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Abstract

Background: Histograms are a common tool to estimate densities non-parametrically. They are extensively
encountered in health sciences to summarize data in a compact format. Examples are age-specific distributions of
death or onset of diseases grouped in 5-years age classes with an open-ended age group at the highest ages. When
histogram intervals are too coarse, information is lost and comparison between histograms with different boundaries
is arduous. In these cases it is useful to estimate detailed distributions from grouped data.

Methods: From an extensive literature search we identify five methods for ungrouping count data. We compare the
performance of two spline interpolation methods, two kernel density estimators and a penalized composite link
model first via a simulation study and then with empirical data obtained from the NORDCAN Database. All methods
analyzed can be used to estimate differently shaped distributions; can handle unequal interval length; and allow
stretches of 0 counts.

Results: The methods show similar performance when the grouping scheme is relatively narrow, i.e. 5-years age
classes. With coarser age intervals, i.e. in the presence of open-ended age groups, the penalized composite link model
performs the best.

Conclusion: We give an overview and test different methods to estimate detailed distributions from grouped count
data. Health researchers can benefit from these versatile methods, which are ready for use in the statistical software R.

We recommend using the penalized composite link model when data are grouped in wide age classes.

Keywords: Aggregated count data, Ungrouping methods, Smoothing

Background

Histograms are the simplest and most used non-
parametric density estimators. Depending on interval
lengths and end points, the same data can reveal different
shapes when coerced into histograms. This is particu-
larly the case when histograms present wide and varying
intervals, whereby information on the underlying pattern
is lost. In epidemiology data are often available in such
aggregated form. A typical case is age-specific death dis-
tributions where death counts are collected in age groups,
usually of 5-years in length with an open-ended interval
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for the ages older than 85 years [1, 2]. With aggregated
data at hand there is often the need to estimate age-
specific distributions on a more detailed grid of ages, e.g.
by single year of age, to compare, for example, nonagenar-
ians and centenarians over time. This problem has been
addressed in the literature and several solutions have been
suggested for ungrouping age-at-death distributions [3]
and fertility patterns [4].

The most widely used non-parametric methods to esti-
mate distributions from grouped data are kernel den-
sity estimators and spline interpolations. A challenge is
to efficiently ungroup data available in very wide inter-
vals, e.g. age-specific death counts observed for the ages
greater than 85 years, with non-parametric approaches
[5, 6]. Indeed, to fit the lifetime distribution at the high-
est ages, parametric models are generally used. In the
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Human Mortality Database [7] for example, the age-
specific pattern of mortality in an open age interval is
assumed to follow the Kannisto model [8]. An alternative
is the Gompertz distribution [9-11]. Parametric models
for ungrouping are developed for particular applications
and based on parametric assumptions for the underlying
distributions, i.e. data are assumed to follow a specific tra-
jectory. They fit specific sets of data very well and their
estimation leads to few interpretable parameters; however
they lack flexibility because they cannot describe a wide
range of differently shaped distributions, e.g. age-at-death
or age-at-onset from various diseases. We focus there-
fore on non-parametric methods where no assumptions
about the distribution of the data are made. This allows
us to ungroup age-specific patterns that follow very differ-
ent trajectories and that are not described by a particular
parametric family.

The paper is structured as follow: First, we briefly review
different methods for ungrouping aggregated data. We
then show the reasoning behind the selection of the differ-
ent approaches for the comparison study and we analyze
them first via a simulation study and then through an
empirical data application. We conclude with a discussion
and a conclusion.

Our aim here is to compare and evaluate different exist-
ing non-parametric approaches for ungrouping data with
particular emphasis placed on the open-ended intervals of
coarse histograms.

Methods

Non-parametric methods for ungrouping aggregated
count data

Kernel density estimators

A generalization of and improvement over histograms
is kernel estimation: a non-parametric method to esti-
mate smooth probability density functions. Assume that
we observe a complete sample x1,...,x, drawn from an
unknown continuous distribution f(x). The kernel den-
sity estimator for f(x) is f(x) = ﬁ Y K(X_TX"), where
K () is the kernel function and % a smoothing parameter
known as the bandwidth. Each kernel function is cen-
tered at each data point and the estimator smooths out
the contribution of each observed data point over a local
neighborhood. Here the choice of the bandwidth is crucial
for the resulting estimate: If the parameter is too small,
the fitted curve is undersmoothed and contains too many
fluctuations; in contrast, oversmoothing occurs when the
parameter is too big and most of the underlying struc-
ture is obscured. It is often difficult to choose the optimal
level of smoothing: Plug-in and cross-validation are gen-
erally used in this respect. Kernel estimators are applied
for example to age-specific mortality data as a graduation
technique to overcome abrupt changes of crude data [12].
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However, when observations are grouped in a histogram
we do not know the exact locations of the data points,
we only know that they lie within some intervals. In
one early attempt of extending kernel density estimation
for grouped data, Scott and Scheather (1985) treated all
observations as if they were equal to the midpoints of
their corresponding intervals. This approach performs
well when the grouping scheme is fine, but produces poor
results with coarse intervals [13]. A nonlinear variant of
kernel density estimation has been proposed by Blower
and Kelsall (2002) [6]. Here the true and unknown value
of K(x — xj;), with j standing for intervals, is replaced
by its expectation E{K(x — xj;)}. A smooth estimate of
the underlying density f(x) is obtained through an itera-
tion using the density of the histogram of observed counts
as the initial point (see Figure 1 in Blower and Kelsall
(2002) [6]). More recently, Wang and Wertelecki (2013)
[14] proposed a bootstrap type kernel density estimator
for binned data. Another procedure for local likelihood
estimation for data aggregated into intervals, based on
conditional expectation, was proposed by Braun et al.
(2005) [15]. The latter two methods can cope with coarser
intervals.

Spline interpolation

A spline is a smooth numeric function that is piece-
wise defined by polynomial functions connected by points
called knots. To interpolate data points with splines,
polynomials are fitted piecewise resulting in a continu-
ous curve that passes through each of the known data
points. The degree of the polynomial is arbitrary but usu-
ally second or third orders polynomials are chosen to
ensure smoothness, meaning that the spline has continu-
ous derivatives of the first or second order.

Spline interpolation applied to age-specific data was
illustrated by McNeil et al. (1977) [16] and based on
Schoenberg (1964) [17]. When spline interpolation is used
to estimate single-year age distributions from grouped
data, the cumulative number of counts is interpolated
since the only known values are those at the boundaries
of each age group. If we observe data points (x;, y;) with
i = 1,.,n, where x; correspond to the sequence of age
intervals and y; to the cumulative numbers of death up to
age x;, the spline function F(x) interpolates all points and
consists of polynomials between each consecutive pair
of knots x; and x;41. Then, to obtain the death counts
for each individual age group, one proceeds by differenc-
ing, ie. f(x) = F'(x) = F(x + 1) — F(x), where f(x)
stands for the single-year age-at-death distribution. Spline
interpolation is extensively used. It is applied for example
by the Human Mortality Database [7] to split aggregated
death counts grouped into 5-years age classes, see [8]
Appendix B of the protocol. However, the method does
not provide reliable estimates for open-ended age groups
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since the spline function starts declining at old ages lead-
ing to erroneous death counts estimates by single year
of age that are negative [5]. To overcome the problem
Wilmoth et al. use parametric models to fit the late life
span, see [8] Appendix C of the protocol. Smith et al.
(2004) [5] instead propose and apply a monotonicity con-
straint, the Hyman filter [18], to cubic spline interpolation
for ungrouping deaths of Australian females (see Figure 1
in Smith et al. (2004) [5]). Another method that ensures
non-negative values is the piecewise cubic Hermite inter-
polating polynomial used in the Human Fertility Database
[19-21].

Penalized composite link model

Another method to ungroup aggregated counts is the
penalized composite link model [22, 23]. It is based on the
composite link model [24], which in turn extends stan-
dard generalized linear models [25]. The observed counts
yi, with i = 1,...,I number of intervals, are interpreted
as realizations from Poisson distributions with expected
value ;. This expected value results from grouping a
latent expected distribution y;, with j = 1,...,/ number
of narrower intervals, into I histogram bins (see Figure 1
in Rizzi et al. (2005) [22]). This latent sequence represents
the true distribution that is estimated from the compos-
ite data by maximizing a penalized likelihood L* = L —
%P, with A the smoothing parameter and P a roughness
penalty. The problem would be ill-defined if the likelihood
would not be penalized. This results in the latent distri-
bution to be smooth, that is neighboring elements of the
estimated sequence do not differ drastically. The weight
of the penalty A, which controls the smoothness of the
estimates, is tuned using the Akaike’s Information Crite-
rion (AIC): The value of A that gives the minimum of AIC
is chosen. Eilers (2007) [23] showed that the penalized
composite link model can be estimated by an appropri-
ately modified version of the iteratively reweighted least
squares (IRWLS) algorithm.

Selection of ungrouping methods for comparison study

We retrieved from the literature methods that estimate
detailed distributions from coarsely grouped data. To con-
duct the search we selected ‘density estimation binned
data; ‘spline interpolation demographic data; ‘expanding

Table 1 Selected ungrouping methods for comparison
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abridged life table;, ‘protocol human mortality database’
as keywords in Web of Science, PubMed and Google
Scholar. After screening, we obtained 36 potentially eli-
gible studies. Moreover by searching ‘density estimation
binned data statistical software’ and ‘spline interpolation
in R” we found 7 potentially relevant R packages. Among
these searches we chose individual methods that are non-
parametric; that always result in positive estimates, since
a negative number for death counts or onset of a disease
is an impossible result; and that are implemented in sta-
tistical software so that they can be readily used by health
researchers. Therefore we excluded:

e 7 studies requiring additional information for input
data;
10 parametric models;
6 spline interpolation methods allowing negative
estimates;

e 8 studies without software implementation or
temporarily disabled.

The 5 methods included in the comparison study are
a bootstrap kernel density estimator (bda R packge,
bde function, ‘bootkde’ method) [14, 26]; a piecewise
cubic Hermite interpolating polynomial (signal R package,
interpl function, ‘pchip’ method) [27]; a spline interpola-
tion with Hyman filter (demography R package, cm.spline
function) [5, 28]; an iterated conditional expectation ker-
nel density estimator using a local constant (ICE R pack-
age, ickde function) [15, 29]; and the penalized composite
link model [22] (R code in Appendix 2 of the paper by
Rizzi et al. (2005) [22]). A compact overview is given
in Table 1. Note that the piecewise cubic Hermite poly-
nomial interpolation is also implemented in statistical
softwares Stata (pchipolate function) and Matlab (pchip
function). For an extensive explanation of the methods
refer to [14, 15, 18, 21, 22] respectively.

Simulation study design

We conduct a simulation study to compare the perfor-
mance of the selected techniques for ungrouping age-at-
death distributions. We choose as target distribution the
Weibull distribution, which is a popular lifetime model
used in survival analysis to describe age-specific mortality

Method and references

Abbreviation Program for estimation

Bootstrap kernel density estimator [14, 26]

Piecewise cubic Hermite interpolating polynomial [21, 27]
Spline interpolation with Hyman filter [5, 18, 28]

Iterated conditional expectation kernel density estimator [15, 29]

Penalized composite link model [22]

bootkde bda R package, bde function, bootkde method

hermite spline signal R package, interp1 function, pchip method

hyman spline demography R package, cm.spline function
ickde ICE R package, ickde function
pclm R code in Rizzi et al. (2015)
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patterns [30-32]. Data are simulated from a Weibull dis-
tribution f(x) = %%(afl)exp(—%)“ with shape ¢ = 8 and
scale 8 = 82. Parameters are arbitrarily chosen to resem-
ble an age-at-death distribution: A shape parameter > 1
indicates that mortality increases with age, characteris-
tics of the human aging process; while the scale parameter
determines the dispersion of the probability density func-
tion, thus the larger the g value, the more spread out the
density. X represents the age variable that ranges from 0
to 115 by 1-year age step: This range is a reasonable sup-
port for the Weibull density since it contains 99.9999 %
of the probability mass. Two sample sizes are considered.
Thus, from the Weibull distribution 500 datasets of size
n = 200 and 500 datasets of size » = 1000 are gener-
ated. The simulated data are then grouped according to
two different schemes: One with relatively narrow inter-
vals of equal length, i.e. 5-years age classes; the other
with 5-years age classes plus a wide open-ended interval
starting at age 85. For each grouped dataset an interval
with 0 counts is added at the right hand tail of the distri-
bution from age 115 up to age 130 where no observation is
expected in practice. We apply the selected methods to the
coarsely grouped data and for each scenario we compare
the 500 estimates of each method with the true density.
The scenarios of the simulation study are displayed in
Table 2.
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Table 2 Simulation study scheme
Scenario 1 Scenario 2 Scenario 3 Scenario 4
Distribution  Weibull Weibull Weibull Weibull
Sample size n=200 n=1000 n=200 n=1000
Age groups 5-years 5-years 5-years with 85+ 5-years with 85+

For each scenario 500 simulation repetitions

To study which approach performs best, we measure
how close the fitted densities are to the true one that gen-
erates the data via three indicators. The integrated abso-
lute error (IAE), i.e. ) [f(Ax) — f(x)|, is a straightforward
measure that indicates how much the fitted density f (x)
differs from the true one f(x) in absolute values; all differ-
ences are weighted equally. A performance index related
to the integrated absolute error but more frequently used
is the integrated squared error (ISE), i.e. Y _(f (Ax) —fx)%
Here the differences between fitted density and corre-
sponding true values are each squared; therefore the inte-
grated squared error highlights the differences by giving
more weight to large errors compared to the integrated
absolute error. To provide a likelihood-based distance
measure for densities we use the Kullback-Leibler dis-
tance [33], i.e. Y_ f(x)log[f(x)/f (x)], which measures the
information lost when the fitted density is used to approx-
imate the true one. This latter index can be seen as a

true density

bootkde

hermite spline

J j\

hyman spline

Density

ickde pclm

A

X

Fig. 1 Weibull true density (gray line with overplotted points) and models’ fitted densities from 5-years age groups and n = 1000 (black lines)
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goodness-of-fit statistic for the model f(x), measuring
the distance between actual data and the model used.
All three measures have a minimum that equals 0 and
therefore lower resulting values indicate a better model
performance.

Empirical application of ungrouping methods to
age-specific cancer data

Free access of age-specific data by single-year of age
for various causes of death or onset of diseases is not
extensive and it might be of interest to estimate distri-
butions by single-year of age from these data available
in coarser age-groups. We therefore tested the models
on age-specific cancer death counts and number of diag-
noses. We obtained the true values of those distributions
from the NORDCAN Database [34] and we analyzed
age-specific all site including non-melanoma skin cancer
deaths in Denmark in 2010 and age-specific incident testis
cancers in Denmark in the years 1980, 1990, 2000 and
2010 combined. The death data are classified according to
the International Classification of Diseases, Tenth Revi-
sion (ICD-10, codes CXX.X + D09.0-1+ D30.1-9 + D35.2-
4 + D41.1-9 + D32-33 + D42-43 + D44.3-5 + D46-47) and
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the incident testis cancer data are also classified according
to ICD-10 (code C62). All data are collected by single-year
of age from age 0 up to the last age of recorded events.
They serve as a ‘golden standard’ for comparison with the
estimates of the different ungrouping methods. Analyz-
ing age-at-death for total cancers and age-at-onset of testis
cancer allows the study of differently shaped distributions:
In the first setting there is a right-skewed distribution with
a peak around age 75; in the second example the distribu-
tion increases steeply after childhood with a peak between
ages 25-30 and then declines, resulting in a long right-
hand tail. Registered cancer deaths in 2010 amounted to
15390, of which 2410 occurred at ages > 85. For the years
1980, 1990, 2000 and 2010 combined, 1020 cases of testis
cancer were diagnosed. Those four years are assembled to
avoid too many wiggles in the distribution, even though
all methods are able to cope with that. The key message
here is that we are able to study considerably different
distributional shapes and sample sizes.

To compare the performance of the selected methods,
we grouped the death counts into 5-year age classes first
and then into 5-year age classes with an open-ended inter-
val starting at age 85. It is the age-grouping scheme used

IAE

ISE

—'—%—t——?—

KL

Leibler distance (KL)

s I

ek

Fig. 2 Measures of performance for Weibull density from 5-years age groups. Integrated absolute error (IAE), Integrated squared error (ISE), Kullback

s sample_size
B3 n=1000
E3 n=200

A
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to release data by the Danish Cancer Register and the
NORDCAN Database. We apply the different models to
the artificially grouped data and provide graphical repre-
sentation of the different ungrouped estimates against the
empirical counts. For comparison we propose the three
distance measures used in the simulation study: Inte-
grated absolute error (IAE), integrated squared error (ISE)
and Kullback Leibler distance (KL).

Results

Simulation study results

We first study the performance of the different approaches
when the simulated data are artificially grouped in rel-
atively large bins of equal size, i.e. 5-years age classes.
We compare the resulting density estimates in single-
year of age from O up to 130 years: Fig. 1 shows the
target distribution and 500 estimates for each method
for sample size n = 1000. All methods capture the
fit and the shape of the target distribution: The esti-
mated Weibull densities are close to the true density and
they look graphically reasonable (Fig. 1). For the ker-
nel density estimators, the crucial choice of the optimal
bandwidth is computed automatically in the bootstrap
kernel density estimation (bootkde), where the proce-
dure used is the minimization of the integrated squared
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error. In the iterated conditional expectation kernel den-
sity estimation (ickde), the bandwidth selection is par-
tially left to the user. The user can choose among two
procedures to obtain the optimal bandwidth suggested
by the authors: A quick one implements the plug-in
methodology (KernSmooth package, dpik function in R);
and the other one uses likelihood cross-validation (ICE
package, bickde function in R), which has the incon-
venience of being very slow. In the framework of our
simulation study we tried both approaches and found
that the plug-in method gives considerably better results
(Figs. 1 and 3, ickde panel); the likelihood cross-validation
lead instead to significant oversmoothing. Therefore
all reported estimates of the simulation study for the
iterated conditional expectation kernel density estima-
tion are obtained via plug-in method for bandwidth
selection.

To better analyze how far apart the target distribution
and the estimates for each method are, three distance
measures, integrated absolute error (IAE), integrated
squared error (ISE), and Kullback Leibler distance, are
presented in Fig. 2. Each boxplot shows the distance of
each of the 500 estimates to the true density. The closer
the distance is to 0, the better the performance. For a
small sample size, the two spline interpolation methods

true density

Density

hyman spline

and n = 1000 (black lines)

bootkde

N A
E=ER=Es

Fig. 3 Weibull true density (gray line with overplotted points) and models’ fitted densities from 5-years age groups with open-ended age interval 85+

hermite spline

ickde pcim

X
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(he_s and hy_s) show poorer results. The iterated condi-
tional expectation kernel density estimation (ickde) and
the penalized composite link model (pclm) slightly out-
perform the bootstrap kernel density estimator (bootkde).
A bigger sample size leads to a decrease in all three mea-
sures of distance for all five methods, which show a similar
performance as seen in Fig. 1.

In our comparison study we put particular emphasis on
the last open-ended intervals of coarse histograms, as they
are commonly encountered in human age-at-death distri-
butions. Therefore, we analyze a second grouping scheme
with the simulated data aggregated into intervals of 5 years
of age with a last group starting at age 85. The maximum
age is set at 115 years, after which no deaths are rea-
sonably observable and the histogram is complemented
with an age group from 115 to 130 with 0 counts. Target
distribution and results for the estimated densities with
n = 1000 are illustrated in Fig. 3. The penalized compos-
ite link model (pclm) is the method least affected by the
wide age interval at the right-hand tail of the distribution.
Both kernel density estimators (bootkde and ickde) fail
in correctly distributing the information of the wide age
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interval in the tail area. Also, the piecewise cubic Hermite
interpolating polynomial (hermite spline) has limitation
in that; moreover it shows a sudden twist just before the
wide interval at age 85 starts because the continuity of the
second derivative is not guaranteed. The spline interpo-
lation with Hyman filter (hyman spline) redistributes the
data more smoothly, however it does not succeed in repro-
ducing the right-hand tail of the true density with perfect
accuracy.

The boxplots for the distance measures in Fig. 4 confirm
our findings. The penalized composite link model (pclm)
clearly outperforms all other approaches for both sample
sizes.

Empirical application results

We now study how the different methods for ungroup-
ing behave in an empirical application. We start by ana-
lyzing age-specific cancer deaths in Denmark in 2010.
Figure 5 reports the estimated distributions together with
the empirical data for age groups of 5 years with open-
ended intervals. For the results of equal interval length
of 5 years we refer to the Additional file 1. Conclusions

IAE

ISE
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KL

"‘-%_;_'%'L% ]

-% | ' s
' | —7—% -L% _v_% )
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Integrated squared error (ISE), Kullback Leibler distance (KL)

—.—l—'_

Fig. 4 Measures of performance for Weibull density from 5-years age groups with open-ended age interval 85+. Integrated absolute error (IAE),
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empirical data
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hermite spline
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Fig. 5 Age-at-death for all cancers in Denmark for 2010. Empirical data (gray line with overplotted points), grouped counts (histogram) and models’
estimates from 5-years age groups with open-ended age interval 85+ (black smooth lines)

previously found in the simulation study are here con-
firmed, even with a sample size that increases by 15 times
compared to the bigger sample size considered in the
simulation study.

The last events empirically recorded correspond to age
102. We assume that age 105 is the last age at which death
from cancer can be observed and we complete the his-
togram with an extra interval from age 105 up to age
115 with O counts: No cancer deaths after age 105 are
expected and empirically justifiable. The added interval is
essential for the two kernel density estimators (bootkde
and ickde) and the penalized composite link model (pclm)
to efficiently redistribute the grouped observations in
the right-hand tail. These methods can therefore cope
with stretches of 0 counts. The spline with Hyman filter
and the Hermite polynomial, as interpolating methods,
are less affected by extra information beyond the max-
imum age-at-death assumed. However, the added zeros
also make the splines behave better at the very extreme
ages when the maximum age-at-death is unknown. We
noticed that the spline with Hyman filter would slightly
benefit if the exact maximum age, at which the last events
are observed, would be known (see Additional file 2).
This however rarely occurs in practice and an assump-
tion about the maximum age at which an observation is

reasonable has to be made. In contrast with the simulation
study, to optimally select the bandwidth of the iterated
conditional expectation kernel density estimator (ickde)
we used likelihood cross-validation (ICE package, bickde
function in R). This outperformed the plug-in method
(KernSmooth package, dpik function in R) which resulted
in unreasonable undersmoothing.

In addition to overall age-specific cancer deaths, we
apply the ungrouping methods to age-at-onset of testis
cancer which is characterized by a completely different
shape. Here the strength of these non-parametric meth-
ods is that they can model a wide range of distributions.
This is useful in practical analysis where age-at-death from
various causes of deaths or age-at-onset of different dis-
eases follow disparate age-specific patterns, e.g. bimodal
[35], skewed to the right [36] or to the left [37]. As an
example we illustrate the true distribution and the esti-
mated results for the age at diagnosis of testis cancer,
prominent particularly at young adult ages, in Fig. 6. With
a small sample size, empirical data are noisier compared to
the previous application and all smooth estimated distri-
butions show limitations in capturing abrupt fluctuations,
in particular the one around age 30. The two kernel den-
sity estimators (bootkde and ickde) lead to very smooth
distributions, while the two spline interpolation methods
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empirical data

No. of Diagnoses

bootkde

hermite spline

Age

Fig. 6 Age-at-onset of testis cancer in Denmark for 1980, 1990, 2000 and 2010 combined. Empirical data (gray line with overplotted points), grouped
counts (histogram) and models’ estimates from 5-years age groups (black smooth lines)

(hermite and hyman splines) fit some of the wiggles in the
data better.

To highlight the comparison between the models
we report the three divergence measures for all three
ungrouped estimated datasets in Fig. 7. The estimated dis-
tributions of overall cancer death from 5-years age groups
show a small divergence with respect to the true empiri-
cal data: All methods are similar in this setting, except for
the iterated conditional expectation kernel density estima-
tor which oversmooths the data. The spline interpolation
with Hyman filter (hy_s) and the penalized composite link
model (pclm), in particular, outperform instead all com-
peting methods in case of the open-ended interval. When
empirical data are noisy and characterized by sudden fluc-
tuations in adjacent years of age, as in the age-at-onset
from testis cancer, all measures indicate higher disparity
as expected.

Discussion

We have compared different methods to split age-specific
aggregated data into a fine grid of single-year ages. The
selected methods for the comparison can be divided in
three main groups: (i) kernel density estimators, i.e. a
bootstrap kernel density estimator and an iterated condi-
tional expectation kernel density estimation using a local

constant; (ii) piecewise polynomial interpolation meth-
ods, i.e. a spline interpolation with Hyman filter and a
piecewise cubic Hermite interpolating polynomial; (iii) a
penalized composite link model.

For the simulated data and vital statistics analyzed we
found that the penalized composite link model gives the
best fit in presence of wide intervals especially, followed by
the spline interpolation with Hyman filter. The penalized
composite link model estimates the most likely origi-
nal distribution by smoothly redistributing the grouped
observations into a fine grid. Compared to the spline inter-
polation methods, the penalized composite link model
behaves better at the extremes and does not show abrupt
changes, which occur in the cubic Hermite ploynomial
when the continuity of the second derivative is not guar-
anteed. For the penalized composite link model the opti-
mal smoothing parameter is found by minimizing Akaike’s
Information Criterion (AIC). For kernel density estima-
tors the choice of the bandwidth, which is crucial for the
resulting estimates, is more tricky, especially when left to
the user.

All selected methods are ready for use, either imple-
mented in R packages [26-29] or with code attached to
the paper [22]. They can work with input data grouped
in coarse intervals of unequal width; can cope with
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groups of 0 counts; and deal with very different sam-
ple sizes. They are non-parametric and therefore can be
applied to differently shaped grouped data, such as age-
specific distributions from various causes of death or
age-at-onset of different diseases, where data are pub-
lished in aggregated format due to privacy protection.
Other relevant applications in epidemiology consist of
onset of infectious diseases grouped in days or weeks;
differently categorized variables from several individual
studies used in meta-analyzes; measured concentrations
grouped in ranges, e.g. concentration of lead in the
blood [38].

When data are very noisy and show sudden fluctu-
ations, the smoothness assumption of the methods is
more questionable. All methods show limitations in this
respect, as seen in the testis cancer example. However,
since we know little information from grouped observa-
tions, by also assuming smoothness, we can get some
useful insights about the general pattern that the data fol-
low. In the presence of age heaping or bad quality data it
can even be beneficial.

Our study is limited to the comparison of 5 ungrouping
methods that are implemented in the statistical software
R. We are aware that in some research fields, this soft-
ware is not extensively used. However, we believe in its
further spread since it is free and open source and we
aim contributing to its diffusion. Other studies in the lit-
erature compare various methods for ungrouping. They
focus though on parametric and non-parametric mod-
els together that estimate specific distributions, such as
overall age-specific mortality [3] or age-specific fertility
[4]. They also do not tackle the problem of open-ended
intervals. Here, on the contrary, we aimed to test the
performance of flexible non-parametric methods that are
ready to be used for a broader range of applications.

Conclusion

Efficient methods to ungroup coarse histograms are
needed in several applications. In this study we com-
pare different methods for ungrouping vital statistics. All
methods show similar results for finer age groups, i.e. of
5-years age length. However the penalized composite link



Rizzi et al. BMC Medical Research Methodology (2016) 16:59

model is superior when tested against data aggregated in
wider groups such as open age intervals.
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