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Abstract

Background: A new class of immuno-oncology agents has recently been shown to induce long-term survival in
a proportion of treated patients. This phenomenon poses unique challenges for the prediction of analysis time in
event-driven studies. If the phenomenon of long-term survival is not accounted for properly, the accuracy of the
prediction based on the existing methods may be substantially compromised.

Methods: Parametric mixture cure rate models with the best fit to empirical clinical trial data were proposed to
predict analysis times in immuno-oncology studies during the course of the study. The proposed prediction
procedure also accounts for the mechanism of action introduced by cancer immunotherapies, such as delayed
and long-term survival effects.

Results: The proposed methodology was retrospectively applied to a randomized phase Ill immuno-oncology
clinical trial. Among various parametric mixture cure rate models, the Weibull cure rate model was found to be
the best-fitting model for this study. The unique survival kinetics of cancer immunotherapy was captured in the
longitudinal predictions of the final analysis times.

Conclusions: Parametric mixture cure rate models, along with estimated long-term survival rates, probabilities of
study incompletion, and expected statistical powers over time, provide immuno-oncology clinical trial researchers
with a useful tool for continuous event monitoring and prediction of analysis times, such that informed decisions
with quantifiable risks can be made for better resource and logistic planning.

Keywords: Prediction of analysis time, Parametric mixture cure rate model, Cancer immunotherapy, Immuno-oncology,

Ipilimumab

Background

Due to the life-threatening nature and the unmet med-
ical need of certain diseases, such as cancer, the majority
of randomized phase III clinical trials in late-stage drug
development involve interim analyses, with the possibility
of early termination of the trial due to unexpectedly large
treatment effects or excess toxicity. They enable clinical
trial researchers to better utilize limited resources and to
discontinue a regimen as soon as it has been established
to have an unexpected efficacy or safety profile. At each
interim analysis, an external data monitoring committee
(DMC) or data safety monitoring board (DSMB) is usually
charged with reviewing the accumulating data to ensure

Correspondence: tai-tsang.chen@bms.com

'Department of Global Biometric Sciences, Bristol-Myers Squibb, Route 206
and Province Line Road, J44-05, Princeton, NJ 08540, USA

2Department of Biostatistics, Columbia University, New York, NY, USA

( BioMed Central

the participants enrolled in the studies are not subject to
unnecessary risk.

Planning and executing analyses in event-driven stud-
ies can be challenging. First, the timing of these interim
analyses is usually dependent on the number of events
(i.e., information fraction), which determines the statistical
stopping boundaries. Second, major operational efforts
and expenses are involved to ensure that the quality of the
data meets the standard of regulatory submissions, espe-
cially when the analyses could potentially lead to unblind-
ing of the trial. Third, convening DMC members requires
advanced planning. Even if a study contains only one final
analysis, it is imperative that the study team closely moni-
tors the progress of the trial. Each phase III trial rarely
stands alone and usually belongs to a network of studies.
A slight deviation from study assumptions established at
the design stage may have a significant impact on the
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planning and execution of the clinical development pro-
gram. Therefore, it is common practice that clinical trial
researchers project the timing of interim or final analyses
during the course of the study in order to make informed
decisions for planning and logistical purposes.

A new class of cancer immunotherapies [1, 2] has been
shown to result in a proportion of patients being non-
susceptible to the event of interest, and who remain
alive or disease-free even after long-term follow-up.
This phenomenon is usually observed in Kaplan-Meier
curves with non-zero tail probabilities. Long-term survi-
vors have been observed in head and neck cancer [3],
chronic myeloid leukemia [4—6], and advanced melanoma
[7-14]. A recent pooled analysis of 1861 patients with
advanced melanoma treated with ipilimumab, an anti-
cytotoxic T-lymphocyte antigen-4 (CTLA-4) checkpoint
inhibitor, in 10 prospective and 2 retrospective studies,
showed that the overall survival (OS) curve began to plat-
eau at 3 years with a 22 % survival rate [14]. Some patients
included in this analysis had a survival follow-up of up to
10 years [14]. Patients with resected melanoma treated
with interferon and pegylated interferon a-2b as adjuvant
therapy also demonstrated a long-term survival rate in
the range of 30 to 50 % [15-17]. In this setting, the
phenomenon was also present in other time-to-event
endpoints, such as recurrence-free survival or progression-
free survival, and was demonstrated most recently by
ipilimumab [18, 19]. Given that a subset of the patients
is no longer at risk of the event of interest, such as disease
recurrence or death, the study duration could be sub-
stantially longer than what is anticipated if this
phenomenon is not accounted for or is misspecified at
the study design stage.

Various parametric and non-parametric models have
been proposed to predict the timing of analyses [20-27].
The underlying assumption of these existing methods,
however, was that all patients in the study population
are susceptible to the event of interest and will eventu-
ally experience an event during the monitoring window.
Cure rate models have been a popular topic within the
statistical literature [28—33]. However, they have not re-
ceived much attention in the medical field until recently.
When a long-term effect is expected, cure rate models
can be a useful tool to design [34, 35] or to analyze and
describe time-to-event data [36-38]. It is now recog-
nized that clinical trial designs and analyses need to be
tailored to the emerging early evidence and increasing
knowledge from new therapies [35, 39]. Nevertheless,
any deviation from the study assumptions may still lead
to wrong estimates of study duration and statistical power,
even if the novel OS attributes, such as the phenomenon
of long-term effect, are built into the study design. The
magnitude of the impact caused by the misspecification of
the survival model in the study design has been studied
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elsewhere [35]. It is imperative that the study is closely
monitored to ensure no unnecessary human or financial
resource is wasted during conduct of the study.

Here, I propose an approach using the parametric mix-
ture cure rate model, with the best fit to the empirical
data, to predict the analysis times in immuno-oncology
studies with time to event as the primary endpoint during
the course of the study. In addition, the mechanism of
action of cancer immunotherapies, such as a delayed or
long-term survival effect, was taken into account by
allowing the distribution of the expected time to event
and the likelihood of the long-term effect among pa-
tients who are still at risk to be different based on their
current on-study durations. Various parametric mixture
cure rate models were evaluated in the context of cancer
therapies with different mechanisms of action. The pro-
posed prediction procedure was retrospectively applied to
a randomized phase III clinical trial in treatment-naive pa-
tients with advanced melanoma treated with dacarbazine
with or without ipilimumab [8].

Methods

To maintain the integrity of study conduct, treatment
allocation is usually masked to the study teams in ran-
domized clinical trials during late-stage drug development.
Even if the actual treatments received by patients are
known (i.e., open-label studies), the personnel directly in-
volved in the study conduct should refrain themselves
from accessing treatment records and from conducting
any analysis by treatment arm during the course of the
study. To mimic the real-world situation, the proposed
method was performed based on the total number of
events with the treatment arms combined.

Parametric mixture cure rate model

Assume a study was conducted with k treatment arms.
Let N be the total target sample size and let N (1) denote
the observed total number of randomized patients by
time 7 (relative to the first randomization) at which the
prediction is performed. Similarly, let D () and G (7)
represent the observed total number of events and ad-
ministrative censors (i.e., patients who are still at risk at
time 7 due to data cutoff, rather than lost to follow-up).
Suppose that i” patients enters the study at time E,
where i=1, 2, .-, N, and the event time 7; is independ-
ent of the censoring time C; and the entry time E;. At
the time of prediction 7, we observe the time to event or
censoring X; = T; A C; A (T - E;)" with censoring indicator
variable of 6, = I{T; < C; A (r - E;)"}, where a A b = min(a, b)
and a* = max(0, a).

Mixture models assume that the study population is
composed of the following: individuals who will experience
the event of interest (i.e., susceptible population) and those
who will not (i.e, non-susceptible population). Mixture
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models allow simultaneous estimation of incidence and la-
tency. Define Y as the indicator variable representing the
susceptible population (Y'=0). Let 7 (x) be the probability
of patients never experiencing the event of interest (ie.,
non-susceptible population). The survival function of the
entire population can be written in terms of a mixture of
two independent survival distributions:

s(t]0, x, z) = m(x) + [1-7(x)]s(¢]Y = 0,6, z),

where 7 (x) is the probability of cure with covariate vec-
tor of x=(x1,%0, ", %,); s(t|Y=0,0, z) is the survival
function for the susceptible population with model pa-
rameters € and covariate vector of z=(zy, 2, ", 2,). If
key prognostic factors (x, z) were known, the prediction
procedure described herein could be first applied to dif-
ferent subgroups of (x, z) before pooling subgroup data
sets for the overall assessment. The statistical details of
the parameter estimation are presented in the supple-
mentary material (Additional file 1). For illustration pur-
poses, we assume the only available information at time
T is X;(7) and 6;(7).

The distribution of patients who are susceptible to the
event of interest [i.e., S(¢|Y = 0)] can take any form of the
parametric or non-parametric distributions. Among the
parametric models, exponential, Weibull [40], lognormal
[41], and log-logistic [42] are commonly used to model
time to event data. The first 3 distributions are also spe-
cial cases of generalized gamma distribution. These 4
frequently used parametric distributions, as well as their
counterparts in parametric mixture cure rate models
along with the corresponding hazard functions are pre-
sented in the supplementary material (Additional file 2).
s(t|Y=0) and s(¢) represent survival functions for the
population that is subject to the event of interest and
the entire population, respectively. Note that hazard rate
h(t) is no longer constant in these models.

Figure 1a shows some examples of event-free survival
curves based on these parametric mixture cure rate models
in the context of observed or hypothesized treatment effect
derived from cancer immunotherapy, targeted therapy, and
cytotoxic chemotherapy in melanoma and other tumor
types. The numbers associated with each model represent
the parameters, defined in Additional file 2, in the order of
(7, 81, 6,). It has been observed that ipilimumab induces a
proportion of long-term survivors and a low percentage of
objective responses, although durable, resulting in long-
term progression-free survival [7, 8]. The gradual decline of
OS that reaches a plateau could be modeled using the
Weibull cure rate model, while the lognormal cure rate
model may fit the progression-free survival curve better
when the data exhibited a sharp decline early on-study,
followed by a plateau. The conventional exponential
distribution with a constant hazard can be used to model
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cytotoxic chemotherapies when the survival probability
is expected to drop to near zero. A log-logistic model is
a viable option to model the performance of targeted
therapies when early survival benefit is expected with
uncertain long-term survival effect. A potential OS ef-
fect from a combination of multiple immunotherapies
and/or targeted therapies can be modeled using a log-
logistic cure rate model with early effect and improved
long-term survival benefit. These 4 parametric mixture
cure rate models can accommodate a wide range of
time to event distributions, with various magnitudes of
long-term benefit and different shapes of hazard function
(Fig. 1b) derived from cancer therapies with different
mechanisms of action.

Prediction procedure

Due to the immaturity of accumulating data with a poten-
tial phenomenon of long-term effect during the course of
the study, the shape of the survival curve is usually un-
stable. It is logical to fit these data with different survival
distributions and select the model with the best fit to pre-
dict the timing of either interim or final analysis. The fit of
the model was assessed both by graphically comparing the
empirical and model-fitted curves and by using statistical
criteria, such as Akaike information criterion (AIC) or
Bayesian information criterion (BIC). As time elapses, the
shape of the Kaplan-Meier curve may change. Therefore,
different parametric mixture cure rate models may be
chosen at different analysis times.

Our objective is to identify the time 7™ at which the
prespecified number of total events D* for the study is
reached by means of a simulation study based on the
accumulating data. A proportion of G(r) patients who
represent the event-free population were randomly re-
moved in each iteration. The remaining patients rep-
resent the population who remains at risk of the event
of interest, and the future event times are obtained via
the chosen survival distribution. To account for the
potential mechanism of action of cancer immunotherapy,
future event times are generated conditioned on the times
beyond the observed times. In other words, patients who
have longer on-study times at time t will have a higher
likelihood of being event-free compared with those with
shorter on-study times as the time starts to level off. The
point estimate and the corresponding confidence interval
of the prediction are obtained from the simulation.
Specifically,

1. Fit the empirical data pooled across treatment arms
to the parametric mixture cure rate models and
select the model with the best fit based on graphical
assessment, as well as statistical criteria, such as
AIC or BIC.
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Fig. 1 Event-free survival by mechanisms of action. a Treatment effects measured by time to event endpoint when patients receive therapies
with different mechanisms of action (i.e., cancer immunotherapy, targeted therapy, and chemotherapy). b Corresponding hazard functions

2. Obtain an estimate of the long-term event-free rate
7t and parameter estimates 6, with corresponding

covariance matrix X of (77, 6 ). 6.

3. If the target sample size N has not been reached,
simulate the enrollment dates for the remaining
patients.

4. Draw a random sample (77, 6 ) from the
multivariate normal distribution with mean parameter
estimates of ( 77, 6 ) and covariance matrix 3.

5. Among patients who were still at risk at time 1, a

proportion of patients were selected from the risk 7.

set to represent the cured population based on the

estimated distribution of the long-term event-free
rate 7N /G(7).

For G(7) patients with (7 - E;)*, the event times were
generated based on the fitted parametric model
exceeding the observed censored times. The random
event times for patients with simulated enrollment
times from Step 3 (i.e., patients have yet to be
enrolled at time 1) were generated using the entire
estimated parametric time to event curve (i.e.,
exceeding time zero).

Calculate the calendar times with newly
completed data.
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8. Rank the calendar times in an ascending order and
identify the time 7" when the targeted number of
events D” is reached. If the completed data set from
Step 7 does not yield D*, set T* equal infinity.

Repeat steps 3—8 a large number of times to obtain a
list of simulated target calendar time T*. Calculate the
proportion of the iterations that does not contain suffi-
cient number of patients to reach D*. This proportion
represents the probability that the study will not conclude
in a reasonable monitoring time window and can be used
to determine whether the study needs to be terminated
early, even if the prespecified number of events has not
been reached. A high probability of study incompletion,
P(SIC), could indicate a potential immaturity of the data
or misspecification of the long-term event-free probability
at the time of study design. The point estimate of the time
of analysis is estimated from the remaining iterations
by taking the median or the average of the calendar
dates, and the a/2 and 1 - a/2 quantiles represent the
100(1 — a)% confidence limits of the prediction.

Application

Ipilimumab is a fully human, monoclonal antibody (im-
munoglobulin G subclass 1) that blocks CTLA-4 binding
to its ligands, B7-1 and B7-2, on antigen-presenting cells
to overcome CTLA-4—mediated T-cell suppression, thus
enhancing the immune response against tumors [43].
CTLA-4 expression counteracts T-cell receptor- and
CD28-mediated signals to suppress the activation of T cells.
The antibody blockade of CTLA-4 results in immune po-
tentiation, augmenting T-cell activation and proliferation
that causes tumor regression, and has been previously con-
firmed in studies with murine models [44, 45].

The proposed method was retrospectively applied to a
phase III study. Permission to access the analysis data
set was obtained from Bristol-Myers Squibb Company.
This multicenter, randomized, double-blind 2-arm phase
III study was conducted in patients with treatment-naive
stage III or IV melanoma receiving ipilimumab plus
dacarbazine versus placebo plus dacarbazine [8]. The
primary endpoint of the study was OS. No interim ana-
lysis with formal stopping rules was planned; however, a
DMC was instituted to review efficacy and safety data
biannually and to provide independent oversight of the
study conduct. The original study design called for 500
randomized patients, and a total of 416 deaths were
needed to provide approximately 90 % power in order to
detect a 38 % increase in median OS. The study was de-
signed under proportional hazards assumption. At the
time of study initiation, it was estimated that it would
take 17 months to complete the enrollment and another
17 months of follow-up with the total study duration of
approximately 3 years.
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During the course of the study, 6 DMC meetings were
held to monitor safety and efficacy between 2008 and
2010 at approximately 6-month intervals. The study ran-
domized 502 patients from August 2006 to February
2008. The final analysis did not take place until March
of 2011, almost 2 years after what was originally antici-
pated. At the time of the final analysis, the study had
not reached the prespecified 416 events. During the last
2 years of blinded study monitoring, it was clear that the
event rate had decreased drastically, which contributed
to the prolongation of the study. The long-term survival
phenomenon was confirmed upon unblinding of the
study [8]. The incremental number of events demon-
strated a higher risk of death during the early part of the
study. Eighty percent of the final 414 events were ob-
served during the first 3 years of the study, whereas it
took 2 more years to observe the remaining events.

Results

The Weibull mixture cure rate model was the best-
fitting distribution to the empirical data of this phase III
randomized clinical trial, with both treatment arms com-
bined for all 6 interim databases (Fig. 2a—f), according
to AIC and BIC (Table 1).

Figure 3 shows the prediction of the analysis time
when the prespecified final number of events (i.e., 416
events) would occur based on the Weibull mixture cure
rate model. For each DMC analysis, the accumulating
data were used to estimate the long-term survival rate and
parameters associated with the Weibull mixture cure rate
model. A simulation study with 10,000 iterations was
carried out to estimate the projected calendar time of
final analysis. At the time of the first DMC review in
January 2008, the enrollment had not been completed.
The randomization dates of these patients were simu-
lated based on the observed enrollment rate as of the
first DMC review. Because this exercise of predicting
final analysis time was performed retrospectively, the
actual randomization dates of those who had yet to be
enrolled at the time of the first DMC meeting were
available in the final database. A sensitivity analysis was
conducted by taking the actual enrollment times of the
patients who had yet to be enrolled at the time of first
DMC review. Because the estimated and actual accrual
durations were similar, i.e., 17 vs. 19 months, the sensitivity
analysis did not yield notable differences. Therefore,
the analysis with simulated enrollment times was pre-
sented herein. The probability of study incompletion,
P(SIC), defined as the number of iterations that resulted in
T*=infinity, estimated long-term survival rate from the
Weibull mixture cure rate model, number of observed
events, and the statistical power based on the protocol as-
sumptions and observed number of events at each DMC
review are shown at the bottom of Fig. 3.
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Fig. 2 Parametric mixture cure rate modeling over time. a—f shows the observed Kaplan-Meier survival curve (black) and the predicted curve (red)
fitted with Weibull mixture cure rate model using data up to prediction times between 2008 and 2010
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The high study incompletion probability of 98.8 % and
the relatively wide confidence interval among completed
iterations in the first prediction were an indication of
the immaturity of the data, at which time the enrollment
had not been completed with only 62 events. The number

of events tripled in the next 6 months, which led to an
earlier estimate of the timing of the final analysis and
lower likelihood of study incompletion (16.9 %). The esti-
mated long-term survival rate also decreased from 45 to
0.01 % based on the accumulating data. The similar event
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Table 1 AIC and BIC from various parametric mixture cure rate models
Goodness of Fit CURE-EXP CURE-WEIB CURE-LLOG CURE-LOGN
JAN 2008 AlC 491 367 479 484
BIC 499 378 490 495
JUL 2008 AIC 1367 871 1337 1348
BIC 1376 883 1350 1361
APR 2009 AlC 2461 1301 2448 2456
BIC 2475 1314 2461 2468
SEP 2009 AlC 2695 1371 2677 2677
BIC 2703 1383 2690 2690
APR 2010 AIC 2953 1450 2929 2932
BIC 2961 1462 2941 2945
NOV 2010 AlC 3113 1492 3093 3093
BIC 3121 1505 3106 3105

rate continued through the third DMC analysis in April
2009. This was reflected in a narrower confidence interval
of the final analysis time and relatively stable projected
calendar times.

The upward trajectory of the projection and increasing
width of the confidence interval for the next 2 predictions,
as well as the rebounding probability of study incomple-
tion from 9.21 to 57.6 %, indicated the decreasing event
rate among remaining patients at risk. At the time of the
last DMC meeting, the data showed that the probability of
study incompletion dropped to 18.1 % because the ob-
served 406 events were approaching the final number
of events. The stability of the data was reflected on the
estimated long-term survival rate which began to
stabilize at around 16 % after the fourth DMC review
in September 2009, and the associated confidence intervals

of the final analysis times also covered the actual date
of study completion. Although the fitted curves did not
completely account for patients with the longest follow-up
towards the end of the observed Kaplan-Meier curves
in the second and third predictions, the subsequent
three predictions with additional and more mature
follow-ups confirmed the goodness-of-fit of the Cure-
Weibull model. The statistical power had reached a
minimum of 86 %, with more than 361 events for the
last 3 DMC analyses. Nevertheless, the impact of a de-
creasing event rate was reflected in the delay of the
analysis time projection, with the probability of study
incompletion as high as 18 % when the number of
events was only 10 less than the target of 416. A deci-
sion to unblind the study was made with 414 events in
the first quarter of 2011.
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Discussion

Large, randomized clinical trials usually take a consider-
able amount of resources and time. During conduct of
the trial, DSMB or DMC review is usually instituted to
ensure that individuals are not exposed to unsafe or inef-
fective treatments. In addition, unexpected large treatment
effects may also lead to early termination of the study.
These activities require upfront and careful planning, es-
pecially if DMC reviews could lead to unblinding of the
study. It is also not trivial to plan the timing of DMC
meetings when the studies are event- driven.

A recent understanding of the biology of some diseases,
such as advanced melanoma, has led to the development
of a new class of cancer immunotherapies that has shown
a significant survival benefit. Several immunotherapies
have demonstrated delayed clinical effect and a long-term
survival phenomenon, in contrast to cytotoxic chemother-
apy from which patients usually derive early benefit.

Clinical trials with time-to-event endpoints are usually
designed based on an exponential distribution assumption
in which we assume that anything that affects the hazards
does so by the same ratio at all times (i.e., proportional
hazards). This implies the clinical effect of the experimen-
tal arm over the control is observed from the beginning
and that the survival curves will eventually drop down to
zero survival probability. The OS phenomenon exhibited
by cancer immunotherapy potentially violates the constant
hazard assumption, as the plateau of the survival curve
implies a decreasing risk as time elapses. Therefore, it is
imperative that clinical trial designs are tailored to the
emerging evidence of these new therapies. Neverthe-
less, a slight misspecification of the study assumptions,
such as the cure fraction, could still lead to a significant
prolongation of the study and derail the clinical develop-
ment program, even if an appropriate study design was
implemented.

It has become standard practice for clinical trial re-
searchers to predict the times of interim or final ana-
lyses during the course of the study for the purpose of
resourcing and logistical planning. Various parametric
or non-parametric prediction approaches have been
proposed to determine the analysis times based on ac-
cumulating information of the study. These existing
approaches operate under the assumption that most
patients will succumb to the event of interest during
the trial monitoring window.

An approach using the parametric mixture cure rate
model was proposed to monitor event-driven studies when
a cure fraction is anticipated. The proposed methodology
was retrospectively implemented to a phase III study
conducted in patients with treatment-naive stage III or
IV melanoma who received ipilimumab plus dacarba-
zine versus placebo plus dacarbazine. It is important to
note that the use of such models should be restricted to
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problems in which strong biological evidence suggests the
presence of such a cure fraction. Another important as-
pect that needs to be considered when speaking of cure is
whether the duration of follow-up is sufficient. The level-
ing off of a Kaplan-Meier curve to a non-zero proportion,
and the presence of a long and stable plateau with heavy
censoring at the tail, are an indication of the presence of
functional cure with reliable follow-up duration. A robust
estimate of the cure fraction can only be determined with
sufficiently long follow-up. The fluctuation of the cure
fraction over the course of the study serves as a good indi-
cation of the maturity of the data and prevent clinical trial
researchers from making untimely decisions of altering
study designs. The sample size of the study should be
carefully chosen to ensure the planned number of events
is attainable and to allow sufficient follow-up for all pa-
tients. This has been clearly illustrated in the example pro-
vided in this article. The lack of follow-up during the first
DMC analysis led to an unrealistically high and incorrect
cure fraction. The stabilization of the estimated cure frac-
tion did not occur until 1.5 years after the last patient had
been randomized at the fourth DMC analysis. At the time
of the final analysis, the minimum follow-up duration was
close to 3 years for all patients.

It is also important to emphasize that study team
personnel should refrain from accessing treatment as-
signments when the prediction analysis is being con-
ducted, regardless of whether the study is blinded or
open-labeled in order to maintain the study integrity.
Therefore, the prediction procedure should be carried
out by fitting the model to the data pooled across
treatment arms. Alternatively, the proposed procedure
can also be implemented by the DMC. Any decision
related to drug development cannot be taken lightly,
as it will have a profound impact on whether the effica-
cious treatments can be made available to patients in need.
It is recommended that such a decision should be based
on the totality of the information accumulated from the
study over time, such as the probabilities of study incom-
pletion, stabilization of the estimated long-term survival
rate, and expected statistical powers. If the decision is to
deviate from the original study design (e.g., unblinding the
study before reaching the prespecified number of events),
a dialogue with regulatory authorities is also warranted to
set the expectations.

Conclusions

A greater understanding of tumor immunology has led
to the development of cancer immunotherapy. It is lo-
gical that clinical trial designs and analyses should also
be tailored to the emerging early evidence and increasing
knowledge about these new therapies. Parametric mixture
cure rate models possess the flexibility to accommodate
varying treatment effects introduced by therapies with
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different mechanisms of action. The proposed method
provides immuno-oncology clinical trial researchers with a
useful tool for continuous event monitoring and prediction
of analysis times, such that informed decisions with quanti-
fiable risks can be made for better resource and logistic
planning. This will ensure that efficacious treatments are
made available to patients in a timely manner.
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