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Abstract

Background: Simon’s two-stage designs are popular choices for conducting phase II clinical trials, especially in the
oncology trials to reduce the number of patients placed on ineffective experimental therapies. Recently Koyama and
Chen (2008) discussed how to conduct proper inference for such studies because they found that inference
procedures used with Simon’s designs almost always ignore the actual sampling plan used. In particular, they
proposed an inference method for studies when the actual second stage sample sizes differ from planned ones.

Methods: We consider an alternative inference method based on likelihood ratio. In particular, we order permissible
sample paths under Simon’s two-stage designs using their corresponding conditional likelihood. In this way, we can
calculate p-values using the common definition: the probability of obtaining a test statistic value at least as extreme as
that observed under the null hypothesis.

Results: In addition to providing inference for a couple of scenarios where Koyama and Chen’s method can be
difficult to apply, the resulting estimate based on our method appears to have certain advantage in terms of inference
properties in many numerical simulations. It generally led to smaller biases and narrower confidence intervals while
maintaining similar coverages. We also illustrated the two methods in a real data setting.

Conclusions: Inference procedures used with Simon’s designs almost always ignore the actual sampling plan.
Reported P-values, point estimates and confidence intervals for the response rate are not usually adjusted for the
design’s adaptiveness. Proper statistical inference procedures should be used.
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Background
Simon’s two-stage designs [1] are commonly used in phase
II clinical trials, especially in cancer clinical trials. In a
study with a Simon’s design, the null hypothesis is con-
cerned with a response rate, H0 : π ≤ π0. The power
is calculated at some π1 > π0. A Simon’s design is usu-
ally indexed by four numbers that represent the stage 1
sample size (n1), stage 1 critical value (r1), final sample
size (nt) and final critical value (rt). In stage 1, a sam-
ple of size n1 is taken. If the number of successes X1

*Correspondence: fxiping1808@qq.com
†Equal contributors
3Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao
Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011 Shanghai,
P.R. China
Full list of author information is available at the end of the article

in stage 1 satisfies X1 ≤ r1, the trial is stopped for
futility; otherwise, an additional sample of size n2 =
nt − n1 is taken. Let X2 be the number of successes in
stage 2, and let Xt = X1 + X2. If Xt ≤ rt , futility is
concluded; otherwise efficacy is concluded by rejecting
H0. Softwares are available for calculating Simon’s two-
stage designs, for example, from a website at the National
Cancer Institute: http://linus.nci.nih.gov/brb/samplesize/
otsd.html, from a website at the Department of Bio-
statistics of the Vanderbilt University: http://biostat.mc.
vanderbilt.edu/wiki/Main/TwoStageInference, and from
the NCSS/PASS package: http://www.ncss.com/.
Koyama and Chen [2] (hereafter KC) pointed out

that the inference procedures used with Simon’s designs
almost always ignore the actual sampling plan. Reported
P-values, point estimates and confidence intervals for the
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response rate are not usually adjusted for the design’s
adaptiveness. They outlined proper statistical inference
procedures for studies based on the Simon’s two-stage
designs.
Because the actual sample size of stage 2 may frequently

differ from the planned one due to various reasons, KC
also proposed a way to conduct a hypothesis testing when
the stage 2 sample size is changed in a Simon’s design.
They focused on the case of non-informative sample size
change at the second stage. In other words, the actual
stage 1 sample size always equals to the planned stage 1
sample size but the actual stage 2 sample size can differ
from the planned stage 2 sample size. In addition, the deci-
sion to use a different sample size must be independent
of the observed outcome data. Inference then needs to be
made based on the actual data. This is in contrast to adap-
tive designs that can alter the sample size based on interim
results.We restrict our attention to the same setting as KC
although we believe our method can be extended.
The scenarios of non-informative sample size change

or protocol deviation can arise quite frequently in prac-
tice. Shortening of stage 2 can occur in cases of early
termination of study due to lack of funding, slow accrual,
non-informative drop-outs, accrual of ineligible subjects,
etc. Such shortening of stage 2 sample size can be rea-
sonably assumed to be independent of the outcomes of
the study. Extension of stage 2 can occur in cases of sites
coordination error, over compensation for unevaluable or
dropout patients, or administrative reasons.
In applying KC’s method, we found some difficulties

in calculation for certain scenarios due to the discrete
nature of the binomial distribution. In particular, in the
case when the number of responders x1 at the first stage
exceeds the final boundary rt with an (unexpectedly) effi-
cacious treatment. Because Simon’s two-stage design does
not stop for early efficacy [1], the study would continue to
the second stage. In this case, KC’s method breaks down.
Another possible problem is for the case when we have no
responders at the second stage, that is, x2 = 0.We give our
detailed explanation after we review their method in the
next section. We therefore introduce a different method
for inference based on conditional likelihood. Besides the
ability tomake proper inference for the settings when KC’s
method may be difficult to apply, our method is also seen
to improve on statistical properties for many settings we
have investigated.
Porcher and Desseaux [3] considered different appro-

aches for point and confidence intervals estimation, as
well as computation of p-values for the same setting as
KC. In their methods, the rankings used for computing
p-values were based on estimators instead of likelihood.
They recommended the uniformly minimum variance
unbiased estimator (UMVUE) as it exhibited good prop-
erties. In particular, when the second stage sample size

is unaltered, they pointed out that the method based on
UMVUE is equivalent to KC [3]. For this reason, our
method should also improve on their methods.
In addition to [2, 3], other related works exist. Green

and Dahlberg [4] were among the first who considered
settings that accommodate a modified sample size in
both stages even though the proposed analysis method
was ad hoc. Masaki et al. [5] considered designs for a
range of possible stage I and total sample size deviations
from planned study. Li et al. [6] formulated a Bayesian
approach with a modified sample size. Their method can
have desirable frequentist properties under certain types
of priors. Recently, Zeng et al. [7] considered computation
improvement and proposed a normal approximation that
is accurate even under small sample sizes.

Methods
Review of Koyama and Chen (2008)
The KC method centers mainly on the calculation of
p-values. Throughout, use Pπ (E) to represent the proba-
bility of the event E at a specific π . Denote x1 and x2 as the
actual observed numbers of responders at stage 1 and 2 of
a study based on Simon’s two-stage design.
If x1 ≤ r1, the trial is stopped early at the first stage due

to futility. In this case, the p-value is given by Pπ0 [X1 ≥
x1|n1], which can be easily computed from the binomial
distribution with size n1 and success probability π0.
If x1 > r1, the trial continues to the second stage. In this

case, the p-value calculation is based on observed sample
paths, given by

n1∑
x=r1+1

Pπ0 [X1 = x|n1]Pπ0 [X2 ≥ x1 + x2 − x|n2] , (1)

where Pπ0 [X2 ≥ x1 + x2 − x|n2] represent more ‘extreme’
sample paths than the observed one given that x > r1
responses are observed at stage 1. The actual type I error
and power are evaluated through

Pπ [ Reject H0]=
n1∑

x=r1+1
Pπ [X1=x|n1]Pπ [X2 > rt − x | n2]

under H0 and H1, respectively. Let A(x, n2,π) ≡ Pπ [X2 >

rt − x | n2] be the conditional rejection rate of H0 at the
end of stage 2 given X1 = x. Then, the rejection rule at the
end of stage 2, x1 + x2 > rt , is equivalent to

Pπ0 [X2 ≥ x2|n2]≤ A(x1, n2,π0),

where A(x1, n2,π0) serves as a conditional critical value.
When the actual sample size of stage 2, denoted by n∗,

deviates from n2, A(x1, n2,π) can still be used as a condi-
tional criterion for decision making. That is to reject H0
when

Pπ0 [X2 ≥ x2|n∗
2]≤ A(x1, n2,π0).
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However, with the presence of the second stage sam-
ple size deviation, the p-value cannot be directly extended
from (1) because the observed total number of responses
x1 +x2 is not a good ranking determinant of ‘extremeness’
any more. In particular, KC gave a concrete example in
which two different sample paths (x1, x2) and (x∗

1, x∗
2) with

the same total number of responses (x∗
1 + x∗

2 = x1 + x2)
and the same deviated sample size n∗

2 of stage 2 may
lead to different conclusions about the hypothesis. There-
fore, Koyama and Chen [2] proposed the following way of
calculating p-value.
(a) Find π∗ such that A(x1, n2,π∗) = Pπ0 [X2 ≥ x2|n∗

2].
(b) Compute the p-value by

n1∑
x=r1+1

Pπ0 [X1 = x|n1]A(x, n2,π∗).

One difficulty with this way of calculation is when x1 >

rt . Although infrequent, this happens when the investi-
gational treatment is unexpectedly efficacious. Because
Simon’s two-stage designs do not stop for early efficacy
[1], the study continues to the second stage. In this case,
we have A(x1, n2,π) ≡ 1 for any π . Therefore π∗ can
not be determined from step (a) above and the algorithm
breaks down.
Another possible problem is for the case when we have

x2 = 0. In this case, Pπ0 [X2 ≥ x2|n∗
2]≡ 1 for any n∗

2.
When x1 ≤ rt , this corresponds to the solution π∗ = 1.
Therefore the corresponding p-value is independent of n∗

2
and equals to

∑n1
x=r1+1 Pπ0 [X1 = x]= Pπ0 [X1 > r1]. This

may not be sensible as it is independent of both observed
number of response x1 and of the actual second stage sam-
ple size n∗

2. We therefore introduce a different method for
inference based on likelihood.

Likelihood based construction of confidence intervals
We extend the existing likelihood based inference for two-
stage and multiple stage trials [8–12] to our setting for
construction of p-values and confidence intervals. In par-
ticular, we order permissible sample paths under Simon’s
two-stage designs using their corresponding conditional
likelihood. In this way, we can calculate p-values using the
common definition: the probability of obtaining a test stat
istic value at least as extreme as that observed under H0.
Let M denote the stopping stage, and let SM denote the

total number of responders accumulated up to the stop-
ping stage. That is, SM = X1 when M = 1 and SM =
X1+X2 whenM = 2. Similarly, letNM be total sample size
of the study. The probability mass function of the random
vector (M; SM) is given by

where ∧ takes the minimum and ∨ takes the maximum of
its arguments. Jung and Kim [8] showed that (M, SM) is
complete and sufficient for π . The MLE of π is therefore
π̂ = SM/NM. However the MLE is biased [11, 13]. Based
on the fact that X1/n1 is always unbiased estimator for the
true probability π , Jung and Kim [8] derived the UMVUE
of π to be

π̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1
n1 m = 1

∑sm∧n1
x1=(r1+1)∨(sm−n2)

(n1−1
x1−1

)( n2
sm−x1

)
∑sm∧n1

x1=(r1+1)∨(sm−n2)
(n1
x1

)( n2
sm−x1

) m = 2
(3)

The existence of the UMVUE π̃ also facilitates the deter-
mination of confidence intervals. In particular, an exact
(1 − α)% confidence interval (πL,πU) for π is given by

Pr(π̃(M, SM) ≥ π̃(m, sm)|π = πL) = α/2

and

Pr(π̃(M, SM) ≥ π̃(m, sm)|π = πU) = 1 − α/2.

Jung and Kim [8] showed that such ordering of the sample
space by the UMVUE is the same as that by Jennison and
Turnbull [14]. Chang and O’Brien [12] showed that likeli-
hood ratio based construction is more efficient and led to
smaller average CI length.
When there is study extension or shortening, the sec-

ond stage sample size n2 becomes a random variable. The
likelihood can depend on the probability that n2 obtains a
specific value n∗

2. However, in the case when such change
of sample size is not related to π , the above likelihood can
be viewed as the conditional likelihood given the observed
value of n∗

2 and therefore can be used to make inference.
The UMVUE takes the same format as in (3) except with
n∗
2 in place of n2.
The likelihood ratio test of H0 : π = π0 vs. H1 : π �= π0

is based on

T(M, SM,π0) = π̂SM (1 − π̂)NM−SM

π
SM
0 (1 − π0)NM−SM

, (4)

where π̂ = SM/NM. Under H0, any path (m, sm) that
has larger likelihood ratio is considered to be more
‘extreme’ against H0. Therefore, the probability of observ-
ing (M, SM) or more extreme paths is∑

{(m,sm):T(m,sm,π0)>T(M,SM ,π0)}
f (m, sm|π0).

After correcting for the discreteness of the binomial dis-
tribution by a fraction of the probability of (M, SM), the
p-value is proposed to be

f (m, sm|π)=
{ (n1

sm
)
π sm(1 − π)n1−sm m = 1∑sm∧n1

x1=(r1+1)∨(sm−n2)
(n1
x1

)( n2
sm−x1

)
π sm(1 − π)n1+n2−sm m = 2

(2)
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Table 1 Ninety percent CI width and actual power based on studies made to the 2nd stage (α = 0.05, β = 0.1)

Width Coverage Actual power

πtrue LR KC LR KC LR KC

Design 1 (0.2 vs 0.4)

(r1, n1, r2, n) = (3, 17, 10, 37)

0.1 .257 .260 99.7 96.6 0.3 0.0

0.2 .271 .289 94.5 93.0 3.1 4.7

0.3 .250 .260 90.1 92.7 38.4 44.3

0.4 .238 .235 91.2 94.3 85.7 86.7

0.5 .236 .230 89.9 88.6 98.5 98.6

0.6 .229 .228 90.2 89.0 100.0 100.0

0.7 .211 .222 88.8 88.2 100.0 100.0

0.8 .184 .208 90.6 89.2 100.0 100.0

Design 2 (0.3 vs 0.5)

(r1, n1, r2, n) = (7, 22, 17, 46)

0.1 .227 .227 97.5 97.5 0.0 0.0

0.2 .285 .289 95.1 92.7 0.1 0.1

0.3 .283 .301 90.0 91.5 2.1 4.5

0.4 .253 .265 87.9 91.1 33.3 43.3

0.5 .225 .224 90.0 92.6 79.6 85.1

0.6 .214 .208 89.7 88.9 98.4 98.6

0.7 .198 .195 92.4 91.6 99.8 99.8

0.8 .172 .172 90.8 90.3 100.0 100.0

Design 3 (0.4 vs 0.6)

(r1, n1, r2, n) = (7, 18, 22, 46)

0.1 .219 .219 97.2 97.2 0.0 0.0

0.2 .286 .286 93.0 93.0 0.2 0.0

0.3 .315 .319 95.9 92.5 0.4 0.1

0.4 .300 .317 93.4 93.4 1.7 3.7

0.5 .258 .270 93.3 94.2 31.2 42.0

0.6 .218 .218 91.7 94.2 82.5 87.2

0.7 .198 .194 92.2 91.0 98.8 98.8

0.8 .170 .170 90.2 90.1 100.0 100.0

Design 4 (0.5 vs 0.7)

(r1, n1, r2, n) = (11, 21, 26, 45)

0.1 .231 .231 95.9 95.9 0.0 0.0

0.2 .292 .292 92.6 92.6 0.0 0.0

0.3 .327 .327 94.1 93.8 0.0 0.0

0.4 .342 .346 94.6 92.0 0.1 0.0

0.5 .316 .331 93.5 93.7 1.5 4.4

0.6 .259 .271 91.9 92.1 26.8 37.5

0.7 .209 .210 89.3 92.9 80.5 85.7

0.8 .177 .176 88.3 88.5 98.6 99.2
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Table 2 Ninety percent CI width and actual power based on studies made to the 2nd stage (α = 0.1, β = 0.1)

Width Coverage Actual power

πtrue LR KC LR KC LR KC

Design 1 (0.2 vs 0.4)

(r1, n1, r2, n) = (3, 13, 12, 43)

0.1 .265 .270 99.7 96.6 0.1 0.0

0.2 .287 .292 93.2 94.5 4.6 8.4

0.3 .278 .275 94.2 94.6 40.4 47.8

0.4 .276 .270 91.3 93.4 81.3 86.2

0.5 .278 .277 89.3 87.8 97.3 97.5

0.6 .270 .281 91.1 89.4 99.9 99.8

0.7 .250 .260 90.2 87.7 100.0 100.0

0.8 .218 .221 91.4 88.6 100.0 100.0

Design 2 (0.3 vs 0.5)

(r1, n1, r2, n) = (5, 15, 18, 46)

0.1 .239 .239 98.6 98.6 0.0 0.0

0.2 .298 .302 92.2 90.5 0.2 0.2

0.3 .299 .311 94.4 93.6 2.9 6.4

0.4 .273 .280 91.8 92.9 34.6 50.1

0.5 .256 .254 90.1 93.2 79.1 87.0

0.6 .246 .241 87.9 88.2 98.0 99.1

0.7 .228 .232 90.1 88.9 100.0 100.0

0.8 .198 .211 91.5 89.6 100.0 100.0

Design 3 (0.4 vs 0.6)

(r1, n1, r2, n) = (7, 16, 23, 46)

0.1 .265 .265 97.0 97.0 0.0 0.0

0.2 .337 .338 98.3 98.0 0.5 0.0

0.3 .354 .365 95.1 95.4 0.9 0.2

0.4 .328 .347 93.6 94.9 5.4 7.0

0.5 .289 .298 89.2 90.3 37.4 45.7

0.6 .258 .256 92.8 95.0 83.4 85.6

0.7 .235 .231 90.9 90.7 98.9 98.8

0.8 .206 .205 90.2 88.9 100.0 100.0

Design 4 (0.5 vs 0.7)

(r1, n1, r2, n) = (8, 15, 26, 43)

0.1 .246 .246 99.1 99.1 0.0 0.0

0.2 .310 .310 95.7 95.7 0.0 0.0

0.3 .348 .349 93.6 93.4 0.0 0.0

0.4 .361 .366 93.1 91.4 0.5 0.4

0.5 .336 .349 91.3 93.3 5.7 8.3

0.6 .289 .297 89.9 92.7 37.4 43.9

0.7 .242 .243 89.6 93.5 85.2 87.1

0.8 .204 .203 89.1 90.0 99.0 99.4
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Table 3 Ninety percent CI width and actual power based on studies made to the 2nd stage (α = 0.05, β = 0.2)

Width Coverage Actual power

πtrue LR KC LR KC LR KC

Design 1 (0.2 vs 0.4)

(r1, n1, r2, n) = (4, 19, 15, 54)

0.1 .313 .316 99.7 97.5 0.0 0.0

0.2 .342 .358 95.8 94.9 0.0 4.1

0.3 .328 .338 95.4 95.1 1.1 36.3

0.4 .295 .297 94.3 94.4 11.3 74.1

0.5 .272 .265 91.5 91.8 52.4 94.8

0.6 .263 .254 91.2 90.2 89.7 99.3

0.7 .243 .240 89.4 88.5 99.7 100.0

0.8 .208 .217 90.4 92.0 100.0 100.0

Design 2 (0.3 vs 0.5)

(r1, n1, r2, n) = (8, 24, 24, 63)

0.1 .291 .291 99.0 98.6 0.0 0.0

0.2 .356 .362 94.2 92.4 0.1 0.0

0.3 .352 .375 92.0 92.9 1.6 3.4

0.4 .318 .339 91.9 94.1 20.9 31.3

0.5 .279 .285 94.9 95.7 66.4 76.4

0.6 .256 .251 89.9 90.8 95.1 96.8

0.7 .235 .229 90.2 90.4 99.0 99.0

0.8 .205 .204 90.3 89.5 100.0 100.0

Design 3 (0.4 vs 0.6)

(r1, n1, r2, n) = (11, 25, 32, 66)

0.1 .287 .287 98.1 98.1 0.0 0.0

0.2 .357 .357 95.2 94.9 0.0 0.0

0.3 .386 .394 94.7 92.5 0.4 0.1

0.4 .370 .390 94.7 94.2 3.2 4.0

0.5 .325 .342 89.9 92.5 24.7 29.9

0.6 .274 .278 91.7 93.1 73.4 76.0

0.7 .241 .238 89.6 90.0 94.6 94.8

0.8 .209 .207 90.2 88.4 100.0 100.0

Design 4 (0.5 vs 0.7)

(r1, n1, r2, n) = (13, 24, 36, 61)

0.1 .297 .297 98.3 98.3 0.1 0.0

0.2 .365 .365 94.8 94.8 0.1 0.0

0.3 .408 .409 94.8 94.1 0.2 0.0

0.4 .419 .427 94.6 93.3 0.5 0.0

0.5 .388 .408 94.5 94.7 3.1 3.9

0.6 .334 .350 89.9 92.8 23.9 28.8

0.7 .265 .270 93.9 95.6 71.5 74.2

0.8 .214 .214 89.8 89.9 97.2 97.5
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Pπ0 ≡
∑

{(m,sm):T(m,sm ,π0)>T(M,SM ,π0)}
f (m, sm|π0) + 0.5f (M, SM|π0). (5)

The acceptance region defined as {π0 : Pπ0 ≥ α} can
be used to form the limits of a (1 − α)% confidence inter-
val of π . Note that it is possible that such a defined region
may not be an interval. However, such case is rare and

has minimal impact on the confidence interval perfor-
mance [12].

Results and discussion
Simulation study
We conduct simulation studies to evaluate likelihood
ratio test based CI construction, conditional likelihood

Fig. 1 Confidence interval width comparison is based on studies made to the second stage; Coverage is to be compared with 90 %; Bias is the
absolute value of difference between the estimate and true probability of response
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based UMVUE, and compare their performances with
approaches of Koyama and Chen [2]. In particular, we
selected the designs from Tables one and two in Simon’s
paper [1] and simulated 5,000 data sets based on vari-
ous values of π . If a simulated study continues to the
2nd stage under the specified design, the actual sample
size at the second stage of the study n∗

2 is generated via

an equal-probability multi-nomial distribution that range
from n2/3 to 1.5n2. We have also examined other possible
ranges of n∗

2 and found similar results.We only report 90 %
CI widths and coverage as well as the actual power from
the two methods in Tables 1, 2 and 3 and visualized the
comparison of the corresponding CI widths, CI coverage,
and bias in Figs. 1, 2, 3 and 4. Since the two methods yield

Fig. 2 Confidence interval width comparison is based on studies made to the second stage; Coverage is to be compared with 90 %; Bias is the
absolute value of difference between the estimate and true probability of response



Zhao et al. BMCMedical ResearchMethodology  (2015) 15:48 Page 9 of 11

Fig. 3 Confidence interval width comparison is based on studies made to the second stage; Coverage is to be compared with 90 %; Bias is the
absolute value of difference between the estimate and true probability of response

same CIs in the first stage, we only present the CI width
comparison for studies that are made to the 2nd stage in
our simulation. From the tables, we see that the average CI
width based on conditional likelihood are either similar to
or smaller than those based on Koyama and Chen [2] in
most cases. In some cases, the improvement can be quite
significant (Figs. 1, 2, 3 and 4).

We also compare CI coverage and bias based on all
simulation studies including those stopped after the first
stage. We see that the CI coverage are similar between
the two methods. The conditional likelihood UMVUE
has uniformly smaller biases than the estimate based on
Koyama and Chen [2], especially when the underlying true
probability is large.
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Fig. 4 Confidence interval width comparison is based on studies made to the second stage; Coverage is to be compared with 90 %; Bias is the
absolute value of difference between the estimate and true probability of response

Real example
Advanced hepatobiliary cancers have a poor progno-
sis, in part complicated by underlying liver dysfunction.
Although surgical resection and liver transplantation can
be curative for select patients, those with advanced dis-
ease have few treatment options with survival rates of 6-12

months. GI06-101 was a multi-institutional study con-
ducted by the Hoosier Oncology Group aimed to assess
the efficacy of erlotinib (Tarceva, OSI-774; OSI Pharma-
ceuticals, Melville, NY) in combination with docetaxel
in refractory hepatobiliary cancers [15]. Due to similarly
poor outcomes and few existent treatment options for
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refractory disease at the time of this study’s design in 2006,
both hepatocellular cancers and biliary tract cancers were
included.
The primary end point of this trial was the rate of pro-

gression free survival (PFS) at 16 weeks. PFS was defined
as time from the start of treatment until disease progres-
sion or death of any cause, whichever occurred first. A
Simon optimal two-stage design tested the hypothesis that
the 16-week PFS is π0 ≤ 15 % (clinically inactive) versus
the alternative of π1 ≥ 30 % (warranting further study).
The design used 0.10 as the level of significance and 80 %
as power. This led to n1 = 19, r1 = 3, nt = 39, and rt = 8.
Among the 19 patients of the first stage, 8 were pro-

gression free at 16-week. The study went on to the second
stage and was terminated due to lack of funding after
recruiting 6 patients. Among these 6 patients, 4 were pro-
gression free at 16-week. Therefore we have n∗

2 = 6, x1 =
8, and x2 = 4. The resulting estimate for 16-week PFS
rate is 0.435 with 90 % confidence interval (0.271, 0.605)
based on Koyama and Chen’s method, compared with 0.48
with 90 % confidence interval (0.322, 0.646) based on the
conditional likelihoodmethod. The conditional likelihood
based estimate is larger and has shorter CI width.

Conclusions
Koyama and Chen [2] considered statistical inference
problem for phase II studies based on Simon’s two-stage
designs when there are study deviations at the second
stage.We propose an alternativemethod for such problem
based on likelihood principle. In addition to provide infer-
ence for a couple of scenarios where Koyama and Chen’s
method breaks down, the resulting estimate appears to
have certain advantage in terms of bias magnitude and
confidence interval width in many cases.
Sample size change can also happen in the first stage

[4, 16]. Our method of inference should be applicable if
such change is not related to the actual outcome. There
is also recent research on adaptive Simon’s two-stage
designs [17] where the second stage sample size is decided
at the end of stage 1 based on observed responses. The
decision can be to extend the study because there are
fewer positive responses than expected or to shorten the
study simply because there are more positive responses
than expected. Our method should also be applicable.
However the whole likelihood needs to be used that incor-
porates the mechanism of the second stage sample size
determination.
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