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Abstract

Background: Observational post-marketing assessment studies often involve evaluating the effect of a rare
treatment on a time-to-event outcome, through the estimation of a marginal hazard ratio. Propensity score (PS)
methods are the most used methods to estimate marginal effect of an exposure in observational studies. However
there is paucity of data concerning their performance in a context of low prevalence of exposure.

Methods: We conducted an extensive series of Monte Carlo simulations to examine the performance of the two
preferred PS methods, known as PS-matching and PS-weighting to estimate marginal hazard ratios, through various
scenarios.

Results: We found that both PS-weighting and PS-matching could be biased when estimating the marginal effect of
rare exposure. The less biased results were obtained with estimators of average treatment effect in the treated
population (ATT), in comparison with estimators of average treatment effect in the overall population (ATE). Among
ATT estimators, PS-weighting using ATT weights outperformed PS-matching. These results are illustrated using a real
observational study.

Conclusions: When clinical objectives are focused on the treated population, applied researchers are encouraged to
estimate ATT with PS-weighting for studying the relative effect of a rare treatment on time-to-event outcomes.

Keywords: Propensity scores, Observational studies, Pharmacoepidemiology, Rare exposure, Hazard ratio, Monte
Carlo simulations

Background
Post-marketing assessment of the risk and the benefit of
a drug in real-world setting frequently relies on obser-
vational studies (such as prospective cohorts), compar-
ing treated and untreated subjects on a time-to-event
outcome. Effect of the drug exposure is then evaluated
through the estimation of a hazard ratio [1–4].
By nature, observational studies may end up with an

imbalance of baseline characteristics between exposed
and unexposed subjects. If some of these characteris-
tics are also associated with the outcome of interest, we
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are confronted with confounding factors, and the crude
analysis of the treatment effect will be biased [5, 6].
Among the methods used to account for confound-

ing factors in observational studies, propensity score (PS)
analysis has been increasingly used [7]. PS analysis was
developed to take into account the problem of confound-
ing in observational studies [8], inducing baseline bal-
ance of measured confounding factors between groups
of exposed and unexposed subjects. PS analysis works
with two successive steps [9, 10]. The first step corre-
sponds to the estimation of the probability of exposure
conditional on baseline confounding factors. In the sec-
ond step, these conditional probability estimates are used
for the estimation of treatment effect. Several methods
have previously been described and extensively compared
[11–16]: adjustment on PS [8, 12], stratification on PS
[11, 17], matching on PS [8, 14, 18], and PS-weighting esti-
mation [15, 19]. Using empirical case studies and Monte

© 2016 Hajage et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-016-0135-1-x&domain=pdf
mailto: david.hajage@aphp.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Hajage et al. BMCMedical ResearchMethodology  (2016) 16:38 Page 2 of 16

Carlo simulations, several authors recently showed that
PS-matching and PS-weighting more effectively reduced
the imbalance between exposed and unexposed sub-
jects in baseline covariates than the two other methods
[11, 20], and should be the two preferred methods for the
estimation of a marginal hazard ratio [16].
Unlike traditional regression analysis (i.e. incorporating

exposure and confounding factors in the same regres-
sion model) which provides conditional estimation of the
treatment effect, PS-weighting and PS-matching provide
marginal estimation. While conditional effects denote an
average effect for a specific strata defined by the vector of
covariates included in the model, marginal effects denote
an effect at the population level. The marginal estimation
is similar to the causal estimation provided by a proper
randomized clinical trial [10]. Furthermore, PS analysis
outperforms conditional analysis whenmany confounding
factors are taken into account: in this situation, condi-
tional analysis may encounter convergence problems [21],
particularly when the number of events of interest is small.
Several authors have discussed the use of PS analysis in

some extreme situations such as small sample size [22] or
rare outcome of interest [23–25]. But the use of PS analysis
is also challenging in the case of rare exposure. This sit-
uation could frequently be encountered in pharmacoepi-
demiologic observational studies, particularly when study
design does not require a high prevalence of exposure
(for example, studies performed on electronic healthcare
data, databases constituted with a nonspecific objective
or analyzed for a different purpose than initially defined,
evaluation of newly marketed drugs [26]). In this setting,
the first step of PS analysis (i.e. conditional probability of
treatment estimation) can be problematic, due to separa-
tion issues with the logistic model used for PS estimation,
unless a large sample size is available. Although some rec-
ommendations encourage the use of alternative methods
like disease risk score (DRS) in this setting [27, 28], to
our knowledge, no study specifically assessed the effect
of infrequent exposure on PS analysis. Even among the
recent literature comparing DRS and PS based methods
[29, 30], no article has explored the infrequent exposure
setting.
Therefore, our objective was to evaluate the perfor-

mance of PS-matching and PS-weighting to estimate the
marginal hazard ratio associated with a rare exposure in
the context of an observational study. An illustration is
also provided from a real observational dataset, assessing
the association between thiazolidinedione use and major
cardiovascular outcomes.

Methods
AMonte Carlo simulation study
We used Monte Carlo simulations to examine the ability
of some PS methods to estimate the marginal hazard ratio

(HR) associated with a binary treatment in the context of
rare exposure. They consisted in:

1. randomly generating independent datasets with
several settings defined by exposure prevalence,
covariates effect on exposure allocation and on
outcome of interest, number of covariates, censoring
rate, and exposure effect on outcome of interest
(section ‘Data-generating process’);

2. applying each analytical method to analyze
representative samples of each data set
(section ‘Statistical analyses in simulated data sets’);

3. computing several criteria to evaluate and comparing
the performance of each method
(section ‘Performance criteria’).

Definitions
In a cohort of N subjects, let E be an indicator variable
denoting exposure status (E = 1 for exposed subjects, E =
0 otherwise), Y be an indicator variable of the event of
interest (Y = 1 if subject has experimented the event, Y =
0 otherwise), and t the observed follow-up time. Let B and
C be two baseline covariates, the first one being binary
and the second one continuous. Finally, letU represent an
unmeasured latent general health baseline variable.

Data-generating process
We used a data-generating process derived from Havercroft
et al., who provide an algorithm to generate data from a
desired marginal structural model for survival outcome
with time-dependent confounding on exposure causal
effect [31]. In our simulation process, only baseline con-
founding was generated.
The key aspect of the algorithm proposed by Havercroft

et al. is the use of an unmeasured uniformly distributed
variable U ∼ U(0, 1) which represents a latent ‘general
health’ process. A value of U close to 0 indicates poor
health, and U close to 1 indicates good health.
First, for each subject, we randomly generate three nor-

mally distributed covariates (XB, XC , and XU ) from the
following multivariate normal distribution:

X = [XB,XC ,XU ] ∼ N (0,�)

Variables B, C andU are then computed by applying the
following transformations to XB, XC and XU :

B =
{
1 if XB > 0
0 if XB ≤ 0 ,

C = XC , and
U=P(XU<x)(the cumulative distribution function ofXU).

By construction, B follows a Bernoulli distribution
B(0.5), C follows a normal distribution N (0, σC), and U
follows a uniform distribution U(0, 1). B, C, U are related
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to each other through covariance parameters σU ,B, σU ,C
and σB,C .
The exposure allocation E is drawn from a Bernoulli

distribution E ∼ B(pz), where

pz = logit−1 (δ0 + δBB + δCC) . (1)

δ0 is the intercept, selected so that the prevalence of
exposed subjects in the simulated sample is fixed at a
desired proportion p, and δB and δC are the regression
coefficients of this exposure allocation logistic model. For
each targeted prevalence, we used an iterative process
to determine the value of δ0 that induced the desired
prevalence p:

1. We simulated 100,000 subjects, and computed the
individual probabilities of exposure with Eq. 1. The
average of these individual probabilities is the
theoretical prevalence of exposure, p�, in the sample.

2. Minimizing (p� − p)2 (with the R function optim)
allows us to obtain the parameter δ0 that induced
desired prevalence of exposure p.

3. This process was repeated 1,000 times and values of
δ0 were averaged to increase precision of the
estimation.

An event time T with exponential distribution is gener-
ated from U as follows:

T = −log(U)

λ exp(γE)
, (2)

where λ is a constant baseline hazard function, and γ is
the marginal effect of E on event time (i.e. γ = log(HR)).
Censoring time Tc is drawn from a uniform distribution
U(0, c) where c is chosen to achieve a desired censoring
rate rc in the simulated sample. Finally, the observed time-
to-event outcome is obtained with the following decision
rule:

Y = 1, t = T if T ≤ Tc

Y = 0, t = Tc if T > Tc

Applied for N subjects, this algorithm generates a
sample corresponding to the directed acyclic graph rep-
resented on Fig. 1. The key mechanism by which the
algorithm generates confounding in the estimation of the
marginal exposure effect is the way in which the exposure
E and the time t to event outcome Y depends (directly or
undirectly) both on U. The relationship between U and Y
is straightforward, as U is used to generate event times T
(Eq. 2). The relationship between U and E is mediated by
the two other covariates B and C, which are ‘natively’ cor-
related with U (through parameters σU ,B and σU ,C), and
then used to calculate the probability of exposure allo-
cation (Eq. 1). There is confounding due to U being a
common ancestor of E and Y. B and C are sufficient to

Fig. 1 Directed acyclic graph corresponding to the data-generating
algorithm

adjust for confounding, because E is independent of U
given B and C.
In all simulations, the following parameters were fixed:

• N = 10, 000
• λ = 0.1
• σ 2

U = σ 2
B = σ 2

C = 1

We allowed the following parameters to vary across
simulations:

• the prevalence of exposure: p ∈ {1 %, 2 %, 5 %, 10 %};
• the strength of the correlation between covariates B

and C: σB,C ∈ {0, 0.1, 0.3, 0.5} (no, weak, moderate, or
strong correlation);

• the strength of the association between covariates
and U: σU ,B = σU ,C ∈ {0, 0.1, 0.3, 0.5} (no, weak,
moderate, or strong association);

• the strength of the association between covariates
and exposure allocation:
exp(δB) = exp(δC) ∈ {1, 1.2, 1.5, 2} (no, weak,
moderate, or strong association);

• the strength of the marginal association between
exposure and outcome: HR = exp(γ ) ∈ {1, 1.2, 1.5, 2}
(no, weak, moderate, or strong association);

• the censoring rate: rc ∈ {20 %, 50 %, 80 %};
For the intelligibility of the description of the data-

generating process, only two covariates (B and C) were
previously described. In order to study the impact of the
number of confounding factors, two additional covariates,
B′ and C′, were generated in some scenarios, according to
the same process. In these scenarios,B′ is binary,C′ is con-
tinuous, and B, B′, C, C′, and U are related to each other
through covariance parameters σU ,B = σU ,B′ , σU ,C =
σU ,C′ , σB,C = σB′,C′ and σB,B′ = σC,C′ = 0. These two
additional covariates are represented in gray on Fig. 1. A
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detailed document that encapsulates the data-generating
process and all of the simulation scenarios in one place is
included in the supplemental material (Additional file 1).

Statistical analyses in simulated data sets
First, in each simulated cohort, random representative
samples of increasing size were selected. When study-
ing a rare exposure and limited sample sizes, it is not
uncommon to have no event Y in the exposed group.
These samples could not be analysed. Dropping all sam-
ples with no events in the exposed group would lead to
over-represent samples with enough events, and would
therefore break the simulation settings when studying
small sample sizes. To prevent this situation, samples were
not selected according to fixed sample sizes, but according
to fixed numbers of events y in the exposed group. More
precisely, in each simulated cohort, we selected the first
set of subjects among which there were y events in the
exposed group, with y varying from 2 to 200, with incre-
ment of 2. This allows having enough events in all analysed
samples, while ensuring the selection of representative
samples of the underlying cohort.
Then, each representative sample was analyzed with the

following statistical methods.

Propensity score (PS) analysis with PS-weighting
First, individual PS (i.e. individual probability of being
exposed given baseline covariates) was estimated with the
following logistic model:

PS = logit−1
(
δ̂0 + δ̂BB + δ̂CC

)
(3)

The propensity score of each patient was estimated
from the predicted probability of treatment given his(her)
covariates.
Then, we applied the Cox proportional hazards model

given by the following equation:

λ(t) = λ0(t) exp(γ̂E) (4)

with each subject weighted using the propensity score,
and robust standard error estimator [32].
The PS related literature differentiates between the aver-

age treatment effect in the entire eligible population (ATE)
and the average treatment effect in treated subjects (ATT)
[33]. Indeed, two types of weights could be used depend-
ing on the desired estimate, as follow:

WATE = E
PS

+ 1 − E
1 − PS

WATT = E + PS(1 − E)

1 − PS
With ATE weights, we considered stabilized weights

[34, 35] by multiplying previous (un-stabilized) weights by
Ep̄ + (1 − E)(1 − p̄) (where p̄ is the overall probability of

being exposed, i.e. the prevalence of exposure estimated
in the selected sample).

Propensity score (PS) analysis with PS-matching
First, individual PS were estimated with Eq. 3. Then,
we used greedy nearest-neighbour 1:1 matching within
specified caliper widths to form pairs of exposed and
unexposed subjects matched on the logit of the propen-
sity score, without replacement.We used calipers of width
equal to 0.2 of the standard deviation of the logit of the
propensity score as this caliper width has been found to
perform well in a wide variety of settings [36].
Once matching was completed, we used an univariate

Cox proportional hazards regressionmodel with exposure
as the only variable to estimate ATT. We used robust esti-
mate of the standard error of the regression coefficient
that accounted for the clustering within matched sets [32].

Performance criteria
We performed 5000 simulations per scenario. Results
were assessed in terms of the following:

• Bias of the exposure effect estimation: E(γ̂ − γ ).
• Root mean squared error (RMSE) of the exposure

effect estimation, defined as:
√
E((γ̂ − γ )2).

• Variability ratio of the exposure effect, defined as:
1

5000
∑5000

i=1 ŜE(γ̂i)√
1

4999
∑5000

i=1

(
γ̂i− ¯̂γ

)2 , where ŜE(γ̂i) is the estimated

standard error of exposure effect γ̂ in the simulation
i. A ratio > 1 (or < 1) suggests that standard errors
overestimate (or underestimate) the variability of the
estimate of exposure effect [25, 37].

• Coverage: proportion of times γ is enclosed in the
95 % confidence interval of γ estimated from the
model.

The mean sample size n were also computed for each
scenario.
The data-generating algorithm used in this simulation

study allows to generate data with a desired level of ATE.
But PS-matching and PS-weighting using ATT weights
methods do not provide the same type of estimation
(ATT). For these two methods in each evaluated sce-
nario, performance metrics were estimated relative to the
corresponding theoretical ATT hazard ratios.
In case of null treatment effect, the true marginal effect

is null and do not vary over the sample. Theoretical ATE
and ATT are equal: HR = exp(γ ) = 1. In case of non-
null treatment effect, theoretical ATT were computed as
followed:

• Using the parameters of the select scenario, we
simulated a cohort of 100,000 subjects. Whatever the
‘real’ exposure status simulated, we generated two
potential event times for each subject: first assuming
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that the subject was unexposed and then assuming
that the subject was exposed to the treatment.

• In the sample regrouping each subject twice (once
with the outcome under treatment, and once with
the outcome with no treatment), we fitted a Cox
model using only subjects who were “really" exposed.
The obtained coefficient corresponded to the ATT of
the population.

• We repeated this process 1,000 times and averaged
the values to increase the precision of this estimation.

Software
All simulations and analyses were performed using R
software version 3.1.1 (R Foundation for Statistical Com-
puting, Vienna, Austria). Critical parts (in terms of per-
formances, mostly data sets generation procedure) of the
simulation programwere coded using C++, and integrated
into R code with the help of Rcpp package [38].

Results
Results were displayed using a reference configuration:
prevalence of exposure p = 5 %, moderate associa-
tion between confounding factors and outcome (σU ,B =
σU ,C = 0.3), moderate association between confound-
ing factors and exposure (exp(δB) = exp(δC) = 1.5),
no marginal association between exposure and outcome
(exp(γ ) = HR = 1), two independant confounding
factors (one binary, one continuous, σB,C = 0), and a cen-
sorting rate rc of 50 %. Then, the effects of change of each
of the simulation parameters (compared to the value used
in the reference configuration) were reported. More pre-
cisely, when the value of a parameter is changed, all other
parameters are fixed to the value used in the reference
configuration.
The strength of confounding was defined in four classes:

• No confounding: σU ,B = σU ,C = 0 and
exp(δB) = exp(δC) = 1

• Weak confounding: σU ,B = σU ,C = 0.1 and
exp(δB) = exp(δC) = 1.2

• Moderate confounding: σU ,B = σU ,C = 0.3 and
exp(δB) = exp(δC) = 1.5

• Strong confounding: σU ,B = σU ,C = 0.5 and
exp(δB) = exp(δC) = 2

To make the comparison across the different scenarios
possible, table and figures of this section report the mean
sample size n.

Results for the reference configuration
Results for the reference configuration previously defined
are presented in Table 1.
When y = 20 (20 events in the exposed group, approx-

imatively 700 analyzed subjects overall), PS-weighting
using ATE weights (PSW-ATE) and PS-matching were
the most biased methods, followed by PS-weighting
using ATT weights (PSW-ATT), and the latter was
the only method having coverage below the nominal
level. Bias and coverage deteriorated when sample size
decreased (y = 10, approximatively 350 analyzed sub-
jects overall), particularly for PSW-ATE. When sam-
ple size increased (y = 30, approximatively 1100
subjects overall), PSW-ATE and PS-matching showed
very similar results, and PSW-ATT was still the best
method according to bias and coverage performance
parameters.
Variability ratios suggested that standard errors under-

estimate the variability of the exposure effect estimate for
methods PSW-ATE and PS-matching when the sample
size was low. Variability ratios increased with the sam-
ple size, and became clearly larger than 1 for PSW-ATT
method (meaning that standard errors tend to be over-
estimated). The lowest RMSE were observed with the
PSW-ATT method.
Table 2 reports the distribution of ATE andATTweights

according to exposure status. Despite the use of stabilized

Table 1 Results for the reference configuration

Method y n Bias V ratio RMSE 1-coverage % match

PSW-ATE 10 364 0.056 0.914 0.406 0.091

20 728 0.028 0.982 0.271 0.065

30 1092 0.018 1.009 0.216 0.057

PSW-ATT 10 364 0.026 0.983 0.321 0.060

20 728 0.013 1.019 0.222 0.047

30 1092 0.008 1.031 0.180 0.046

PS-matching 10 364 0.051 0.925 0.473 0.062 99.0

20 728 0.026 0.964 0.316 0.056 99.5

30 1092 0.017 0.990 0.250 0.053 99.7

Bias, variability ratio, RMSE, and 1-coverage according to analytical method, number of events in the exposed group y, and mean analyzed sample size n, for one scenario
(p = 5 %, σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, HR = 1, 2 confounding factors, censoring rate rc = 50 %). The mean percentage of matched exposed
subjects is reported for the PS-matching method
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Table 2 Distribution of ATE and ATT weights for the reference configuration

ATE ATT

Weights Weights

y E Mean Var Min Max Mean Var Min Max

10 0 1.000 0.001 0.887 3.596 0.052 0.001 0.000 2.940

1 0.995 0.383 0.064 17.072 1.000 0.000 1.000 1.000

20 0 1.000 0.001 0.922 2.305 0.052 0.001 0.000 1.436

1 0.999 0.296 0.064 10.461 1.000 0.000 1.000 1.000

30 0 1.000 0.001 0.932 1.727 0.052 0.001 0.001 0.848

1 0.999 0.265 0.109 10.465 1.000 0.000 1.000 1.000

Mean, variance, minimum and maximum ATE and ATT weights according to type of weights, number of events in the exposed group y and exposure status E for one
scenario (p = 5 %, σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, HR = 1, 2 confounding factors, censoring rate rc = 50 %)

weights, ATE (but not ATT) weights could reach extreme
values in the exposed population.

Effect of the prevalence of exposure
Figure 2 show that bias decreased when sample size
and/or prevalence increased. Bias decreased more

slowly for PSW-ATE than for PSW-ATT. At lower
prevalences of exposure (1 and 2 %), PS-matching
encountered severe convergence issues, which explained
the appearance of the corresponding bias curve. At
this level of prevalence, neither PSW-ATE nor PSW-
ATT had satisfactory coverage properties unless a

Fig. 2 Effect of exposure prevalence. Bias of exposure effect, variability ratio, 1 - coverage and RMSE according to prevalence p of exposure and mean
sample size, for one continuous and one dichotomous confounder, σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, rc = 50 % and HR = 1,
with weighting by inverse of PS using ATE and ATT weights and PS-matching



Hajage et al. BMCMedical ResearchMethodology  (2016) 16:38 Page 7 of 16

large sample size was analyzed (Fig. 2), the worst
method being the use of ATE weights. Standard errors
were underestimated at lower levels of prevalence
and/or sample size, and became slightly overestimated
for PSW-ATT method when prevalence and sam-
ple size increased. PSW-ATT method had the lowest
RMSE levels. When prevalence was 10 %, bias, cov-
erage and variability ratio were satisfactory for all
methods.

Effect of the marginal effect of exposure on outcome event
Influence of theoretical HR is illustrated on Fig. 3. In
these scenarios, theoretical values of ATT hazard ratio
(used to evaluate the performance of PS-matching and
PSW-ATT methods) were 1, 1.471 and 1.935, for the-
oretical values of ATE hazard ratio of 1, 1.5 and 2
respectively.
All results were mostly unchanged with varying effect of

exposure. PSW-ATT was both the less biased method and
had the lowest RMSE levels.

Effect of the strength of confounding
Results are illustrated on Fig. 4. In terms of bias, increasing
the strength of confounding had a favorable impact on
PSW-ATT and PS-matching methods. In contrast, with
PSW-ATE method, bias increased with the strength of
confounding.
At strong level of confounding, standard errors were

overestimated when using PSW-ATT. Consequently, cov-
erage probabilities were greater than the nominal coverage
probability, but PSW-ATT remained the most performant
method in terms of RMSE.

Effect of the number of confounding factors
Results are illustrated on Fig. 5. The number of confound-
ing factors had a important impact on the bias found
with PSW-ATE method, in contrast to the one found
with methods estimating ATT. Increasing the number of
confounders increased the variability ratio of PSW-ATT
method, which consequently seemed too conservative.
Conversely, coverage properties of PSW-ATE method

Fig. 3 Effect of theoretical hazard ratio. Bias of exposure effect, variability ratio, 1 - coverage and RMSEw according to theoretical exposure effect (HR)
and mean sample size, for one continuous and one dichotomous confounder, σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, rc = 50 % and
p = 5 %, with weighting by inverse of PS using ATE and ATT weights and PS-matching
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Fig. 4 Effect of strength of confounding. Bias of exposure effect, variability ratio, 1 - coverage and RMSE according to strength of confounding and
mean sample size, for one continuous and one dichotomous confounder, σB,C = 0, HR = 1, rc = 50 % and p = 5 %, with weighting by inverse of PS
using ATE and ATT weights and PS-matching

deteriorated with the transition from two to four con-
founders. Again, the method with the lowest RMSE val-
ues was PSW-ATT, whatever the number of confounding
factors.

Effect of the censoring rate
Results are illustrated on Fig. 6. Bias increased with
increasing censoring rate for all methods. At the lower
level of censoring (rc = 20 %), PSW-matching method
was less biased than PSW-ATEmethod. The opposite was
observed at the highest level of censoring. Bias found with
PSW-ATT method never exceeded the bias found with
PSW-ATE method.
Again, coverage properties and RMSE levels were more

satisfactory with PSW-ATT than with PSW-ATE method.

Effect of the correlation between covariates B and C
Results are illustrated on Fig. 7. Whatever the method, the
overall effect of the correlation level between confounding
factors was modest.

Real observational dataset illustration
To illustrate these results, we applied the PS methods
described above in an already published real observational
study [39]. The objective of this study was to compare
the occurrence of death, non-fatal myocardial infaction,
and congestive heart failure in patients with diabetes,
according to the use of thiazolidinedione (TZD), in the
REACH (REduction of Atherothrombosis for Continued
Health) Registry, an international prospective cohort of
patients with either established atherosclerotic arterial
disease or at risk for atherothrombosis [40–43]. Patients
were enrolled in 44 countries between December 2003
and December 2004. In each country, the protocol was
submitted to the institutional review boards according
to local requirements, and signed informed consent was
obtained for all patients.
From the REACH Registry, we selected 28,332 patients

with type 2 diabetes and available data on TZD use. This
population (mean age 68 years, standard deviation 9.6
years, 61 % of male) has been previously described, and
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Fig. 5 Effect of the number of confounders. Bias of exposure effect, variability ratio, 1 - coverage and RMSE according to number of confounders (2 or
4 confounders) and mean sample size, for σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, HR = 1, rc = 50 % and p = 5 %, with weighting by
inverse of PS using ATE and ATT weights and PS-matching

is composed of 4997 TZD users at baseline (prevalence of
exposure 17 %).
The list of co-variables used to calculate the propensity

score was the same as in the original publication, and
included age, geographic region of enrolment, height,
body mass index, smoking status, atrial fibrillation/flutter,
history of congestive heart failure, treated hyperten-
sion, use of lipid-lowering agents, anti-platelet agents,
oral anti-coagulants, non-steroidal anti-inflammatory
agents, diuretics, cardiovascular agents, peripheral arte-
rial claudication medications, insulin, and use of other
anti-diabetic agents. Before the use of PS methods,
some known risk factors of cardiovascular events were
imbalanced between TZD users and non-users, according
to their absolute standardized differences (ASD) (Fig. 8).
Compared to the ASD observed in the previous simula-
tions (data not shown), some variables had ASD compara-
ble to the ‘weak’ confounding condition (like continuous
‘age’ or binary ‘Atrial fibrillation’ variables), but also com-
parable to the ‘moderate’ (like continuous ‘BMI’ or binary

‘Insulin’ variables), or ‘strong’ confounding condition (like
the multimodal ‘region’ variable). After application of the
estimated propensity score to the entire dataset, all vari-
ables including those not used in the PS estimation (like
formal education and employment) were correctly bal-
anced between TZD users and non-users.
In this application, all event types where regrouped into

the same composite outcome (time to the occurrence
of the first event). An event occurred in 12 % of sub-
jects. TZD effect was estimated with PS-matching and
PS weighting approaches. None of these methods found a
significant effect of TZD. No treatment effect heterogene-
ity was detected (test for homogeneity of the TZD effect
across deciles of the PS, p-value = 0.5425).
We then 1) randomly dropped some TZD users to cre-

ate a new dataset with a pre-specified lower prevalence
of exposure 2) applied the three PS-based methods to a
representative sample of this new dataset. This two-step
process was repeated 2,000 times for prevalences rang-
ing from 17 % (real) down to 5 % and increasing sample
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Fig. 6 Effect of censoring rate. Bias of exposure effect, variability ratio, 1 - coverage and RMSE according to censoring rate (rc) and mean sample size,
for one continuous and one dichotomous confounder, σU,B = σU,C = 0.3, σB,C = 0, exp(δB) = exp(δC) = 1.5, HR = 1 and p = 5 %, with weighting
by inverse of PS using ATE and ATT weights and PS-matching

sizes (selected according to the number of events in the
exposed group, like in our simulations). We chose to limit
the exploration of the real observational dataset to preva-
lence of exposure higher than 5 %, because event rate was
only 12 % in the REACH cohort, and the number of events
in the exposed group is then limited. Bias (relatively to the
TZD effect estimated by eachmethod applied in the entire
cohort) was averaged and drawn on Fig. 9.
As demonstrated in the simulation study, we observed

that ATE estimations were severely biased compared to
TZD effect estimated in the full dataset, particularly
for the smallest prevalences, even if a large sample size
was analyzed. In contrast, ATT estimations through PS-
weighting using ATT weights were uniformly less biased,
whatever the prevalence and the sample size used. In this
application, results observed with PS-matching and PSW-
ATT methods seemed superimposed, but this is due to
the extremely poor performances of PSW-ATE method,
and bias was actually higher with PS-matching than with
PSW-ATT.

Discussion
The present simulation study shows that in case of rare
exposure, PS-weighting or PS-matching can be biased for
estimating the marginal hazard ratio of an exposure. This
result was particularly clearcut with PS-weighting anal-
ysis using ATE weights, even if stabilized weights were
used across all analyses. All methods were converging to
their theoretical value with increasing sample size and/or
prevalence, but the use of ATE weights and PS-matching
needed more subjects than the use of ATT weights. This
result leads to limiting the use of PS analysis in case of rare
exposure if a sufficient number of subjects is not available,
and to favour PS-weighting method using ATT weights
when the number of subjects is limited.
Nevertheless, ATT estimation is not consistent with the

study objectives in all cases. Small prevalence of expo-
sure could be encountered in two main situations. First,
a drug on the market for a long time, and actually lit-
tle prescribed: in this situation, estimating ATE may not
be of great interest, and estimating ATT makes more
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Fig. 7 Effect of correlation between covariates. Bias of exposure effect, variability ratio, 1 - coverage and RMSE according to correlation between
covariates B and C (σB,C ) and mean sample size, for one continuous and one dichotomous confounder, σU,B = σU,C = 0.3, exp(δB) = exp(δC) = 1.5,
HR = 1 and p = 5 %, with weighting by inverse of PS using ATE and ATT weights and PS-matching

clinical sense. Second, a newly marketed drug, that is not
intended to remain uncommon: this situation is a subject
of special attention from the health authorities, and early
assessment of the drug effect if the entire population was
exposed would be of great interest to public health policy.
Our simulation results stress the importance of looking
for methods less influenced by exposure prevalence.
The concerns with ATE estimation in case of rare expo-

sure were sustained by our real dataset illustration. The
number of potential confounders taken into account were
high, and some variables had absolute standardized dif-
ferences comparable to the ‘moderate’ and ‘strong’ con-
founding conditions of the simulations. We assumed from
the former simulation results that the high degree of bias
observed with PSW-ATE method in the REACH study is
due to the strength of confounding and the number of
confounders present in the database, which had a large
impact on ATE estimates. Hence, results observed in the
REACH study were consistent with the simulation results.

Pirracchio et al. [22] concluded from their simulation
study that ‘even in case of small study samples or low
prevalence of treatment, both propensity score match-
ing and inverse probability of treatment weighting can
yield unbiased estimations of treatment effect’. However
this study explored more specifically the context of small
sample size (ranging from 1000 down to 40) rather than
low prevalence of exposure (ranging from 50 % down to
20 %). While some conventions exist on the definition of
a rare disease [44], there is, to our knowledge, no such
definition of a rare exposure. Nevertheless, we felt that
a 1:4 exposure ratio represented a quite common expo-
sure, and more extreme situations could be encountered
in observational studies, for example those focusing on a
newly marketed medications or when many therapeutic
strategies are available. To the best of our knowledge, the
present study is the first to focus on the performance of
PS-based methods in the context of a rare exposure (10 %
down to 1 %) and small sample sizes. This explains that,
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Fig. 8 Imbalances in the REACH cohort, defined as the standardized means differences of covariate values between the two treatment groups. Solid
black line represents an absolute standardized difference of 10 %

unlike Pirracchio et al., we conclude that PS-based meth-
ods could lead to rather biased estimates when prevalence
is low, particularly when estimating average treatment
effect in the whole population.
Without focusing specifically on rare exposure issue,

Austin et al. have compared the performance of different
propensity score methods for estimating absolute effects
[45] and relative effects [16] of treatments on survival out-
comes. In these two simulation studies, low prevalences
of exposure were also simulated. The authors did not

observe any major performance issue using PS-weighting
or PS-matching when proportion of treated subjects was
fixed to 10 % or 5 %. For the estimation of absolute effects,
they reported that PS-matching tended to decrease bias
compared with PS-weighting approaches. However, all
methods compared in this article were applied on sim-
ulated cohorts of 10,000 subjects. With fewer subjects,
we observed that 1) all methods could be biased, 2) PS-
weighting using ATT weights outperformed PS-matching
for the estimation of ATT, and 3) PS-weighting using ATE
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Fig. 9 Real observational dataset illustration. Bias of TZD effect estimation in the REACH cohort, using PS-matching and PS-weighting approaches,
according to prevalence p and mean sample size

weights was the method which performance deteriorates
most with the decrease of exposure prevalence.
The context of rare exposure is also addressed

by authors interested in ‘the prognostic analogue of
the propensity score’, a.k.a. disease risk score (DRS)
[29, 46, 47]. Actually, Effective Health Care Program rec-
ommends the use of disease risk score instead of propen-
sity score when the exposure is infrequent [27, 28], but
without defining when an exposure should be consid-
ered as infrequent. No study has compared propensity
and disease risk score methods for the estimation of an
exposure effect in the context of rare exposure. Arbogast
et al. [29] compared the performance of disease risk score,
propensity score and traditional multivariable regression
to evaluate a treatment effect on a Poisson outcome, but
prevalence of exposure was fixed to 10 %, and compu-
tations were based on the analysis of samples consisting
of 10,000 subjects. The authors concluded that all meth-
ods performed well when there was an adequate number
of events per covariates. Our simulation results also sug-
gest that all PS-based methods are unbiased at this level of
prevalence when a large sample size is analyzed. Wyss and
colleagues [30] compared PS and DRSmatching, and con-
cluded that the use of DRS yielded to matchmore exposed

subjects than the use of PS, and this improved the pre-
cision of the effect estimate. However, the prevalence of
exposure was fixed to 30 % in all the scenarios considered.
Intuitively, this advantage of DRS should be less appar-
ent in case of lower prevalence of exposure. Among the
scenarios and sample sizes explored in the present article,
the percentages of matched exposed subjects were high
(Q25 = 99.7 %, Q50 = 99.8 %, Q75 = 99.9 %). Thus,
further investigation is needed to assess if DRS really
performs better than PS in the context of rare expo-
sure, especially as the relative performance of the different
DRS-based methods for estimating ATE and ATT are
today a research area [27].
In the setting of rare exposure, we found that applica-

tion of PS-based methods could provide biased estimates
unless a large sample size was available. PS method being
a two-step estimator, the appropriateness of the estima-
tion in the second step relies on correct modelling of the
probability of exposure during the first step, which could
be problematic in case of infrequent exposure, due to sep-
aration issues. Of note, alternative strategies than logis-
tic regression have been proposed to estimate individual
probability of exposure [48], but we found no information
about how they would be affected by a rare exposure issue.
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All PS methods rely on the validity of estimates of
individual exposure probability, and thus on the valid-
ity of the logistic regression fitted for these estimations.
A classical rule when fitting a logistic model is to have
an adequate number of outcomes per predictor (at least
five or ten outcomes per predictor [49, 50]). This explains
why we chose to limit the number of confounding fac-
tors in our simulations: in case of small prevalence of
exposure, the number of exposed subjects, and therefore
the number of variables that could be included in the
logistic model, is limited. The bias observed in some of
our simulations could not be explained by an inadequate
number of exposed subjects per co-variables in all cases:
even with only two confounding factors, bias was still
present with a sample size of 500 subjects and an expo-
sure prevalence of 5 % (and thus 25 exposed subjects on
average) or 10 % (50 exposed subjects on average). There-
fore, the previously mentioned ‘rule of thumb’ fails to
provide sufficiently accurate estimates of individual expo-
sure probability, particularly when estimating ATE with
PS-weighting method.
Other reasons might explain that the ATT estimates

were more reliable that ATE estimates in the context of
rare exposure. First, ATT estimates apply to a much more
homogeneous population, so less confounding might be
involved. Another reason might be that strong confound-
ing and limited overlap between treatment groups leads to
a violation of the positivity assumption. We observed that
ATE (but not ATT) weighting can yield extreme weights
in the exposed population, as well as biased and highly
variable estimates.
One of the strengths of this study is the use of an algo-

rithm which directly generates data with desired marginal
HR and confounding on exposure causal effect. Indeed,
several simulations studies evaluating the performance of
PS methods to estimate marginal HR used a conditional
model to link the outcome with the exposure and (time-
dependent or not) confounding factors, even though the
measures used to estimate exposure effect on outcome are
sometimes non-collapsible [51, 52] (i.e. conditional and
marginal treatment effects will not coincide). Two more
approximate strategies are typically used to deal with this
issue: the use of a high number of simulations to deter-
mine the value of the conditional hazard ratio that induced
the desired marginal hazard ratio [16]; or the post-hoc ver-
ification that conditional and marginal treatment effects
are in the same range [53]. Another solution is to use
a collapsible estimate of exposure effect, like risk differ-
ences [15], but this type of estimator is less used to report
the effect of an exposure in real studies. Nevertheless,
even if we did not use a conditional model to generate
simulated datasets, a rather similar issue remains in this
article: our algorithm simulates a desired hazard ratio in
the entire cohort (ATE), but not a desired hazard ratio

in the treated population (ATT). Thus, a possible expla-
nation for the discrepancies between methods estimating
ATE and ATT is that they are compared to different the-
oretical values of the treatment effect. However, this issue
was minimized in this study 1) by choosing a null treat-
ment effect in the majority of the reported scenarios (in
this case, ATE and ATT are both null), and 2) by esti-
mating the theoretical ATT as precisely as possible with
a large number of simulations of potential outcomes in
other cases. Moreover, if this estimation of theoretical
ATT was not sufficiently accurate, this would probably
disadvantage methods estimating ATT, which reinforce
the findings of this study.

Conclusions
In conclusion, this simulation study showed that in case
of rare exposure, marginal treatment effect estimation
through propensity score analysis can be severely biased,
in particular when focusing on average treatment effect in
the entire eligible population (ATE). When clinical objec-
tives are focused on the treated population, PS-weighting
using ATT weights should be the preferred estimator of
the treatment effect. Further work in this area is needed
to provide improved analytical strategies for the estima-
tion of the marginal treatment effect in the context of an
observational study with a rare exposure.
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