = 5 were repeated 2, 4 and 8 times respectively.
We see that BD and Qγ are fairly close in outcome with
achieved levels almost always between 0.045 and 0.055,
while the levels for Qχ2 mostly cluster around 0.04. Note
that the performance ofQχ2 is somewhat better than seen
in Figure 2 for two reasons. First, the study sizes are larger
(average of 150 rather than all having size 90); and second,
because the binomial parameters vary among the differ-
ent studies, many of them are closer to the central values
of 0.5 where we have seen that the performance of theQχ2

test improves.
It is worth noting that when we conducted simulations

for the average sample size of 90 for the same scenario
(so that the sample sizes were 36, 48, 54, 60, 252), we dis-
covered that the Breslow-Day test does not perform well

Figure 3 Achieved levels for heterogeneous studies, N = 150. Comparison of achieved levels, at the nominal level of 0.05, for the three tests Qγ

(solid line), BD (dot-dash), and Qχ2 (dash) plotted against the log odds ratio θ for heterogeneous studies. Here the studies have average size 150
divided equally between arms, but the study sizes and the binomial parameters vary for each study. In the left graphs, the smallest control
probabilities are paired with the smallest study sizes. In the right graphs, the smallest control probabilities are paired with the largest study sizes.
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and may even not be defined for large numbers of studies
K due to the sparsity of the data. This is the reason that,
for comparative purposes, we use larger sample sizes in
Figure 3 than used in Figure 2.

Power of the homogeneity test
In this section we report on the results from our (lim-
ited) simulations of power of the three tests: the Qγ , BD
and Qχ2 tests. Power comparisons are not really appro-
priate when the levels are inaccurate and differ across
the tests. Unfortunately it is impossible to equalize the
levels or adjust for the differences. Nevertheless we con-
sider power comparisons at a nominal level of 0.05 to
be important to inform the practice. We have performed
simulations only for the case of K identical studies with
balanced sample sizes (q = 1/2). The values for the total
study sizesN, the number of studies K, control arm proba-
bilities pC and the common log-odds ratio θ were identical
to those used in simulating the levels for the identical
studies given in Section “Accuracy of the level of the
homogeneity test”. For each combination of N , K , pC , θ ,
according to the random effects model of meta-analysis,
we simulated K within-studies log odds ratios θi from

the N(θ , τ 2) distribution for the values of the heterogene-
ity parameter τ from 0 to 0.9 in the increments of 0.1.
Given the values of pC and θi, we next calculated the prob-
abilities in the treatment groups pTi and simulated the
numbers of the study outcomes from the binomial distri-
butions Bin(ni, pC) and Bin(ni, pTi) for i = 1, · · · ,K . All
simulations were replicated 1000 times.
The first panel of graphs (see Figure 4) shows the power

for the three tests when θ = 0 plotted against the differ-
ent values of heterogeneity parameter τ in the range 0 to
0.9 under the configuration in which all K studies have
identical parameters, the study sizes are N = 90 with the
subjects split equally between the two arms (q = 1/2). The
twelve graphs in the panel use K = 5, 10, 20 and 40; and
pC = 0.1, 0.2, and 0.4.
Note that the power for both BD and Qγ are almost

always higher than forQχ2 , with the difference being espe-
cially pronounced for pC = 0.1. The inferiority of Qχ2 is
due to its conservativeness noted in the Section “Accuracy
of the level of the homogeneity test”. There is no clear-cut
winner between the BD and the Qγ , with BD slightly bet-
ter for some situations, but slightly worse for others. In the
three right graphs, when pC = 0.4, we see that all three
tests perform equally well.

Figure 4 Power when the log odds ratio θ = 0. Comparison of power for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash) plotted
against τ , the square root of the random variance component τ 2. Here all studies have the parameters: 90 subjects in each study with equal arms of
45 each (N = 90 and q = 1/2) and the log odds ratio θ = 0.
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The second panel of graphs (see Figure 5) shows the
power for the three tests when θ = 3. The power of
the Qχ2 test is still the lowest of the three tests. But here
the power of the Qγ test appears to be somewhat higher
then for the BD when pC = 0.1, about the same when
pC = 0.2, and noticeably lower in the extreme situation
when pC = 0.4. These differences in power between the
BD and Qγ tests are both the consequences of the fact
that the Qγ test is somewhat liberal for pC = 0.1 and
somewhat conservative for pC = 0.4, as can be seen from
Figure 2. The BD test is the closest to the nominal level in
these circumstances.

Example: a meta-analysis of Stead et al. (2013)
This section illustrates the theory of Sections “The mean
and variance of Q” and “Estimating the moments and dis-
tribution ofQLOR” and gives an indication of the improve-
ment in accuracy of the homogeneity test. The calcu-
lations can be performed using our computer program
(Additional files 1, 2 and 3).
We use the data from the review by Stead et al. [25]

of clinical trials on the use of physician advice for smok-
ing cessation. Comparison 03.01.04 [25], p.65 considered
the subgroup of interventions involving only one visit.

We use odds ratio in our analysis below although relative
risk was used in the original review. The first version of
the review was published in 2001. Update 2, published in
2004, included 17 studies for this comparison. Summary
data and the results from the standard analysis of these
17 trials are found in Figure 6, produced by the R pack-
age meta [26]. Note that meta does not add 1/2 to the
number of events in calculation of the log-odds, and there-
fore calculates the standard statistic Qstand for the test of
homogeneity.
The value of Cochran’s Q statistic is 25.023. The stan-

dard chi-square approximation with 16 df yields the p-
value of 0.069 for the test for homogeneity. The estimated
mean Eth[Q] of the null distribution of Q is 14.18 and the
corrected mean using Equation 6 is E[Q]= 14.75. The
estimated variance calculated from Equation 7 is 24.43.
The parameters of the approximating gamma distribution
are α = 8.90 and β = 1.66. The p-value using this gamma
distribution is 0.037. The Breslow-Day statistic value is
26.22 and the p-value is 0.051; the Tarone correction pro-
vides the same values to 4 decimal places. To evaluate
the correctness of these p-values, we simulated one mil-
lion values of Q from the fixed null distribution with each
study having the null value θw = 1.58 for the odds ratio

Figure 5 Power when the log odds ratio θ = 3. Comparison of power for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash) plotted
against τ , the square root of the random variance component τ 2. Here all studies have the parameters: 90 subjects in each study with equal arms of
45 each (N = 90 and q = 1/2) and the log odds ratio θ = 3.
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Figure 6 Forest plot of the meta-analysis by Stead et al. [25]. Forest plot of the meta-analysis by Stead et al. (2013) including 17 pre-2004 studies
only, produced by the R package meta [26].

together with the original individual values for the control
parameters pCi. The conclusion, based on the empirical
results, is that the p-value should be 0.0330. Thus for this
example, the gamma distribution result is closest to that
given by the simulations and the standard chi-square value
is furthest.
The most current version of the review (Update 4) con-

tains only one more trial by Unrod (2007) for this compar-
ison. The values are eventT = 28, eventC = 18, nT =
237, nC = 228. With the addition of these data, the test
of heterogeneity results in Q = 25.023, and the p-value
of 0.094 is obtained by the standard chi-square approxi-
mation with 17 df. Our method results in Eth[Q]= 15.14,
and the corrected value E[Q]= 15.72, Var[Q]= 26.22,
with the gamma distribution parameters α = 9.43 and
β = 1.67. The p-value from the gamma approximation is
0.055. The BD test statistic is 26.22 and its p-value is 0.071;
the Tarone correction, once more, results in the same
values to 4 decimal places. Another set of one million sim-
ulations from the null distribution yielded the empirical
p-value of 0.0497.
For the data in these two examples, the gamma approx-

imation results in lower and more accurate p-values than
the p-values of both the standard chi-square approxima-
tion and the Breslow-Day test. However, in our more
extensive simulations there were cases in which the
Breslow-Day test was superior. Note that this example has
fairly low numbers of events (between 1% and 5% formany
studies), which, as mentioned at the end of Section “Accu-
racy of the level of the homogeneity test”, is a situation
where the Breslow-Day test may struggle.
Figures 7 and 8 provide a comparison which indicates

the excellence of the fit of our gamma approximation
to the entire distribution of Q and the poor fit of the

chi-square approximation. Using the data of Stead et al.
with 17 studies, we simulated 10,000 values of Q to pro-
vide an empirical distribution of Q. Figure 7 shows the
fit of our estimated gamma distribution (α = 8.90 and
β = 1.66). Note that the fit is quite good throughout the
entire empirical distribution. On the other hand, Figure 8
shows that the empirical distribution of Q departs sub-
stantially from the chi-square distribution with 16 df,
again throughout the entire distribution.

Conclusions
Cochran’s Q statistic is a popular choice for conducting
a homogeneity test in meta-analysis and in multi-center
trials. However users must be cautious in referring Q to
a chi-square distribution when the study sizes are small
or moderate. Here we have studied the distribution of Q
when the effects of interest are (the logarithms of) odds
ratios between two arms of the individual studies.We have
shown that the distribution of Q in these circumstances
does not follow a chi-square distribution, especially if the
binomial probability in at least one of the two arms is
far from the central value of 0.5, say outside the interval
[ 0.3, 0.7]. Further, the convergence of the distribution of
Q to the asymptotically correct chi-square distribution is
relatively slow as the sizes of the studies increase.
The mean and variance of Q (when the effects are log

odds ratios and under the null hypothesis of homogene-
ity) are often substantially less than the corresponding
chi-square values.We have provided formulas for estimat-
ing these moments and have found that matching these
moments to those of a gamma distribution provides a
good fit to the distribution of Q. The use of this distribu-
tion for Q yields a reasonably good test of homogeneity
(denoted Qγ ) which is competitive with the well known
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Figure 7 Quality of fit of the gamma approximation. Quality of fit of the gamma approximation (α = 8.90 and β = 1.66) to the empirical
distribution of Q using the data of Stead et al. (2013) with 17 studies, produced by the R package fitdistrplus [30].

Breslow-Day test both in accuracy of level and in power.
However, thisQγ test does not seem to be superior (either
in accuracy of level or in power) to the Breslow-Day test.
Accordingly we recommend that the simpler Breslow-Day
test be used routinely for testing the homogeneity of odds
ratios.
We note that when the data are very sparse, the

Breslow-Day test does not perform well and may even
not be defined. We have met this difficulty in our
unequal simulations described in Section “Accuracy of
the level of the homogeneity test”. The Qγ test is
always well defined and is recommended for use in such
situations.
In our study of the moments ofQ for log odds ratios, we

found that the variance of Q can be well approximated by
a function of the mean of Q. Thus when fitting a gamma
distribution to Q, at least approximately, the resulting

distribution comes from a one parameter sub-family of
the gamma family of distributions. The chi-square dis-
tributions also form a one parameter sub-family of the
gamma family, but our conclusion is that it is the wrong
sub-family to apply toQ. Intuitively, one would expect that
a two parameter family of distributions would be needed
because two independent binomial parameters (pT and
pC) for each study enter into the definition of Q. Thus it
would be of interest to have a theoretical explanation of
this property of Q, but we have been unable to provide this
explanation.
The Q statistic with its distribution approximated by

the chi-square distribution is widely used not only for
testing homogeneity, but perhaps a more widespread and
more important use is its application to estimate the ran-
dom variance component τ 2 in a random effects model.
Numerous moment-based estimation techniques, such as

Figure 8 Quality of fit of the chi-square approximation. Quality of fit of the chi-square (16 degrees of freedom) approximation to the empirical
distribution of Q using the data of Stead et al. (2013) with 17 studies, produced by the R package fitdistrplus [30].
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the very popular DerSimonian-Laird [6,27] and Mandel-
Paule [28,29] methods use the first moment (K − 1) and
the chi-square percentiles applied to the distribution of Q
to provide, respectively, point and interval estimation of
τ 2. The latter is achieved through ‘profiling’ the distribu-
tion of Q, i.e., inverting the Q test (see Viechtbauer [27]).
From our previous work with Bjørkestøl on the homo-
geneity test for standardized mean differences [9] and for
the risk differences [10], it is clear that the non-asymptotic
distribution ofQ strongly depends on the effect of interest.
This conclusion is confirmed here for Q when the effects
are log odds ratios. The use of the correct moments and
improved approximations to the distribution of Q for the
point and interval estimation of τ 2 for a variety of different
effect measures may provide greatly improved estimators,
especially for small values of heterogeneity and will be the
subject of our further work.

Appendix
Appendix A: Information about the simulations
All of our simulations for assessing the accuracy of the
levels and the power of various homogeneity tests used
K studies with K = 5, 10, 20 and 40. All simulations

were replicated 10,000 times for K = 5, 10 and 20, and
(due to time considerations) only 1000 times for K = 40,
unless stated otherwise. The set of simulations with all
studies having identical parameters were as follows: study
size N = 90, 150 and 210; proportion of each study in
the control arm q= 1/2, 1/3 and 2/3; log odds ratio (null
hypothesis) θ = 0, 0.5, 1.0, 1.5, 2.0 and 3.0; and bino-
mial probabilities in the control arm pC = 0.1, 0.2 and
0.4. It is easier and more intuitive to select values of pC
than to select values of the actual nuisance parameter
ζ = log(pC) − log(1 − pC).
For the simulations using unequal parameters among

the various studies, the parameter choices can be
described as follows. For K = 5, we use three vec-
tors of study sizes: < N >=< 36, 48, 54, 60, 252 >; <

96, 108, 114, 120, 312 >; and < 163, 173, 178, 184, 352 >.
These three vectors have average study sizes 90, 150 and
210 respectively, which corresponds to the study sizes of
the equal simulations. The null hypothesis values of the
log odds ratio θ are 0, 0.5, 1.0, 1.5, 2 and 3. For each fixed
value of θ , we chose five values of pC with the goal of keep-
ing pT away from 1.0 (see below for these values). Denote
the vector of these values of pC by < P > and the vector
of the same values but in reverse order by <∼ P >. From

Figure 9 Achieved levels for homogeneous studies, N = 150. Achieved levels for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash)
plotted against the log odds ratio θ . Here all studies have the same parameters: 150 subjects in each study with equal arms of 75 each (N = 150 and
q = 1/2).
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θ and < P >, it is easy to calculate the corresponding val-
ues of pT ; although these are not needed here, we include
the approximate range of pT for information purposes.

θ = 0 < P >=< 0.1, 0.3, 0.5, 0.7, 0.9 >

the range of pT is [ 0.1, 0.9]
θ = 0.5 < P >=< 0.15, 0.3, 0.45, 0.6, 0.75 >

the range of pT is [ 0.22, 0.83]
θ = 1.0 < P >=< 0.1, 0.25, 0.4, 0.55, 0.7 >

the range of pT is [ 0.23, 0.86]
θ = 1.5 < P >=< 0.1, 0.25, 0.4, 0.55, 0.7 >

the range of pT is [ 0.33, 0.91]
θ = 2 < P >=< 0.1, 0.2, 0.3, 0.4, 0.5 >

the range of pT is [ 0.45, 0.88]
θ = 3 < P >=< 0.1, 0.17, 0.24, 0.31, 0.38 >

the range of pT is [ 0.69, 0.92]

For K = 5, we conducted simulations for each value of
θ pairing the first value of < N > with the first value of
< P >, etc. which we denote ‘order = 1’, and then we

pair the first value of < N > with the first value of <∼
P >, etc, which we denote ‘order = 2’. By reversing the
orders, we first pair the largest study size with the largest
binomial probability and then pair the largest study size
with the smallest binomial probability. We used balanced
studies for these simulations (i.e., q = 1/2). For K = 10,
we repeat these pairings twice, and forK = 20 andK = 40
the vectors of study sizes and control arm probabilities are
repeated 4 and 8 times respectively.
We conducted many additional simulations with

unequal size studies, some with all control probabilities
equal except for 20% of the studies which had different
control probabilities, and some with one or more of the
studies being unbalanced (q = 1/3 and q = 2/3). These
simulations did not add substantial information to our
conclusions, so they are not reported here.
For the power simulations we only considered the case

of K studies with the above identical parameters (includ-
ing the values of the common log odds ratio θ ) and
balanced sample sizes (q = 1/2). For each combina-
tion of N , K , pC , θ , according to the random effects
model of meta-analysis, we simulated K within-studies
log odds ratios θi from the N(θ , τ 2) distribution for the
values of the heterogeneity parameter τ from 0 to 0.9 in

Figure 10 Achieved levels for homogeneous studies, N = 210. Achieved levels for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash)
plotted against the log odds ratio θ . Here all studies have the same parameters: 210 subjects in each study with equal arms of 105 each (N = 210
and q = 1/2).
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the increments of 0.1. Given the values of pC and θi, we
next calculated the probabilities in the treatment groups
pTi and simulated the numbers of the study out-
comes from the binomial distributions Bin(ni, pC) and
Bin(ni, pTi) for i = 1, · · · ,K . All simulations were repli-
cated 1000 times.

Appendix B
B.1 Additional graphs for accuracy of level and for power
The first two figures of this Appendix are similar to
Figure 2 of the main article with the change being that
the study sizes are 150 (instead of 90) in Figure 9 and 210
in Figure 10. These panels are quite similar to the one
presented in Figure 2 except that all levels become closer
to the nominal level of 0.05 as the study size increases
from 90 to 150 to 210. This behavior is consistent with the
known fact that the tests are asymptotically correct as the
study sizes tend to ∞. However, we note that even when
N = 210, the test Qχ2 is still quite conservative when
pC = 0.1.
Figures 11 and 12 contain additional panels of graphs

analogous to that in Figure 2 of the main article with the
exception that the two arms of each study are unbalanced.

In the first of these, all studies have twice the number of
subjects in the treatment arm (q = 1/3) and the second is
reversed with all studies having twice the number of sub-
jects in the control arm. The results are similar to those of
Figure 2 with the following modified conclusions. When
q = 1/3 and pC = 0.1, the Qχ2 test is particularly con-
servative, rejecting the null hypothesis less than 1% of the
time, independent of the number of studies K. Generally
both the BD test and the Qγ test are reasonably close to
nominal level, but the BD test is mostly (but not always)
somewhat better than the Qγ test. When θ = 3, all tests
experience a decline in accuracy, with the BD test mostly
superior.
The final two figures in this appendix are analogous to

Figures 4 and 5 in the main article, comparing the power
of the three tests Qγ , BD and Qχ2 when the log odds ratio
is 0 and 3 respectively. The panels here (Figures 13 and 14)
differ in that the sample sizes have been increased from
N = 90 to N = 150. Qualitatively the plots here are quite
similar to those in the main article, with the main differ-
ence, as would be expected, being that the power when
N = 150 is somewhat greater than when N = 90. As
before, Qγ and BD have similar power while Qχ2 is most
inferior in the two cases: θ = 0 and pC = 0.1; and θ = 3

Figure 11 Achieved levels for homogeneous studies, N = 90, q = 1/3. Achieved levels for the three tests Qγ (solid line), BD (dot-dash), and Qχ2

(dash) plotted against the log odds ratio θ . Here all studies have the same parameters: 90 subjects in each study with unequal arms with 60 in the
treatment arm (N = 90 and q = 1/3).
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Figure 12 Achieved levels for homogeneous studies, N = 90, q = 2/3. Achieved levels for the three tests Qγ (solid line), BD (dot-dash), and Qχ2

(dash) plotted against the log odds ratio θ . Here all studies have the same parameters: 90 subjects in each study with unequal arms with 30 in the
treatment arm (N = 90 and q = 2/3).

and pC = 0.4. These two cases share the property that one
or both of the binomial probabilities is far from the cen-
tral value of 0.5; in the first case, pC = pT = 0.1 and in the
second case, pT = 0.93.

B.2 Information about formulas for mean and variance of
QLOR

In this appendix we present additional information
concerning the data and methods that entered into
Equations 6 and 7 which provide formulas for estimating
the mean and variance of QLOR under the null hypothesis
of equal odds ratios. The data for Equation 6 include 648
parameter combinations in which all K studies had iden-
tical parameters. The parameters are: K = 5, 10, 20, 40;
N = 90, 150, 210; q = 1/3, 1/2, 2/3; pC=0.1, 0.2, 0.4; and
θ = 0, 0.5, 1, 1.5, 2, 3. The simulations for K = 40 were
replicated 1,000 times, and the other simulations were
replicated 10,000 times.
For each combination of parameters, we calculated an

estimate of the mean of QLOR (to be denoted simply Q in
this section) using the theoretical expansion of Kulinskaya
et al. [10]. We denote this quantity by Eth[Q]. For each
parameter combination, we also found the mean of Q

from the simulations, which we denote by Qbar. These
two quantities were then divided by K − 1 to place the
data on a scale common for all K. A scatter plot with
a fitted line is found in Figure 15. Note that the fitted
line (which has an R2 value of 97.0%) essentially goes
through the point (1, 1); the importance of the fitted line
going through (1,1) is that both estimates agree when
there is zero ‘correction’ from the re-scaled chi-square
moment. Thus we subtracted 1 from both variables in
Figure 15 and fit a regression through the origin, yield-
ing a relation which we use to adjust the ‘corrections’
to the chi-square first moments K − 1 which are given
by the the expansion Eth[Q]. This relation is found in
Equation 6 of the main paper. (The four outliers in the
lower left of Figure 15 belong to the extreme parameter
values θ = 3, N = 90, q = 2/3, pT = 0.93, pC = 0.4
and for the four values of K = 5, 10, 20 and 40; omitting
them made very little difference in the regression, so they
were included in the analysis). Simulations for all of the
parameter configurations that entered into Equation 6 of
the main paper were redone, and these new simulations
were the ones used in analyzing the accuracy of our
test Qγ .
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Figure 13 Power when the log odds ratio θ = 0 and N = 150. Power for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash) plotted
against τ , the square root of the random effect variance. Here all studies have the parameters: 150 subjects in each study with equal arms of 75 each
(N = 150 and q = 1/2) and the log odds ratio θ = 0.

To arrive at the relation in Equation 7, we used sim-
ulations for 486 parameter combinations in which all K
studies have the same parameters: K = 5, 10, 20; N =
90, 150, 210; q = 1/3, 1/2, 2/3; pC = 0.1, 0.2, 0.4; and
θ = 0, 0.5, 1, 1.5, 2, 3, each replicated 10,000 times. For
each parameter combination, let Qbar be the mean of the
10,000 values of Q and VarQbar be the variance of these
10,000 values of Q, and re-scale these values by divid-
ing by K − 1. Figure 16 contains a scatter plot of these
data together with a quadratic function fit. The quadratic
fit has an R2 value of 98.5%. We have used this regres-
sion in Equation 7 of the main article. We note again that
simulations for all of the parameter configurations that
entered into Equation 7 of the main paper were redone,
and these new simulations were the ones used in analyzing
the accuracy of our test Qγ .

B.3 The general expansion for the first moment ofQ
applied toQLOR
The general expansion for the first moment ofQ (denoted
Eth[Q] in Section “Estimating the moments and distri-
bution of QLOR”) as found in Kulinskaya et al. [10] is
reproduced at the end of this appendix. In the formulas

below, we use the notation �i = θ̂i − θi and Zi = ζ̂i − ζi;
also, we express the weight estimators as functions of
the parameter estimators ŵi = fi(θ̂i, ζ̂i). The theoretical
weights under the null hypothesis are then wi = fi(θ , ζi).
For the weights as defined in Equation 2 of the main artl-
cle, some algebra produces the formula for the weight
function

ŵi = fi(θ̂i, ζ̂i) =
[

(1 + eθ̂i+ζ̂i)2

(nTi + 1)eθ̂i+ζ̂i
+ (1 + êζi)2

(nCi + 1)êζi

]−1

(8)

The formulas below require that the central moments
of θ̂i and ζ̂i satisfy the following order conditions:
O(E[�i] ) = 1/n2i , O(E[�2

i ] ) = 1/ni, O(E[�3
i ] ) =

1/n2i and O(E[�4
i ] ) = 1/n2i and similar conditions for

the central moments of ζ̂i. These order conditions for
the specific case of the estimators of the log odds ratio
(as defined in Section “Notation and assumptions”) fol-
low from the work of Gart et al. [12]. However, instead
of using the approximations for the central moments
given by Gart et al., our R-program calculates these
exactly.
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Figure 14 Power when the log odds ratio θ = 3 and N = 150. Power for the three tests Qγ (solid line), BD (dot-dash), and Qχ2 (dash) plotted
against τ , the square root of the random effect variance. Here all studies have the parameters: 150 subjects in each study with equal arms of 75 each
(N = 150 and q = 1/2) and the log odds ratio θ = 3.

The derivation of the expansion is a straightforward
application of the delta method in which Q is first
expanded in a multivariate Taylor series centered at the
null hypothesis and then expectations are taken of the
resulting expansion, keeping only those terms of order
O(1) and O(1/n). For the Taylor expansion of Q, we

considerQ as a function of the estimators of the effect and
nuisance parameters as follows:

Q =
∑
i
ŵi(θ̂i − θ̂w)2 = Q[ θ̂1, . . . , θ̂K , ŵ1, . . . , ŵK ]

= Q[ θ̂1, . . . , θ̂K , f1(θ̂1, ζ̂1), . . . , fK (θ̂K , ζ̂K )] .

Figure 15 Fitted line plot for the first moment of Q. Fitted line plot of the relative first moment of Q based on studies with equal parameters. The
horizontal coordinate is the first moment (divided by K − 1) as estimated using a theoretical expansion, and the vertical coordinate is the first
moment (divided by K − 1) as found from the simulations.
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Figure 16 Quadratic fit between the variance and the mean of Q. Quadratic fit for the relation between the variance of Q and the mean of Q. The
studies for differing values of K are depicted as: K = 5 black circles; K = 10 red squares; K = 20 blue diamonds; K = 40 green triangles.

Under the null hypothesis all the effect parameter values
are equal; that is, θ1 = · · · = θK , and we denote this
common value by θ . The desired Taylor expansion of Q is
centered at �θ := (θ , . . . , θ , ζ1, . . . , ζK ).
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i
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+ O
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(9)

For the derivatives of Q needed in the above expansion.
we use the notation W = ∑

i wi and Ui = 1 − wi/W and
evaluate all derivatives at the null hypothesis. All multi-
index derivatives assume inequality of the indices i and j.
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(
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