
TECHNICAL ADVANCE Open Access

A note on obtaining correct marginal
predictions from a random intercepts
model for binary outcomes
Menelaos Pavlou1*, Gareth Ambler1, Shaun Seaman2 and Rumana Z. Omar1

Abstract

Background: Clustered data with binary outcomes are often analysed using random intercepts models or
generalised estimating equations (GEE) resulting in cluster-specific or ‘population-average’ inference, respectively.

Methods: When a random effects model is fitted to clustered data, predictions may be produced for a member of
an existing cluster by using estimates of the fixed effects (regression coefficients) and the random effect for the
cluster (conditional risk calculation), or for a member of a new cluster (marginal risk calculation). We focus on the
second. Marginal risk calculation from a random effects model is obtained by integrating over the distribution of
random effects. However, in practice marginal risks are often obtained, incorrectly, using only estimates of the fixed
effects (i.e. by effectively setting the random effects to zero). We compare these two approaches to marginal risk
calculation in terms of model calibration.

Results: In simulation studies, it has been seen that use of the incorrect marginal risk calculation from random
effects models results in poorly calibrated overall marginal predictions (calibration slope <1 and calibration in the
large ≠ 0) with mis-calibration becoming worse with higher degrees of clustering. We clarify that this was due to
the incorrect calculation of marginal predictions from a random intercepts model and explain intuitively why this
approach is incorrect. We show via simulation that the correct calculation of marginal risks from a random
intercepts model results in predictions with excellent calibration.

Conclusion: The logistic random intercepts model can be used to obtain valid marginal predictions by integrating
over the distribution of random effects.
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Background
Clustered data arise often in medical research, for ex-
ample when patients are clustered within hospitals or
general practises. It is well known [1] that a standard
regression model which ignores clustering provides
incorrect standard errors for the estimates of the
regression coefficients. Random effects models (also
known as ‘mixed models’) and Generalised Estimating
Equations (GEE) are two popular approaches for ana-
lysing clustered data; they account for clustering and
provide, respectively, cluster-specific (conditional) and

population-average (marginal) inference [2]. For a con-
tinuous outcome, the fit from a linear regression mixed
model and GEE estimate the same population quan-
tities (regression coefficients), but for a binary outcome
a logistic regression mixed model and GEE estimate
different quantities [1]. In this paper we focus on binary
outcomes.
For example, Bouwmeester et al. [3] focused on the use

of a logistic mixed model with random intercepts to ob-
tain conditional risk predictions using estimates of the
fixed and random effects. This type of prediction may be
used to predict the probability of an event for a new mem-
ber of an existing cluster, i.e. a cluster that belongs to the
dataset that was used to fit the random effects model.
They found that conditional risk predictions provided
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better discrimination than marginal risk predictions. They
used the same random intercepts model to produce mar-
ginal predictions, by simply setting the random effects to
zero. Skrondal et al. [4] had earlier noted that this incor-
rect type of marginal prediction is not unusual in applied
research (e.g. Rose [5] ), and was shown to result in a
small loss in predictive accuracy when the intra-cluster
correlation (ICC) was small. Bouwmeester et al. [3] used
the incorrect marginal risk calculation and found that it
produced mis-calibrated predictions with ICC as small as
0.15. The amount of mis-calibration was found to increase
with the degree of clustering.
We clarify the reasons for this mis-calibration and ex-

plain how to obtain correct marginal predictions from a
logistic random intercepts model.

Methods
Marginal predictions for clustered data
Let Yij and Xij = (Xij,1, Xij,2,…, Xij,p) denote the binary
outcome and the p-dimensional vector of covariates for
the jth member of the ith cluster, i = 1,…, K; j = 1,…,Ni.
A logistic random intercepts model can be written as:

logit P Y ij ¼ 1jX ij ¼ xij; ui
� �� � ¼ αRE þ ui þ

Xp
m¼1

xij;m βRΕ;m;

ð1Þ
where aRE and βRΕ = (βRΕ,1, βRΕ,2, …, βRΕ,m) are the condi-
tional regression parameters (fixed effects), and ui is the
random effect for the ith cluster. Usually it is assumed
that ui ~N(0, σu

2).
The linear combination of predictor values, regression

coefficients and random effect, αRE þ ui þ
Xp
m¼1

xij;mβRE;m , is

known as linear predictor, risk score or predicted log-odds.
A marginal model (not conditional on random effects)

can be written as:

logit P Y ij ¼ 1jX ij ¼ xij
� �� � ¼ αM þ

Xp
m¼1

xij;m βM;m;

ð2Þ
where aM and βM = (βM,1, βM,2, …, βM,m) are the marginal
regression coefficients. Model (2) can be fitted using stand-
ard Maximum Likelihood Estimation (MLE) ignoring the
clustering. This results in estimators α̂standard and β̂standard.
Ideally, the within-cluster correlation should be ac-

counted for, and model (2) be fitted using GEE with a suit-
able ‘working’ correlation matrix, giving rise to estimators

α̂GEE and β̂GEE. Both α̂standard; β̂standard

� �
and α̂GEE; β̂GEE

� �
are consistent estimates of (αM, βM) (i.e. converge to the
true value (αM, βM) as the sample size tends to infinity)
provided that any missing data are covariate-dependent

MCAR (Missing Completely at Random) [6]. Note that

α̂standard; β̂standard

� �
¼ α̂GEE; β̂GEE

� �
when the independ-

ence working correlation matrix is used.
Importantly, Zeger et al. [7] noted that the fixed effects

in a random intercepts model are larger (in absolute
value) than the corresponding regression parameters
from a marginal model. That is,

aRE ≥jaMj j;j jβRE;m ≥jβM;m

���
��� ∀ m; ð3Þ

with the equality holding if and only if aRE = 0 or βRE,m
= 0.
Also, the difference between the marginal and conditional

coefficients increases as the variance of the random effects
(i.e. the degree of clustering) increases. In particular, an ap-
proximation [7] of (αM, βM) from (αRE, βRE) is

αΜ;m≈
αRE;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2σ2u þ 1
� �q ; βΜ;m≈

βRE;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2σ2

u þ 1
� �q ;

c ¼ 16
ffiffiffi
3

p

15π
:

ð4Þ

Bouwmeester et al. [3] calculated marginal risk predic-
tions from the random intercepts model using only the
fixed effects, i.e. by setting the random effects equal to
their mean value, zero:

P Y ij ¼ 1jX ij ¼ xij
� � ¼ π̂ ij 0ð Þ

¼ 1

1þ exp − âRE þ
Xp

m¼1
xij;m β̂RΕ;m

h i� � :

ð5Þ

However, as noted by Skrondal et al. [4] the correct
way to obtain marginal risk predictions from a random
intercepts model is to integrate over the distribution of
random effects:

P Y ij ¼ 1jX ij ¼ xij
� � ¼ π̂ ij intð Þ

¼
Z∞

−∞

1

1þ exp − âRE þ uþ
Xp

m¼1
xij;m β̂RΕ;m

h i� � f uð Þ du ;

ð6Þ

where f(u) is the density function of the (prior) distribu-
tion of random effects. In this case it is the density func-
tion for a Normal distribution with mean zero and
variance σu

2, which can be substituted by its estimate, σ̂ 2
u.

We next design a simulation study to compare in
terms of calibration the following 5 types of marginal
predictions from:
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a) a marginal regression model (fitted using standard
maximum likelihood) that ignores clustering
(‘No clustering’).

b) a random intercepts regression model with the
random effects set to zero (‘RE-zero’).

c) a random intercepts regression model after
integrating over the estimated distribution of
random effects (‘RE-integ’),

d) a random intercepts regression model after rescaling
the estimated conditional coefficients using the
approximation of Zeger (‘RE-approx’),

e) a marginal regression model fitted by GEE with
exchangeable correlation structure (‘GEE’).

Simulation study
We designed a simulation to demonstrate that the correct
approach to obtaining marginal predictions from a random
intercepts model using equation (6) results in predictions
with good calibration, regardless of the degree of clustering.
We replicated the simulation study of Bouwmeester et. al.
[3] (however, since the random number seed used in their
simulation study was unknown to us, we have obtained
slightly different results from those shown in their tables).
The simulation design was as follows. A source popu-

lation of 100 centres was generated with varying cluster
size, Ni, for each cluster. In particular, Ni ~ Poisson(exp
(λi)), λi ~N(5.7, 0.32), i = 1,…, 100. The total sample
comprised 32502 patients and the median number of pa-
tients per centre was 312.
Six predictor variables were considered, three of which

were continuous and were generated from Normal distribu-
tions with zero mean and standard deviations 1, 0.3, 0.2,
respectively. The other three predictors were binary with
prevalence 0.2, 0.3, 0.4, respectively, and were generated
from a binomial distribution. The coefficients of all predic-
tors were set to 1. The degree of clustering was varied by
changing the variance σu

2 of a latent variable u~N(0, σu
2).

The ICC is given by ICC ¼ σ2u
π2=3þσ2u

[8], and so when

σu
2 = 0.17, ICC= 0.05. The linear predictor and the probability
of an event happening, respectively, were calculated using

ηij ¼ ui þ xij;1 þ xij;2 þ xij;3 þ xij;4

þ xij;5þxij;6 and PðY ij ¼ 1Þ ¼
�
1þ expð−ηijÞ

�−1

Finally, the binary outcome Yij was randomly set equal
to 1 with probability P(Yij = 1) and 0 otherwise.
Study samples were drawn from this source population

using a two-stage sampling. First, 20 centres were drawn
from the population of 100 clusters, and then 1000 mem-
bers were drawn at random from the sampled centres.
This two stage sampling procedure was repeated 100
times so 100 ‘training’ datasets were produced. The source

population, each time after excluding the 20 clusters that
were sampled for the training dataset, was taken to be the
‘test’ or ‘validation’ dataset for the corresponding training
dataset. For each method for calculating marginal risks,
the model was fitted to each of the training datasets, and
its predictive performance was assessed on the corre-
sponding validation dataset.
In addition, to investigate the sensitivity of the perform-

ance of the methods to differences between the distribu-
tions of cluster sizes in the training and validation datasets,
we also considered a second method for constructing the
training datasets. In this second method, each training data-
set was generated using the same distribution of predictors
as in the validation dataset, but the distribution of cluster
sizes differed. In particular, each training dataset consisted
of a total of 1000 observations in 20 clusters, and the clus-
ter sizes were generated from a multinomial distribution
with probabilities generated from a Dirichlet distribution
with parameter equal to one for all clusters.
We examined the predictive performance of different

methods to obtain marginal risks, in terms of calibration.
Calibration in the large and calibration slope are calcu-
lated by fitting to the validation data two separate re-
gression models. Calibration slope is the slope term in a
logistic regression model where the estimated linear pre-
dictor (the inverse logit function of the predicted prob-
ability, also known as risk score and predicted log-odds)
is regressed on the binary outcome. Calibration in the
large is the intercept term in an intercept-only logistic
regression model for the binary outcome with the linear
predictor set as an offset term. A perfectly calibrated
model should have a calibration in the large value equal
to 0 (meaning that the average predicted probability is
equal to the prevalence of the outcome) and a calibra-
tion slope value equal to 1. A calibration slope <1 indi-
cates that the range of predictions is excessively wide
and some shrinkage is necessary [9].
The simulations were carried out using R version 3.1.

The logistic random intercepts models were fitted using
the glmer function of the R package lme4. Population-
average predictions, via numerical integration over the
estimated distribution of random effects, were obtained
by user-written code (see Additional file 1). The same
computation can be carried out in Stata using built-in
commands of the package gllamm.

Results
We now discuss the results of using the wrong form
described by equation (5) for marginal predictions.
Table 1 presents calibration in the large and calibration
slopes (with standard errors) for the 5 methods above
and for varying degrees of clustering. Use of marginal
predictions by setting the random effects equal to zero
(RE-zero) results in increasingly poorly calibrated
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predictions as the ICC becomes higher. For the highest
ICC considered, ICC = 0.3, the calibration in the large
is 0.14, which means that the average predicted risk
was too low, and the calibration slope is 0.79, which in-
dicates that the predicted risks are more widely dis-
persed than the actual risks. A calibration slope of less
than one can be a symptom of overfitting [10] and in
practice, values slightly less than one are expected due
to minor overfitting. However, overfitting as a cause is
ruled out here because in this simulation the number of
events was large. Instead, it can be purely attributed to
the incorrect approach used to obtain marginal predic-
tions from a random intercepts model. As the regres-
sion coefficients of a random intercepts model are
larger than the corresponding marginal ones, by just
setting the random effects to zero we obtain an exces-
sively wide range of predictions which leads to poor
calibration slope (<1). Similarly, the mean of the pre-
dicted risks π̂ ij 0ð Þ is not equal to the mean of the pre-
dicted risks π̂ ij intð Þ , which leads to poor calibration in
the large (≠ 0). Note that the larger the intra-cluster

correlation is, the larger is the ratio of |βRE,m| to |βM,m|,
as can be easily seen from the approximation in (4). So,
we would expect that for an ICC smaller than 0.3, the
calibration slope for RE-zero would be closer to 1. In-
deed, the results in Table 1, verify this intuition: when
ICC = 0.05, RE-zero has a calibration slope of 0.95 and
calibration in the large -0.03.
These results replicate the findings of [3] that the in-

correct marginal risk calculation, π̂ ij 0ð Þ , obtained from
a random intercepts model by setting the random ef-
fects equal to zero (RE-zero) results in poorly calibrated
predictions for large ICCs. In contrast, the correct mar-
ginal risk calculation, π̂ ij intð Þ , by integrating over the
distribution of random effects (RE-integ), shows good
calibration, comparable to that of standard MLE (Ignor-
ing clustering) and GEE. Also, as speculated, the simple
approximation (described by equation (4)) of marginal
coefficients from the corresponding conditional ones
(RE-approx) also results in good calibration in all cases.
For the simulation scenario where the distribution of
cluster sizes in the validation dataset differed from the
distribution of cluster sizes in the training dataset the
results and conclusions were similar (Additional file 1:
Table S1).
Now we demonstrate graphically the difference between

the predicted risks from each method. We show the pre-
dicted risk for a range of values of the first continuous
predictor, while, without loss of generality, the other five
predictors are set to zero. This is done for ICC = 0.05, 0.1,
0.15 or 0.3, and the results for ICC = 0.3 are shown in
Fig. 1. The naïve marginal predictions, π̂ ij 0ð Þ; tend to be
more extreme than the predictions from the other
methods, all of which are very similar. This is reflected by
the calibration slope which is <1 for the naïve predictions
but very close to one for the rest. As the ICC becomes
smaller (graphs not shown) the naïve predictions ap-
proach the ones from the other methods.

Discussion
We have compared different approaches in terms of
their ability to provide correctly calibrated marginal pre-
dictions for a new individual in a new cluster. However,
conditional predictions for new patients in existing clus-
ters may also be of interest and are discussed here, along
with the possibility that the random effects are not inde-
pendent either of the predictors or the cluster sizes.

Conditional predictions
Marginal predictions would be of interest for individuals
who belong to clusters that were not included in the
training dataset. In addition, however, predictions for
new individuals who belong to clusters that were included
in the training dataset may also be required. Estimates

Table 1 Calibration results from the simulation study with 20
centres

Method ICC Calibration
Intercept (se)

Calibration
Slope (se)

No clustering 0.05 −0.022 (0.130) 0.974 (0.077)

RE-zero 0.05 −0.008 (0.132) 0.948 (0.076)

RE-integ 0.05 −0.026 (0.129) 0.970 (0.075)

RE-approx 0.05 −0.024 (0.129) 0.968 (0.075)

GEE 0.05 −0.023 (0.131) 0.970 (0.076)

No clustering 0.10 −0.019 (0.174) 0.981 (0.073)

RE-zero 0.10 0.031 (0.182) 0.922 (0.069)

RE-integ 0.10 −0.014 (0.173) 0.984 (0.069)

RE-approx 0.10 −0.009 (0.173) 0.979 (0.068)

GEE 0.10 −0.026 (0.175) 0.983 (0.071)

No clustering 0.15 −0.016 (0.208) 0.971 (0.080)

RE-zero 0.15 0.049 (0.225) 0.884 (0.071)

RE-integ 0.15 −0.009 (0.207) 0.972 (0.073)

RE-approx 0.15 −0.004 (0.209) 0.964 (0.071)

GEE 0.15 −0.026 (0.211) 0.971 (0.076)

No clustering 0.30 0.004 (0.282) 0.963 (0.100)

RE-zero 0.30 0.142 (0.333) 0.788 (0.070)

RE-integ 0.30 −0.020 (0.280) 0.977 (0.090)

RE-approx 0.30 −0.009 (0.283) 0.956 (0.084)

GEE 0.30 −0.018 (0.285) 0.982 (0.097)

Calibration intercept and calibration slope using different forms of marginal
risk calculation for varying degrees of clustering (median calibration and
empirical standard errors over 100 simulated datasets)
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(e.g. empirical Bayes estimates) of the random effects for
these clusters can be obtained during the model fitting
process, and then these estimates can used to make pre-
diction for these new individuals. This is ‘conditional’ (as
opposed to marginal) prediction. In such cases, condi-
tional predictions can be obtained by incorporating in the
calculation the estimated random effects of the cluster, or,
more correctly as noted by Skrondal et al. [4], by integrat-
ing over the posterior distribution of the random effects
(see detailed expressions in the Additional file 1).
We performed additional simulations to compare the

performance of these two approaches for obtaining
conditional predictions in terms of calibration, and
their performance was very similar (full results in the
Additional file 1: Table S2 and Table S3).

Associations between the random effects and either a
predictor or the cluster size
A random intercepts model for clustered data assumes
that the predictors and the cluster sizes are independ-
ent of the random effects, but either of these conditions
may be violated. When a cluster-varying predictor is

not independent of the random effects, ‘confounding by
cluster’ [11, 12] arises. Although use of a standard ran-
dom intercepts model results in a biased estimate for
the effect of the predictor that is correlated with the
random effect, Bouwmeester et al. [3] explained that, in
fact, this correlation is beneficial in terms of prediction
and particularly calibration, because inclusion of that
predictor partly explains differences in prevalence be-
tween clusters. This was verified by their simulation
studies, where the calibration of the models when a
predictor, X, was correlated with the random intercept,
appeared to be better than when there was no correl-
ation between the predictor and the random intercept.
Properly dealing with confounding, as described by
Seaman et al. [11] and illustrated by Skrondal et al [4],
by including the cluster-mean of X, as well as X itself,
in a random intercepts model, will remove any residual
confounding and produce a model suitable for predic-
tion for patients in a new or an existing cluster. Seaman
et al. [11] reviewed approaches to detect confounding
by cluster. Similarly, if cluster size is not independent
of the random effects, ‘informative cluster size’ [11, 13]
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arises. Including cluster size as a predictor will remove
informative cluster size and produce a model suitable
for prediction in patients in new or existing clusters.

Conclusion
In this article we have explained why the incorrect cal-
culation of marginalised risks from a logistic random
intercepts model by setting the random effects to zero
results in mis-calibrated population-average predic-
tions. Via simulation we have shown that the correct
marginalisation by integrating over the distribution of
random effects solves this problem. The method of
obtaining predicted risks by approximating the coeffi-
cients of the marginal model from the corresponding
conditional ones also worked well. Either of the two
methods could be used to compute population-average
predictions, if this is desired. Although GEE would be a
direct approach to obtain marginal inference, use of a
random effects model would still be preferred when, for
example, the covariate-dependent MCAR assumption
required by GEE is likely to be violated, or when condi-
tional predictions are required. Random effect models
are consistent when data are MAR, i.e. missingness in
Y is independent of Y given X and u [2] (provided that
missingness does not cause any empty clusters, i.e.
clusters with no observed outcomes).
Arguably, in the context of clustered data where patients

are clustered within hospitals, the ICC rarely exceeds 0.15.
In those cases the mis-calibration of the incorrect margin-
alised predictions will be small. In settings where the ICC
is greater than 0.15 the mis-calibration of the incorrect
predictions will be a more serious issue.
In conclusion, both population-average and condi-

tional predictions have their own use in guiding clinical
decisions in different settings. In practice, a population-
average prediction may be used to provide an estimate
of the risk of the event for an individual that does not
belong to one of the clusters used in model develop-
ment. For a new individual in a cluster that was used in
the model development, conditional predictions which
incorporate centre-specific information by using the esti-
mated random effect for the cluster can provide a more
accurate prediction for the particular individual.

Additional file

Additional file 1: Table S1. Calibration in the large and calibration
slope for varying degrees of ICC when the distribution of the cluster
sizes differs between the training and validation datasets. (mean
calibration over 100 simulated datasets). Table S2. Overall performance
measures for cluster-specific predictions for new members in existing
clusters. Mean calibration intercept (standard error), median calibration
slope (standard error), mean C-statistic (standard error) over 100
simulations. RE(u): Prediction is obtained by plugging in the risk formula
estimates of the fixed effects and the random effect. RE(u)-int:

Prediction is obtained by integrating over the posterior distribution of
the random effects. Table S3. Overall performance measures for
marginal predictions for new members in existing clusters. Mean
calibration intercept (standard error), median calibration slope (standard
error), mean C-statistic (standard error) over 100 simulations RE(0):
Prediction is obtained by using only the fixed effects. RE-int: Prediction
is obtained by integrating over the estimated distribution of the
random effects.
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