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Abstract
Background: In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire
items which however often suffer measurement error problems which in turn affect statistical power of study
designs. The Cronbach alpha or coefficient alpha, here denoted by Cα, can be used as a measure of internal
consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct.
Scale score for the target construct is often represented by the sum of the item scores. However, power functions
based on Cα have been lacking for various study designs.

Methods: We formulate a statistical model for parallel items to derive power functions as a function of Cα under several
study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance
assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely
associated with higher inter-item correlations, and thus that greater Cα is associated with greater statistical power. We
compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the
following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison
of pre-post mean differences between groups, and two-sample comparison of mean differences between groups.

Results: It is shown that Cα is the same as a test-retest correlation of the scale scores of parallel items, which enables
testing significance of Cα. Closed-form power functions and samples size determination formulas are derived in terms
of Cα, for all of the aforementioned comparisons. Power functions are shown to be an increasing function of Cα,
regardless of comparison of interest. The derived power functions are well validated by simulation studies that show
that the magnitudes of theoretical power are virtually identical to those of the empirical power.

Conclusion: Regardless of research designs or settings, in order to increase statistical power, development and use of
instruments with greater Cα, or equivalently with greater inter-item correlations, is crucial for trials that intend to use
questionnaire items for measuring research outcomes.

Discussion: Further development of the power functions for binary or ordinal item scores and under more general
item correlation strutures reflecting more real world situations would be a valuable future study.

Keywords: Cronbach alpha, Coefficient alpha, Test-retest correlation, Internal consistency, Reliability, Statistical power,
Effect size

Background
Use of instrument questionnaire items is essential for
measurement of outcome of interest in innumerable num-
bers of clinical trials. Many trials use well-established
instruments; for example, major depressive disorders are
often evaluated by scores on the Hamilton Rating Scale of
Depression (HRSD) [1] in psychiatry trials. However, it is

by far more often the case when instruments germane to
a research outcome are not available. In such cases, of
course, questionnaire items need to be developed to meas-
ure the outcome, and their psychometric properties
should be evaluated for construct validity, internal
consistency, and reliability among others [2, 3]. The in-
ternal consistency of instrument items quantifies how
similarly in a interrelated fashion the items represent an
outcome construct that the instrument is aiming to meas-
ure [4], whereas reliability is defined as the squared correl-
ation between true score and observed score [3].
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Cronbach alpha also known as coefficient alpha [5],
hereafter denoted by Cα, has been very widely used to
quantify the internal consistency and reliability of items
in clinical research and beyond [6] although internal
consistency and reliability are not exchangeable psycho-
metric concepts in general. For this reason, some argue
that Cα should not be used for quantifying either con-
cept (e.g.,[7, 8]). One the other hand, for special cases
where items under study are parallel such that items are
designed as replicates to measure a unidimensional con-
struct or attribute, Cα can quantify internal consistency
and reliability as well [2] although in general Cα is not
necessarily a measure of unidimensionality or homogen-
eity [4, 8]. In this paper, we consider parallel items; for
example, items within a same factor could be considered
parallel for a unidimensional construct. In this sense,
items of HRSD are not parallel since it measures depres-
sion, a multidimensional construct with many factors.
The Cronbach alpha by mathematical definition is an

adjusted proportion of total variance of the item scores
explained by the sum of covariances between item
scores, and thus ranges between 0 and 1 if all covariance
elements are non-negative. Specifically, for an instru-
ment with k items with a general covariance matrix Σ
among the item scores, Cα is defined as

Cα ¼ k

k−1
1TΣ1−trace Σð Þ

1TΣ1

� �
¼ k

k−1
1−

trace Σð Þ
1TΣ1

� �
; ð1Þ

where trace(.) is the sum of the diagonal elements of a
square matrix, 1 is a column vector with k unit ele-
ments, and 1T is the transpose of 1. This quantification
is therefore based on the notion that relative magnitudes
of covariances between item scores compared to those
of corresponding variances serves as a measure of simi-
larities of the items. Consequently, items with higher Cα

are preferred to measure the target outcome. However,
Cα is a lower bound for reliability, but is not equal to re-
liability unless the items are parallel or essentially τ-
equivalent [3, 8]. The sum of the instrument items
serves as a scale for the outcome, and is used for statis-
tical inference including testing statistical hypotheses. At
the design stage of clinical trials, information about mag-
nitude of reliability or internal consistency of developed
parallel items is crucial for power analysis and sample size
determinations. Nonetheless, power functions based on
Cα have been lacking for various study designs.
In this paper, to derive closed-from power functions,

we formulate a statistical model for parallel items that
relates the item scores to a measurement error problem.
Under this model, Cα (1) is explicitly expressed in terms
of an inter-item correlation. We examine relationship
among Cα, a test-retest correlation and reliability of scale
scores that enables testing significance of Cα through

Fisher z-transformation. We explicitly express statistical
power as a function of Cα for the following comparisons:
one-sample comparison of pre- and post-treatment
mean differences, two-sample comparison of pre-post
mean differences between groups, and two-sample com-
parison of mean differences between groups. Simulation
study results compare derived theoretical power with
empirical power and discussion and conclusion follow.

Methods
Statistical model
We consider the following model for item score Yij to
the j-th parallel item for the i-th subject:

Yij ¼ μi þ eij ð2Þ
The parameter μi represents the “true score” of the

target (outcome) construct for the i-th subject. At the
population level, its expectation and variance are as-
sumed to be E μið Þ ¼ μ and Var μið Þ ¼ σ2μ , which we

call the true score variance. The error term eij repre-
sents the deviate of the item score Yij from the true
score μi, i.e., eij is the measurement error of Yij. The
expectation and variance of eij for all subjects are as-
sumed to be E eij

� � ¼ 0, i.e., unbiasedness assumption,
that is, Ej(Yij) = μi and EiEj(Yij) = E(μi) = μ, where Ej de-
notes the expectation over j. It is also assumed that
Var eij

� � ¼ σ2
e , which we call the measurement error

variance. We further assume the following: μi and eij
are mutually independent, i.e., μi ⊥ eij; and the ele-
ments of eij’s are independent for a given subject, i.e.,
conditional independence, that is, eij ⊥ eij′|μi for j ≠ j′.
Note that this conditional independence does not
imply marginal impendence between Yij and Yij′. In
short, model (2) is a mixed-effects linear model for
data with a two-level structure in a way that repeated
item scores are nested within individuals.
Under those assumptions, we have Var Yij

� �
≡σ2 ¼ σ2

μ

þσ2
e , that is, the total variance of the item scores is the

sum of the true score variance and the measurement
error variance. Inter-item (score) covariance can be ob-

tained as Cov Yij; ;Yij′

� �
¼ σ2μ for j ≠ j′. Therefore, the

diagonal elements of covariance matrix Σ under model
(2) are identical and so are the off-diagonal elements.
This compound symmetry covariance structure, also
known as essential τ-equivalence, is the covariance
matrix of parallel items each of which targets the under-
lying true score for a unidimensional construct. Further-
more, the compound symmetry covariance structure can
be regarded as a covariance matrix of “standardized”
item scores with unequal variances and covariances.
Inter-item (score) correlation, denoted here by ρ, can ac-
cordingly be obtained as
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Corr Yij;Yij′

� �
≡ρ ¼ σ2μ

σ2
¼ σ2μ

σ2
μ þ σ2e

: ð3Þ

Although item scores are correlated within subjects,
they are independent between subjects. Note that this
inter-item correlation is not necessarily equal to item-
score reliability that quantifies a correlation between
true and observed scores.
In this paper, we assume that the true score variance

σ2μ , instead of the total variance σ2, is fixed at the popu-

lation level, and it does not depend on the item scores
of the subjects. Stated differently, the total variance σ2

depends only on σ2e which depends on item scores and
thus σ2 is assumed to be an increasing function of only
measurement errors of the item scores. Let us call this
assumption the fixed true score variance assumption,
which is crucial and reasonable from the perspective of
measurement error theory in general. This assumption is
crucial because it makes the total variance as a function
of only measurement error variance as mentioned above,
and it is reasonable because at the population level true
score variance should not be varying whereas magni-
tudes of measurement error variance depend on reliabil-
ity of items. Consequently, the true score variance σ2μ is

not a function of inter-item correlation ρ, but the meas-
urement error variance σ2

e is a decreasing function of ρ
since from equation (3) we have

σ2e ¼ 1−ρð Þσ2 ¼ 1=ρ−1ð Þσ2μ: ð4Þ

It follows that as the item scores are closer or more
similar to each other within subjects, the measurement
errors will be smaller, which follows that the total vari-
ance is also a decreasing function of ρ since

σ2 ¼ σ2μ þ σ2e ¼ σ2μ=ρ: ð5Þ

We assume that the magnitudes of both σ2e and σ2μ are

known and thus that of σ2 for the purpose of derivation
of power functions based on normal destructions instead
of t-distributions, although replacement by t-distribu-
tions should be straightforward yet with little difference
in results for sizable sample sizes.

Cronbach alpha, scale score and its variance
We assume that there are k items in an instrument,
i.e., j =1, 2, …, k. The Cα (1) of k items under model
(2) and aforementioned assumptions can be expressed as

Cα ¼
kσ2μ

σ2e þ kσ2
μ

¼ kρ

1þ ρ k−1ð Þ : ð6Þ

It is due to the fact that Σ ¼ σ2e Iþ σ2μ11
T under model

(2) where I is a k-by-k identity matrix. Cα in equation (6)

is seen to be an increasing function of both ρ and k as
depicted in Fig. 1. Therefore, the number of items needs
to be fixed for comparison of Cα of several candidate
sets of items. It follows that for a fixed number of items,
higher Cα is associated with smaller measurement error of
items through higher inter-item correlation ρ. From equa-
tion (6), ρ can be expressed in terms of Cα as follows:

ρ ¼ Cα

k−Cα k−1ð Þ : ð7Þ

Of note, the corresponding correlation matrix is de-
noted by Ρ ¼ 1−ρð ÞIþ ρ11T, an equi-correlation matrix.
The k correlated items are often summed up to a scale

that is intended to measure the target construct. The
scale score is denoted here by

Si ¼
Xk
j¼1

Yij;

which can be viewed as an observed summary score for
the i-th subject. Suppressing the subscription i in Si, its
mean and variance can be obtained as follows:

Ej Sð Þ ¼ kμi; ð8Þ
and

Var Sð Þ ¼ kσ2 1þ ρ k−1ð Þf g: ð9Þ
With respect to the mean (8), average scale score Si/k

when used as observed score is an unbiased estimate of
true score μi for the i-th subject. The reliability, denoted
here by R, defined as the squared correlation between
true score and observed score can be obtained as
follows:

Fig. 1 Relationship between Cronbach alpha (Cα) and inter-item
correlation (ρ) over varying number of items (k)
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R ¼ Corr2 Si=k; μið Þ ¼ kρ

1þ ρ k−1ð Þ ¼ Cα: ð10Þ

This equation supports Theorem 3.1 of Novick and
Lewis [9] that R =Cα if and only if the items are parallel.
Since statistical analysis results do not depend on whether
Si/k or Si is used, we use the sum S in what follows.
With respect the total variance (9), if the total vari-

ance, instead of the true score variance, is assumed to be
fixed, Var(S) is an increasing function of ρ, which con-
forms to an elementary statistical theory that variance of
sum of correlated variables increases with increasing
correlation. On the contrary, under the fixed true score
variance assumption, it can be seen that Var(S) is a
decreasing function of ρ since equation (9) can be re-
expressed in terms of σ2μ via equation (5) as follows:

Var Sð Þ ¼ kσ2
μ 1=ρþ k−1ð Þ ¼ k2σ2μ=Cα: ð11Þ

The last equation is due to equation (7). It follows that
Var(S) is also a decreasing function of Cα. In sum, in-
crease of ρ decreases the magnitude of σ2 which in turn
decreases the magnitude of Var(S); therefore such indir-
ect decreasing effect of ρ on Var(S) is larger than direct
increasing effect of ρ on Var(S) in equation (9).

Cronbach alpha and test-retest correlation
Reliability R of instruments is sometimes evaluated by
test-retest correlation [3]. Based on model (2), the test

and retest item scores can be specified as Y test
ij ¼ μi þ eij

and Y retest
ij ¼ μi þ eij , respectively with a common μi for

both test and retest scores for each subject, i = 1, 2,…, N.
The test-retest correlation can then be measured by the
correlation, denoted by Corr(Stest, Sretest), between scale

scores Stest ¼
Xk

j¼1
Y test
ij and Sretest ¼

Xk

j¼1
Y retest
ij repre-

senting the scale scores of test and retest, respectively.
Under the aforementioned assumptions for model (2) it
can be shown that

Cov Stest ; Sretestð Þ ¼ k2ρσ2; ð12Þ
and from equation (10)

Var Stestð Þ ¼ Var Sretestð Þ ¼ kσ2 1þ ρ k−1ð Þf g: ð13Þ
It follows that:

Corr Stest; ;Sretestð Þ ¼ Cov Stest;Sretestð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Stestð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Stestð Þp
¼ kρ

1þ ρ k−1ð Þ ¼ R ¼ Cα:

ð14Þ

This equation shows that the test-rest correlation is
the same as both Cα and R due to equations (6) and
(10), which provides another interpretation of Cα. This

property is especially useful when there is only one item
available, in which case estimation of Cα or ρ is impos-
sible by definition. However, the test and retest scores
can be thought of as two correlated parallel item scores,
and thus their correlation can serve as Cα of the single
item. It is particularly fitting since ρ =Cα = R based on
either equation (6), (7), or (14) when k = 1.
Taken together, the power φCα

of testing significance
of Cα against any null value should be equivalent to that
of testing significance of a correlation using a Fisher’s z-
transformation as long as items are parallel, that is,

φCα
¼ 1−Φ Φ−1 1−α=2ð Þ−

ffiffiffiffiffiffiffiffiffi
N−3

p 1
2
ln

1þ Cα

1−Cα

� �
þ Cα

2 N−1ð Þ
� �	 


for a two-tailed significance level α, where Φ is the cu-
mulative distribution function of a standardized normal
distribution, and Φ−1 is its inverse function, i.e.,
Φ(Φ−1(x)) =Φ−1(Φ(x)) = x. We note that although it is
necessary to be added for validation of unbiasedness of
the test statistics under the null hypothesis, the probabil-
ity under the other rejection area will be ignored for all
test statistics considered herein. For general covariance
structures for non-parallel items, however, many other
tests for significance of reliability and Cα have been de-
veloped [10–17].

Pre-post comparison
We consider application of a paired t-test to the case
of comparison of within-group means of scale scores
between pre- and post-interventions. Based on model
(2), the pre- and post-intervention item scores can be

specified as Ypre
ij ¼ μi þ eij and Ypost

ij ¼ μi þ δPP þ eij ,

respectively; the mean of the post-intervention item
scores are shifted by δPP, an intervention effect. Con-
sequently, we have

E Spost
� �

−E Spre
� � ¼ kδpp; ð15Þ

where Spre ¼
Xk

j¼1
Ypre
ij and Spost ¼

Xk

j¼1
Ypost
ij are the

pre- and post-intervention scale scores, respectively. A
moment estimate of δPP from (15) can be estimated as

δ̂PP ¼ �Spost−�Spre
� �

=k; ð16Þ

where �S ¼
XN

i¼1

Xk

j¼1
Yij=N and N is the total number

of subject. Its variance can be obtained as

Var δ̂PP

� �
¼ 2 1−ρð Þσ2

kN
¼ 2 1=ρ−1ð Þσ2μ

kN
: ð17Þ

It is because from equations (12) and (13) we have
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Var �Spost−�Spre
� � ¼ Var �Spost

� �þ Var �Spre
� �

−2Cov �Spost; ; �Spre
� �

¼ kσ2 1þ ρ k−1ð Þf g=Nþ kσ2 1þ ρ k−1ð Þf g=N−2k2ρσ2=N

¼ 2kσ2 1−ρð Þ=N ¼ 2kσ2
μ 1=ρ−1ð Þ=N :

The following test statistic can then be used for testing
H0: δ = 0

TPP ¼ δ̂PPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var δ̂PP

� �r ¼
ffiffiffiffiffiffi
kN

p
δ̂PP

σμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1=ρ−1ð Þp ¼

ffiffiffiffi
N

p
�Spost−�Spre

� �
σμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k 1=ρ−1ð Þp :

ð18Þ
Now, the statistical power φPP of TPP for detecting

non-zero δPP can be expressed as follows:

φPP ¼ Φ δPP=σμ
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kN

2 1=ρ−1ð Þ

s
−Φ−1 1−α=2ð Þ

( )
:

ð19Þ
This statistical power is an increasing function of ρ for

a fixed σμ, which we assume. It follows that the power is
also an increasing function of Cα as seen next. When δPP
is standardized by σμ and ρ is replaced by equation (7),
equation (19) can further be expressed in terms of
ΔPP ¼ δPP=σμ and Cα as follows:

φPP ¼ Φ ΔPPj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

2 1=Cα−1ð Þ

s
−Φ−1 1−α=2ð Þ

( )
: ð20Þ

This power function is seen to be independent of k,
the number of items. Stated differently, the power will
be the same between two instruments with different
numbers of items as long as their Cα’s are the same even
if the correlation of items will be smaller for the instru-
ment with fewer items.
When sample size determination is needed for a study

using an instrument of any number of items with a
known Cα for a desired statistical power φ, typically
80 %, it can be determined from equation as follows:

N ¼ 2 1=Cα−1ð Þz2α;φ
Δ2
PP

; ð21Þ

where

zα;φ ¼ Φ−1 1−α=2ð Þ þΦ−1 φð Þ: ð22Þ

The sample size (21) is seen to be a decreasing func-
tion of increasing Cα and Δ. In a possibly rare case in
which determination of number of items with known
correlations among them is needed for development of
an instrument, it has to be determined from equation
(19), instead of equation (20), as follow:

k ¼ 2 1=ρ−1ð Þz2α;φ
NΔ2

PP

: ð23Þ

Comparison of within-group effects between groups
In clinical trials, it is often of interest to compare within-
group changes between groups. For instance, a clinical
trial can be designed to compare of pre-post effect of an
experimental treatment between treatment and control
groups, that is, an interaction effect between group
and time point. Based on model (2), the pre- and
post-intervention item scores can be specified as

Y
pre 0ð Þ
ij ¼ μ 0ð Þ

i þ eij and Y
post 0ð Þ
ij ¼ μ 0ð Þ

i þ δ0 þ eij for the

control group Y
pre 1ð Þ
ij ¼ μ 1ð Þ

i þ eij and Y
post 1ð Þ
ij ¼ μ 1ð Þ

i

þδ1 þ eij for the treatment group. The primary inter-
est will be testing Ho: δBW = δ1 – δ0 = 0, i.e., whether
or not the difference in pre-post differences between
groups will be the same. Consequently, we have

E Dtrt Sð Þf g−E Dcontrol Sð Þf g ¼ kδBW ; ð24Þ
where Dtrt Sð Þ¼Spost 1ð Þ−Spre 1ð Þ¼

Xk

j¼1
Y

post 1ð Þ
ij −

Xk

j¼1
Y

pre 1ð Þ
ij

and Dcontrol Sð Þ can be similarly defined. A moment esti-
mate of δBW from (24) can be obtained as

δ̂BW ¼ �Dtrt−�Dcontrol
� �

=k; ð25Þ

where N is the number of subjects per group, �Dtrt≡�Dtrt

Sð Þ ¼ �Spost 1ð Þ − �Spre 1ð Þ ¼
XN

i¼1

Xk

j
Y

post 1ð Þ
ij =N−

XN

i¼1Xk

j
Y

pre 1ð Þ
ij =N, and, �Dcontrol can similarly be defined. The

variance of δ̂WB is

Var δ̂BW

� �
¼ 4 1−ρð Þσ2

kN
¼ 4 1=ρ−1ð Þσ2μ

kN
: ð26Þ

Therefore, the following test statistic can be used for
testing the null hypothesis Ho: δBW = 0,

TBW ¼ δ̂BWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var δ̂BW

� �r ¼
ffiffiffiffiffiffi
kN

p
δ̂BW

2σμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ρ−1ð Þp ¼

ffiffiffiffi
N

p
�Dtrt−�Dcontrol

� �
2σμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1=ρ−1ð Þp :

ð27Þ
The statistical power φBW of TBW for detecting non-

zero δBW can thus be expressed as follows:

φBW ¼ Φ δBW=σμ

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kN

4 1=ρ−1ð Þ

s
−Φ−1 1−α=2ð Þ

( )
:

ð28Þ
Again, this statistical power is an increasing of ρ and

of Cα as well as seen next. When δBW is standardized by
σμ and ρ is replaced by equation (7), equation (28) can
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further be expressed in terms of ΔBW ¼ δBW=σμ and Cα

as follows:

φBW ¼ Φ ΔBWj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

4 1=Cα−1ð Þ

s
−Φ−1 1−α=2ð Þ

( )
: ð29Þ

Again, this power function is seen to be independent
of k, the number of items.
Sample size for a desired statistical power φ can be

determined from (27) as follows:

N ¼ 4 1=Cα−1ð Þz2α;φ
Δ2
BW

: ð30Þ

Again, this sample size (30) is seen to be a decreasing
function of increasing Cα and Δ. When number of items
is needed for development of an instrument, it can be
determined from equation (28) as follow:

k ¼ 2 1=ρ−1ð Þz2α;φ
NΔ2

BW

: ð31Þ

Two-sample between-group comparison
Comparison of means between groups using an in-
strument is widely tested in clinical trials. Based on
model (2), the intervention item scores from control

and treatment groups can be specified as Y
0ð Þ
ij ¼ μi þ eij

and Y
1ð Þ
ij ¼ μi þ δTS þ eij , respectively. The primary inter-

est will be testing Ho: δTS = 0, i.e., whether or not the
means are the same between the two groups. Under this
formulation, we have

E Strtð Þ ¼ E Scontrolð Þ þ kδTS; ð32Þ

where Strt ¼
Xk

j¼1
Y

1ð Þ
ij and Scontrol ¼

Xk

j¼1
Y

0ð Þ
ij repre-

sents scale scores under treatment and control groups,
respectively. A moment estimate of δTS can be obtained
from (32) as

δ̂TS ¼ �Strt−�Scontrol
� �

=k; ð33Þ

where �Strt ¼
XN

i¼1

Xk

j¼1
Y

1ð Þ
ij =N, �Scontrol ¼

XN

i¼1

Xk

j¼1
Y

0ð Þ
ij

=N and N is the number of participants per group. The

variance of δ̂TS can be obtained as

Var δ̂TS

� �
¼ 2 1þ ρ k−1ð Þf gσ2

kN

¼ 2 1=ρþ k−1f gσ2μ
kN

: ð34Þ

The corresponding test statistic TTS can be built as

TTS ¼ δ̂TSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var δ̂TS

� �r ¼
ffiffiffiffiffiffi
kN

p
δ̂TS

σμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1=ρþ k−1ð Þp ¼

ffiffiffiffi
N

p
�Strt−�Scontrol

� �
σμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k 1=ρþ k−1ð Þp :

ð35Þ
And the power function φTS of TTS can be expressed as

φTS ¼ Φ δTS=σμ
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kN

2 1=ρþ k−1ð Þ

s
−Φ−1 1−α=2ð Þ

( )
:

ð36Þ
It should be noted that this statistical power (36) is

also an increasing function of ρ in contrast to a situation
when a fixed total variance assumption is more reason-
able in which both σ2e and σ2

μ are a function of ρ but σ2

is not. For example, observations without measurement
errors from clusters are often assumed to be correlated
and power of between-group tests using such correlated
observations is a decreasing function of ρ [18]. Again,
when δTS is standardized by σμ and ρ is replaced by
equation (7), equation (33) can further be expressed in
terms can further be expressed in terms of ΔTS ¼ δTS=
σμ and Cα as follows:

φTS ¼ Φ ΔTSj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CαN=2

p
−Φ−1 1−α=2ð Þ

n o
: ð37Þ

Again, this power function is seen to be independent
of k, the number of items.
Sample size for a desired statistical power φ can be

determined from (37) as follows:

N ¼ 2z2α;φ
CαΔ

2
BW

: ð38Þ

Again, the sample size (38) is seen to be a decreasing
function of increasing Cα and Δ. When number of items
is needed for development of an instrument, it can be
determined from equation (36) as follow:

k ¼ 2 1=ρ−1ð Þz2α;φ=Δ2
TS

N−2z2α;φ=Δ
2
TS

: ð39Þ

Results
To validate equation (14) and the power functions (20),
(29), and (37), we conduct simulation study for each test.
For the simulation, the random item scores are gener-
ated based on model (2) assuming both μi and eij are
normally distributed although this assumption is not re-
quired in general. Under this normal assumption, how-
ever, it can be shown that all the moment estimates
herein are the maximum likelihood estimates [19]. We
then compute scale scores by summing up the item
scores for each individual.
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We fix a two-tailed significance level of α = 0.05 and
σ2μ = 1 without loss generality for all simulations, and de-

termine σ2e and σ2 through ρ determined by given k and
Cα. We randomly generate 1000 data sets for each com-
bination of design parameters that include effect size Δ,
number of items k, and sample size N. We then com-
pute empirical power ~φ by counting data sets from
which two-tailed p-values are smaller than 0.05; that is,

~φ ¼
X1000

s
1 ps < αð Þ=1000 where ps represents a two-

sided p-value from the s-th simulated data set. For the
testing, we applied corresponding t-tests assuming the
variances of the moment estimates are unknown,
which is practically reasonable. We used SAS v9.3 for
the simulations.

Test-retest correlation
The results are presented in Table 1 that shows the em-
pirically estimated test-retest correlations (i.e., average of
1000 estimated Pearson correlations for each set of de-
sign parameter specifications) are approximately the
same as the pre-assigned Cα, regardless of sample size N,
which is as small as 30, and number of items k. There-
fore, equality between Cα and test-retest correlation (14)
is well validated.

Pre-post intervention comparison
Table 2 shows that the theoretical power φPP (20) is very
close to the empirical power ~φPP obtained through the
simulations. The results validate that the power φPP in-
creases with increasing Cα (or equivalently increasing cor-
relation for the same k) in the “pre-post” test settings,
regardless of sample size N and number of items k. Fur-
thermore, it shows that the statistical power does not
depend on k for a given Cα even if correlation ρ does.

Between-group whithin-group comparison
Table 3 shows that the theoretical power φBW (29) is very
close to the empirical power ~φBW obtained through the
simulations. Therefore, the results validate that the statis-
tical power φBW increases with increasing Cα for testing
hypotheses concerning between-group effects on within-
group changes regardless of N, sample size per group, and
k. Again, it shows that the statistical power does not
depend on k for a given Cα even if correlation ρ does.

Two-sample between-group comparison
Table 4 shows again that the theoretical power φTS (37) is
very close to the empirical power ~φTS obtained through
the simulations. The results validate that the statistical
power increases with increasing Cronbach α even for two-
sample testing in cross-sectional settings that does not

Table 1 Empirical simulation-based estimates of test-retest
correlation Corr(Stest, Sretest) in equation (14)

Corr(Stest, Sretest)

Total N = 30 Total N = 50

Cα k = 5 k = 10 k = 5 k = 10

0.1 0.10 0.10 0.10 0.10

0.2 0.20 0.20 0.20 0.20

0.3 0.30 0.29 0.30 0.30

0.4 0.39 0.39 0.40 0.39

0.5 0.49 0.50 0.49 0.50

0.6 0.59 0.59 0.60 0.60

0.7 0.69 0.69 0.70 0.70

0.8 0.79 0.80 0.80 0.79

0.9 0.90 0.90 0.90 0.90

Note: Total N: total number of subjects; Cα: Cronbach alpha; k: number of items

Table 2 Statistical power of the pre-post test TPP (18): σμ = 1

k = 5 k = 10

Total N ΔPP Cα φPP ~φPP φPP ~φPP

30 0.4 0.5 0.341 0.337 0.341 0.310

0.6 0.475 0.459 0.475 0.458

0.7 0.658 0.626 0.658 0.649

0.8 0.873 0.849 0.873 0.830

0.9 0.996 0.997 0.996 0.995

50 0.3 0.5 0.323 0.309 0.323 0.296

0.6 0.451 0.424 0.451 0.433

0.7 0.630 0.633 0.630 0.614

0.8 0.851 0.849 0.851 0.844

0.9 0.994 0.995 0.994 0.992

Note: Total N: total number of subjects; k: number of items; ΔPP ¼ δPP=σμ ; Cα:
Cronbach alpha; φPP: theoretical power (20); ~φPP : simulation-based
empirical power

Table 3 Statistical power of the between-group within-group
test TBW (25): σμ = 1

k = 5 k = 10

N per group ΔBW Cα φBW ~φBW φBW ~φBW

30 0.4 0.5 0.194 0.179 0.183 0.194

0.6 0.268 0.264 0.254 0.268

0.7 0.387 0.375 0.359 0.387

0.8 0.591 0.618 0.594 0.591

0.9 0.908 0.884 0.901 0.908

50 0.3 0.5 0.164 0.184 0.214 0.184

0.6 0.242 0.254 0.261 0.254

0.7 0.387 0.367 0.365 0.367

0.8 0.511 0.564 0.591 0.564

0.9 0.893 0.889 0.893 0.889

Note: N per group: number of subjects per group; k: number of items;
ΔBW ¼ δBW=σμ ; Cα: Cronbach alpha; φBW: theoretical power (27); ~φBW :
simulation-based empirical power
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involve within-group effects. it shows that the statistical
power does not depend on k for a given Cα even if
correlation ρ does. Again, it shows that the statistical
power does not depend on k for a given Cα even if
correlation ρ does.

Discussion
We demonstrate by deriving explicit power functions that
higher internal consistency or reliability of unidimensional
parallel instrument items measured by Cronbach alpha Cα

results in greater statistical power of several tests regardless
of whether comparisons are made within or between
groups. In addition, the test-retest reliability correlation of
such items is shown to be the same as Cronbach alpha Cα.
Due to this property, testing significance of Cα can be
equivalent to testing that of a correlation through the Fisher
z-transformation. Furthermore, all of the power functions
derived herein can even be applied to trials using single
item instrument with measurement error since the power
function depends only on Cα which can be estimated via
test-retest correlations for single item instruments as men-
tioned earlier. The demonstrations are made theoretically,
and validations are made through simulation studies that
show that the derived test statistics and their corresponding
power functions are very close to each other. Therefore, the
sample size determination formulas (21), (30), and (38) are
valid and so are the determinations of number of items
(22), (31), and (39) in different settings.
In fact, for longitudinal studies aiming to compare

within-group effects using such as TPP (18) and TBW

(27), the fixed true score variance assumption is not crit-
ical since the true score μi’s in model (2) are cancelled by
taking differences of Y between pre and post-interventions
and thus makes the variance of the pre-post differences

depend only on measurement error variance σ2e . For ex-
ample, the variance equations (17) and (26) can be
expressed in term of only σ2e , a decreasing function of ρ,

through equation (4) as follows: Var δ̂PP

� �
¼ 2σ2e= kNð Þ

and Var δ̂BW

� �
¼ 4σ2

e= kNð Þ . In other words, both the

power functions φPP (20) and φBW (29) are increasing func-
tion of Cα or ρ regardless of whether total variance or true
score variance is assumed fixed.
In contrast, however, for cross-sectional studies

aiming to compare between-group effects using TTS

(35), the fixed true score variance assumption is crit-
ical since the variance equation (34) cannot be
expressed only in term of only σ2e , and furthermore
it can be shown that under a fixed total variance as-

sumption Var δ̂TS

� �
(34) is an increasing function of

ρ (see equation (10)) and so is the power function.
In sum, the fixed true score variance assumption en-
ables all of the power functions to be an increasing
function of Cα or ρ in a unified fashion. For ex-
ample, Leon et al. [20] used a real data set of HRSD
ratings to empirically demonstrate that the statistical
power of a two-sample between-group test is in-
creasing with increased Cα, although they increased
Cα by increasing number of items k, not necessarily
by increasing ρ for a fixed number of items.
In most cases, item scores are designed to be binary or

ordinal scores on a likert scale. Therefore, the applicability
of the derived power functions and sample size formulas to
such cases could be in question since the scores are not
normally distributed. Furthermore, it is not easy to build a
model like (2) for non-normal scores particularly because
measurement error variances depend on the true construct
value. For example, variance of a binary score is a function
of its mean. Perhaps, construction of marginal models in
the sense of generalized estimating equations [21] can be
considered for derivation of power functions assumption
even if this approach is beyond the scope of the present
study. After all, we believe that our study results should be
able to be applied to non-normal scores by virtue of the
central limit theorem. Another prominent limitation
of our study is the very strong assumption of essen-
tially τ-equivalent parallel items which may not be
realistic at all [8], albeit conceivable for a unidimensional
construct. Therefore, further development of power func-
tions under relaxed conditions reflecting more real world
situations should be a valuable future study.

Conclusion
Instruments with greater Cronbach alpha should be used
for any type of research since they have smaller meas-
urement error and thus have greater statistical power for

Table 4 Statistical power of the between-group within-group
test TTS (32): σμ = 1

k = 5 k = 10

N per group ΔTS Cα φTS ~φTS φTS ~φTS

50 0.7 0.5 0.697 0.676 0.697 0.697

0.6 0.774 0.758 0.774 0.760

0.7 0.834 0.812 0.834 0.813

0.8 0.879 0.872 0.879 0.882

0.9 0.913 0.901 0.913 0.895

100 0.5 0.5 0.705 0.682 0.705 0.679

0.6 0.782 0.791 0.782 0.769

0.7 0.841 0.820 0.841 0.832

0.8 0.885 0.879 0.885 0.908

0.9 0.918 0.929 0.918 0.912

Note: N per group: number of subjects per group; k: number of items;
ΔTS ¼ δTS=σμ ; Cα: Cronbach alpha; φTS: theoretical power (34); ~φTS :
simulation-based empirical power
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any research settings, cross-sectional or longitudinal.
However, when items are parallel targeting a unidimen-
sional construct, Cronbach alpha of an instrument
should be enhanced by developing a set of highly corre-
lated items but not by unduly increasing the number of
items with inadequate inter-item correlations.
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