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Abstract

Background: The six-minute walk test (6MWT) is commonly used to quantify exercise capacity in patients with
several cardio-pulmonary diseases. Oxygen uptake (V̇O2) kinetics during 6MWT typically follow 3 distinct phases (rest,
exercise, recovery) that can be modeled by nonlinear regression. Simultaneous modeling of multiple kinetics requires
nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used
to analyze multiple V̇O2 kinetics in both research and clinical practice so far.

Methods: In the present study, we describe functionality of the R package medrc that extends the framework of
the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated
nonlinear regression modeling. The methodology was applied to a data set including 6MWT V̇O2 kinetics from 61
patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was
compared to a traditional curve-by-curve approach.

Results: A six-parameter nonlinear regression model was jointly fitted to the set of V̇O2 kinetics. Significant
differences between disease stages were found regarding steady state V̇O2 during exercise, V̇O2 level after recovery
and V̇O2 inflection point in the recovery phase. Estimates obtained by the mixed effects approach showed standard
errors that were consistently lower as compared to the curve-by-curve approach.

Conclusions: Hereby we demonstrate the novelty and usefulness of this methodology in the context of
physiological exercise testing.

Keywords: Nonlinear mixed effects, Modeling, Chronic obstructive pulmonary disease, Exercise testing,
Oxygen kinetics

Background
The 6-Minute Walk Test (6MWT) is routinely used to
quantify submaximal exercise capacity in patients with
chronic cardio-pulmonary diseases [1]. It is considered
as the test of choice to quantify functional capacity and
patient’s daily life activities [2]. Portable wireless car-
diopulmonary exercise testing devices enable to mea-
sure breath-by-breath oxygen exchange kinetics during
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exercise performance. From the original acquired breath-
by-breath oxygen exchange data, curves can be generated
and parameters can be estimated by curve model fit-
ting [3, 4]. These parameters provide information about
the interaction of the cardiovascular-, cardiac autonomic-,
pulmonary-, and metabolic system.
In the field of pulmonary medicine, there is a grow-

ing interest in estimating exercise parameters capable of
objectively evaluating the functional capacity of patients
with chronic obstructive pulmonary disease (COPD).
Time coursemeasurements of oxygen consumption (V̇O2)
provide key physiological determinants of exercise capac-
ity which are hardly influenced by conditions other than
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the underlying disease. Modeling V̇O2 kinetics during
exercise testing in patients with COPD is therefore a
revelant topic.
Traditionally, individual V̇O2 uptake curves have been

analyzed visually and parameters representing for exam-
ple the time needed for a 50 % increase in oxygen
uptake (T1/2) were quantified in an inconsistent manner
[5]. Nowadays, V̇O2 kinetics can be accurately modeled
by fitting nonlinear regression models [6–8]. A model-
ing approach insures that parameters are estimated in
an objective and systematic manner, fully exploiting the
information available in the kinetics data.
Several difficulties arise when dealing with nonlinear

regression models. Unlike linear regression where mathe-
matical solutions exist for the estimation of the best fitted
parameters, nonlinear regression often requires additional
information from users who should specify among others,
the equation of the model, a set of starting parame-
ters for the minimization procedure, and pay a particular
attention to the check of the models assumptions [8].
Routinely acquired oxygen uptake kinetics generate

batches of curves whose parameters are generally esti-
mated using curve-by-curve model fits. The oxygen kinet-
ics are sometimes originated from individuals which can
be grouped into categories (e.g., distinct diagnostic group,
disease severity, etc.) and one might be interested in test-
ing differences between parameter estimates with regard
to these pre-defined categories. Hypothesis testing is clas-
sically done in two integral steps. First, curve fitting is
used and as a result a set of parameter estimates can be
produced. In a second step, inference based on the esti-
mated parameters is carried out. However, in this type of
data, within-group correlation typically arise and specific
regression techniques must be used [9]. Mixed models
are well-suited for the analysis of grouped data. They
allow to explicitely incorporate intra-group correlations
by means of random effects and get joint estimates of the
regressionmodel parameters [10]. Fitting nonlinearmixed
models comes with the same type of challenges as fitting
nonlinear regression models.
The whole analytical workflow requires various statisti-

cal expertise. The aim of the current work is to demon-
strate how recent methodological developments enable to
carry out these series of successive procedures — namely
the simultaneaous fit of nonlinear models within the
mixed effects framework, followed by inferences based on
parameter estimates— in an automated and all-integrated
manner, by using recently developed packages from the R
statistical software [11].
The next sections are organized as follows. The

novel mixed effects methodology is described in the
“Material and methods”. A detailed example of physiolog-
ical exercise testing from patients with COPD is provided
in the “Results”. The mixed models approach is compared

with a traditional curve-by-curve approach. The statisti-
cal and physiological relevance of the findings is exposed
in the “Discussion”.

Material andmethods
COPD dataset
Patients with COPD referred to the Department of Pul-
monary Medicine of the University Hospital of Basel
(Switzerland) for a 6MWT gave their informed consent to
participate to the study. The data analyzed in the present
study were fully anonymized and no individual clinical
data are presented. The study was approved from the
local institutional review board (Ethikkommission beider
Basel). The study was conducted in accordance with the
principles enunciated in the Declaration of Helsinki and
the guidelines of GoodClinical Practice. Further details on
the study can be found on previous publications [7, 12, 13].
The supporting data set is provided in Additional file 1.

Oxygenmonitoring during 6MWT
We used the Oxycon Mobile� (Viasys Healthcare, USA)
portable, wireless cardiopulmonary exercise testing device
to measure breath-by-breath V̇O2 kinetics. Pulse rate was
determined by using an ECG-triggered belt (Polar� Elec-
tro OY T-61). Blood oxgen saturation level (SpO2) was
measured by using a finger clip. V̇O2 and carbon diox-
ide output (V̇CO2), tidal volumes and breathing frequency
were assessed by using a facemask (dead space < 70 mL)
with a flow sensor and a gas analyzer. The patient car-
ried data storage and transfer units by using a dedicated
harness. Wireless transfer of breath-by-breath data to a
laptop computer allowed real-time monitoring. The addi-
tional weight (950 g) of the equipment has no effect on
walking distance [12]. The exact 6MWT procedure with
mobile telemetry has been previously described [12].
Original breath-by-breath data were imported from the

mobile telemetry device. Raw data were pre-processed by
averaging the breath-by-breath measurements over con-
secutive periods of 20 s.

Oxygen uptake kinetics during exercise testing
The American Thoracic Society (ATS) published detailed
instructions regarding how to conduct the 6MWT as
much standardized as possible. Accordingly, the 6MWT
consists of 3 phases; five minutes of rest, six minutes of
walking and five minutes of recovery. The oxygen uptake
kinetics (V̇O2) of each phase can be modeled by nonlin-
ear regression as demonstrated in Fig. 1. A constant O2
consumption is expected in the resting phase, followed
by a 6-minute monotonic O2 increase, and a progressive
recovery phase where O2 decreases back to its initial level.
Established parameters for the assessment of cardiopul-

monary exercise capacity in patients with COPD during
the 6MWT are the oxygen uptake at steady state (V̇O2ss)
and the six-minute walking distance (6MWD) [14].
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Fig. 1 Oxygen kinetics before, during and after the 6MWT exercise testing

The incline of V̇O2 during the initial phase of low-
intensity exercise (V̇O2 on-kinetics) provides important
information about oxygen delivery and muscle
metabolism, and are found to be noticeably delayed in
patients with several chronic cardiac- and pulmonary
diseases [15–19]. V̇O2 on-kinetics can be quantified by
the time (mean response time: MRT) required for V̇O2 to
achieve 63 % of the V̇O2ss in response to exercise [20, 21].
Patients with COPD are limited during exercise by dys-

pnea and fatigue and also have difficulties to recover
normal breathing after exercise. As the limited cardio-
pulmonary reserve in patients with COPD appears to
affect exercise responses it may be postulated that it also
affects the recovery phase. Recovery kinetics of oxygen
uptake (V̇O2 off-transient kinetics) reflect the ability to
recover from exercise that is indicative of daily life.
V̇O2 off-transient kinetics can be quantified by both

the steepness of the curve as well as the time necessary
for V̇O2 to recover by 50 % from its peak effort value
(T1/2V̇O2).

An interpretable nonlinear regression model
A six-parameter nonlinear regression model describing
the 3 main phases of the oxygen kinetics (before, during
and after 6MWT) is defined as follows:

with V̇O2rest, V̇O2ss and V̇O2recovery the oxygen level
at rest, steady state during exercise and recovery, respec-
tively; τ1 the growth rate of the mono-exponential V̇O2
function during 6MWT; τ2 the steepness of the expo-
nential decay during the recovery phase and T1/2V̇O2
the time for half decrease of the V̇O2 level in the recov-
ery phase. All the 6 previously mentioned parameters
(V̇O2rest, V̇O2ss, τ1, T1/2V̇O2, τ2, V̇O2recovery) have to
be estimated by nonlinear regression procedure. λ is the
length of the resting period. It is controlled by the experi-
menter who decides when the resting period ends (usually
after 5 min of rest) by initiating the 6MWT. The experi-
menter reports manually the exact duration of the resting
period (λ) which is therefore not estimated during the
fitting procedure. λmax corresponds to the length of the
longest resting period in the set of kinetics. This value
is known a priori hence not estimated during the fitting
procedure. It is simply used to “align” multiple kinetics
by removing differences among the duration of individual
resting phases.
This nonlinear model takes into account the basic

experimental and physiological specificities of a 6MWT,
including a resting phase whose duration is controlled
by the experimenter, followed by an immediate mono-
exponential raise of oxygen during 6-min exercise,

V̇O2(t) =

⎧⎪⎪⎨
⎪⎪⎩

if t ≤ λ : V̇O2rest,
if λ < t ≤ λ + 360 : V̇O2rest + (V̇O2ss − V̇O2rest)(1 − e−(t−λ)/τ1),
if t > λ + 360 : V̇O2rest + (V̇O2ss − V̇O2rest)(1 − e−(t−λ)/τ1)+

(V̇O2recovery − V̇O2ss)/(1 + exp(τ2 ∗ log((t − (λmax + 360))/T1/2V̇O2)))

(1)
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followed by a progressive decline of V̇O2 during the
recovery phase. It is worth noting that this six-parameter
model including a single mono-exponential function that
describes the oxygen increase during exercise is a rather
common choice [6] which suits well the purpose of our
simple clinical application.More complexmodels describ-
ing the increase of oxygen consumption by means of two-
or three-term exponential function have been proposed.
However, they are only useful for the modeling of physi-
ological processes occurring in specific situations such as
heavy-intensity exercise [22, 23].

Mixed effects modeling
Following the notation of Davidian and Giltinan [10],
a nonlinear regression model for hierarchical data
(e.g., patients and 6MWT measurements nested within
patients) can be defined in two stages: First modeling the
variability within the ith patient, and hereby incorporating
between-patient variation.
Stage 1: For i = 1, · · · ,m individuals, the following

models can be assumed:

yij = V̇O2(tij,βi) + εij

where yij are the response vectors of length j = 1, · · · , ni
with the corresponding vectors individual times tij. The
nonlinear function such as the above six-parameter model
(Eq. 1) evaluated at time tij is denoted by V̇O2(tij,βi)
with a p-dimensional individual-specific parameter βi.
The residual vectors εij ∼ N (0, σ 2�i) are assumed
to be normally distributed with a correlation struc-
ture defined by the elements of matrices �i; for the
COPD data we will assume that �i is the identity
matrix.
The curve is described by the functions V̇O2(tij,βi)with

an individual-specific (p × 1) vector of parameters βi.
Stage 2: Between-patient effects are described by mod-

eling the βi. These effects are separated into fixed and ran-
dom effects as in an ordinary linear mixed model (except
there is no residual error as it was already introduced in
Stage 1):

βi = Aiβ + Bibi

where β is the vector of fixed-effects parameters, which
may differ between patients according to recorded patient
characteristics encoded in the design matrix Ai (e.g.,
age or sex). Differences between patients, which are
not captured by the recorded patient characteristics, are
described by the patient-specific random effects vector
bi; these random effects may possibly also be modified
through explanatory variables encoded in the correspond-
ing design matrix Bi (e.g., time).

As the random effects are intended for capturing inex-
plicable effects, which may balance out on average, they
may be assumed to follow a mean-zero, possibly mul-
tivariate normal distribution: bi ∼ N (0,G) where G
denotes the between-patient variance-covariance matrix,
which we assumed to be entirely unstructured such all
entries (covariance and variance parameters) were esti-
mated from the data.
In our example, the overall mixed model was

parametrized as follows: each individual V̇O2 kinetics
defines one cluster for which a different fixed effect
curve is assumed depending on the disease severity
stage (all 6 parameters: V̇O2rest, V̇O2ss, τ1, T1/2V̇O2,
τ2, V̇O2recovery); random effects were specified for the
five parameters V̇O2rest, V̇O2ss, τ1, T1/2V̇O2, τ2. In this
particular case, Ai is defined as the dummy coded design
matrix specifying disease stage specific fixed-effect
parameters, and Bi is defined as the random effect design
matrix using dummy coded patient identifiers for 5 of the
nonlinear model parameters.
We used Akaike’s information criterion (AIC) for iden-

tifying the appropriate random effects structure [24, 25].

Sensitivity analysis
The curve-by-curve approach provides parameter esti-
mates from fitting a nonlinear regression model (Eq. 1)
to each individual patients kinetics data. Subsequently,
for each of the six model parameters the correspond-
ing parameter estimates of all patients may be analyzed
by means of analysis of variance models to obtain esti-
mates for each disease stage. This two-step curve-by-
curve approach only relies on being able to fit the patient
curves one by one. This approach resulted in estimated
coefficients that could be interpreted as population level
effects whereas nonlinear mixed effects models allow
patient-specific interpretations.

Implementation
The whole analytical workflow relies on the R packages
drc [26] and nlme [27] for the nonlinear regression with
mixed effects. The newly developed package medrc [28]
elegantly combines functionalities of the packages drc
and nlme. Finally the package multcomp was used for
the statistical inference [29]. The main features of these
packages are summarized below.

• drc allows simultaneous fit of several nonlinear
regression models [26]. It provides automated fit of a
list of nonlinear models by directly specifying initial
parameter values (self-starters) for the estimation of
the nonlinear model parameters. The main function
in drc is drm(), which requires as arguments the
name of the data set, the self-starter model, the
dependent and indepedent variables.
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Table 1 Anthropometrics, pulmonary functions, cardio-pulmonary exercise capacity. Values are presented as median [IQR]

COPD disease stage

II III IV

Anthropometrics

Subjects, n 21 30 10

Female/male 10/11 10/20 5/5

Age, yr 72.0 [59.0–77.0] 67.5 [61.0–71.0] 60.5 [52–62]

BMI (kg/m2) 28.1 [25.5–32.0] 24.3 [21.8–28.0] 20.0 [18.8–20.6]

Pulmonary functions

FEV1, L 1.6 [1.3–1.8] 1.0 [0.8–1.1] 0.7 [0.7–0.8]

FEV1, % predicted 59.0 [58.0–66.0] 36.5 [34.0–42.0] 26.5 [26.0–28.0]

FEV1/FVC, ratio 0.6 [0.5–0.6] 0.4 [0.3–0.5] 0.4 [0.3–0.4]

Exercise capacity

6MWD, m 370.0 [300.0–438.0] 352.5 [290.0–392.0] 345.0 [265.0–374.0]

BMI: body mass index; FEV1: forced expiratory volume in 1 sec; FEV1/FVC ratio: forced expiratory volume in 1 sec (FEV1) expressed as percent of the forced vital capacity (FVC);
6MWD: 6-minute walking distance

Fig. 2 Oxygen kinetics and fitted curves summarized within each COPD disease stage. COPD disease stages II, III and IV are represented by red, green
and blue lines respectively
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• nlme provides tools for the fit of Gaussian nonlinear
mixed models [27]. It supports specifying correlation
structure for residuals and is particulary adapted for
repeated measures designs. This package will be used
indirectly through the package medrc described next.

• medrc combines the automated nonlinear
regression modeling framework of the package drc
with the nonlinear mixed estimation framework of
the package nlme. The function medrm() in medrc
allows to fit nonlinear mixed models, by providing
the following arguments: form the formula with the
response (V̇O2) on the left side as a function of the
independent variable (time) on the right side; curveid
the name of the categorical variable that divides the
dataset into several clusters; data the name of the
data set; fct the definition of the model; random the
definition of the random effects. medrc is available
at the following github repository: https://github.
com/daniel-gerhard/medrc

• multcomp [29] is used for parameter inference, by
providing functionalities for multiple tests for the
fixed effects of the mixed models.

A sample R code is provided in Additional file 2.

Results
Application to six-minute walk test oxygen kinetics in
patients with COPD
V̇O2 kinetics were measured in 61 patients with COPD
who were traditionally classified into 3 disease severity
stages (GOLD II, III and IV). A summary of the patient
characteristics is presented in Table 1.
The six-parameter nonlinear regression model was

jointly fitted to the set of 61 oxygen kinetics using
the function medrm() in the package medrc. The ini-
tial model selection of the random effects structure
resulted in the minimum AIC for a model with random
effects assigned to five out of the six model parame-
ters; results from this model are reported below. The
detailed results of the model selection process are pro-
vided in the Additional file 3: Table S1. It is worth not-
ing that the model with random effects assigned to all
six model parameters did not converge. Graphical check
of the residuals is provided in the Additional file 4:
Figure S1.
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Figure 2 displays the 61 raw oxygen kinetics data
together with the fitted curves summarized within each
COPD disease severity stage. The five estimated variance
parameters for the random effects were: SDτ1 = 44.09;
SDV̇O2rest = 58.26; SDV̇O2ss = 250.51; SDτ2 = 1.05;
SDT1/2V̇O2 = 44.31.
Significant differences between disease stages were

found regarding steady state oxygen uptake during exer-
cise testing (V̇O2ss II vs. IV, adj. p = 0.038), oxygen level
after recovery (V̇O2recovery II vs. IV, adj. p = 0.0013) and
inflection point in the recovery phase (T1/2V̇O2 II vs. IV,
adj. p = 0.088). There were significant differences when
comparing the peak oxygen level reached during exercise
(V̇O2ss) between moderate and very severe COPD disease
stages. On average, patients with COPD stage IV reached
a V̇O2ss 292.5 mL (se = 96.8) lower than patients with
stage II during the 6MWT. These cardio-pulmonary lim-
itations are also reflected by the differences found in the
recovery phase. Patients with stage IV needed on average
49.7 (18.1) additional seconds to reduce half of their oxy-
gen consumption in the recovery phase as compared to
patients with stage II.
Figure 3 shows in parallel the fitted curves obtained

from the joint nonlinear mixed model and the curves
obtained from the curve-by-curve approach. The over-
all mean curve obtained by pooling all data from all
patients is represented by a thick gray curve. The esti-
mates obtained from both approaches are given in Table 2,
which shows that the standard errors are consistently
(with one exception) smaller when using the mixed model
(up to three times smaller).

Discussion
A set of oxygen kinetics data that originated from a
6MWT in patients with COPD could be successfully
analyzed both using a joint nonlinear mixed model and
using a two-step curve-by-curve approach. Joint modeling
is challenging when it comes to selecting the appropri-
ate random effects structure, which is an essential part
of the model as it allows to separate out patient vari-
ation, as models may not converge. We found that the
more random effects were included the better the model
as judged by AIC. However, for mixed models there
exist alternative information criteria such as the condi-
tional AIC [30] which perhaps may strike a better balance
between model complexity and computational feasabil-
ity. In contrast, the curve-by-curve approach is simpler,
more robust, and operational. By averaging the patient
specific curve-by-curve estimates, the possibly varying
standard errors of the individual estimates are not taken
into account. Specifically, comparison of results of the
joint mixed model approach with the classical curve-
by-curve approach revealed differences between the two
approaches. The fitted regression curves obtained by the

Table 2 Comparison of the estimates provided by the joint
mixed model approach and the curve-by-curve approach

Parameter Disease stage Joint mixed model Curve-by-curve

Estimate Std. error Estimate Std. error

τ1 II 84.15 10.14 82.42 18.15

III 74.97 8.43 82.28 24.35

IV 97.12 15.78 128.45 32.58

V̇O2rest II 282.9 13.27 284.52 13.62

III 288.82 11.09 284.04 18.27

IV 266.79 19.25 283.08 24.44

V̇O2ss II 1029.6 55.17 1007.7 58.46

III 948.53 46.14 940.83 78.43

IV 737.07 79.94 815.41 104.93

τ2 II –3.77 0.28 –4.68 0.41

III –2.91 0.23 –3.74 0.54

V̇O2recovery II 276.03 7.51 301.3 18.8

III 242.53 9.8 276.03 25.22

IV 209.71 15.03 294.65 33.75

T1/2V̇O2 II 129.14 9.9 127.65 9.53

III 134.7 8.46 136.51 12.79

IV 178.82 15.27 161.6 17.11

τ1: growth rate of the mono-exponential V̇O2 function during 6MWT; V̇O2rest, V̇O2ss
and V̇O2recovery: oxygen level at rest, steady state during exercise and recovery,
respectively; τ2: steepness of the exponential decay during the recovery phase;
T1/2V̇O2: time for half decrease of the V̇O2 level in the recovery phase

curve-by-curve approach were shrunk towards the over-
all population mean curve, demonstrating the well-known
effect of attenuation on the marginal estimates as com-
pared to conditional estimates [10].
However, the key difference between the two

approaches was the reduction in estimated standard
errors when using a mixed model approach, which suc-
cessfully managed to remove a substantial part of the
between-patient variation in the fixed-effects estimates.
Our study indicates that the joint nonlinear mixed model
is to be preferred over the two-step curve-by-curve
approach. In general joint modeling should be preferred
if the between-patient variation is large as we would
expect it to be in many biological and medical studies
[10]. Another advantage of joint modeling is that curves
with few time points may still be fitted as estimation
in the mixed model borrows strength from curves with
many time points to curves with few time points. The
curve-by-curve approach may fail to utilize such scarce
data.
There is some evidence that misspecification of the

distributions of the random effects (as normal distribu-
tions) may not severely impact inference on fixed effects
parameters [31]. However, it is crucial to ensure approxi-
mately normally distributed residual errors. One approach
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is the transform-both-sides approach, which was origi-
nally proposed for ordinary nonlinear regression models,
but it may be extended to nonlinear mixed-effect regres-
sion models: it was used with the Box-Cox family of
power transformations, which include the logarithm [32].
A related approach is to model the residual variance in
terms of a covariate [33]. An entirely different approach
would be to consider models with other distributional
assumptions than normality. To our knowledge suchmod-
els are only readily available within a Bayesian frame-
work (e.g., the MONOLIX software [34]) and still they
involve considerable manual programming in specialized
software.

Conclusion
Recent statistical developments provide experimenters
with a variety of tools for fitting nonlinear mixed models.
Within the statistical environment R the package medrc
provides a comprehensive and flexible framework for the
parametrisation and inference of hierarchical nonlinear
mixed-effects regression models with various biological
and medical applications, as exemplified by an application
from pulmonary medicine.
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