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Abstract

Background: Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims
to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal
component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component
analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally.

Methods: We analysed temporal wastewater data from 42 European cities collected daily over one week in March
2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline
basis functions with three different smoothing parameters, along with PCA and WPCA with different mother
wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity

to missing data.

Results: The first three principal components (PCs), functional principal components (FPCs) and wavelet principal
components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of
basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using
Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data.

Conclusion: FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater
data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by
FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as

the most accurate approach when analysing WBE data.
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Background

Ecstasy (MDMA), along with cocaine, amphetamine and
methamphetamine, are central nervous system stimulants
that cause euphoria with feelings of increased confidence,
sociability and energy, making them popular drugs of abuse
[1, 2]. However, stimulant use has numerous negative
effects, such as insomnia, anxiety, mood disturbance,
violent behaviour and dependence, making them a public
health concern [3-5]. MDMA is not the most prevalently
used illicit drug in Europe [6, 7], but its high weekend use
compared to weekday use [8] has been a source of concern.
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Traditionally, estimates of the consumption of illicit
drugs have been derived from population-based surveys
and administrative databases such as medical records,
crime statistics, drug production and seizure data [6].
Population-based surveys are, however, often character-
ized by low response rates because of sensitive questions
[9], while the use of administrative databases presents
several methodological challenges since any analysis
targets selected populations [10-12]. Data gathered from
treatment facilities and drug-related programmes can
underestimate prevalence as the number of places in
treatment tend to be limited [10], while drug-related
offences may overestimate prevalence [11, 12].
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Wastewater-based epidemiology (WBE) is a novel
approach in drug use epidemiology. The concentration
of illicit drugs in wastewater is measured directly, thus
overcoming some of the problems related to surveys.
WBE has shown promising results at local, national and
international levels [8, 13, 14], and naive statistical ana-
lyses of wastewater data have demonstrated differences
between concentrations of drugs detected in wastewater
on weekdays and at weekends [15-17].

Recently, functional principal component analysis
(FPCA) has been explored as a statistical method for
analysing wastewater data [18]. The approach was found
not only to be well suited for extracting useful information
about the different drug loads during the course of a week,
but also extracted detailed information that would other-
wise be lost when using more traditional statistical
methods. It can easily be argued that functional data ana-
lysis (FDA) is a reasonable approach to analysing temporal
wastewater data [18], but there is a concern that the basis
functions of the FDA framework might be too smooth to
model the rapid temporal changes in drug load curves that
can occur over the course of a week, especially the change
between weekdays and weekend. Alternative, more flexible,
statistical approaches should also be explored.

Wavelets have a long tradition in time series analysis
[19]. Wavelet basis functions are localized in both
frequency and time domains simultaneously, allowing
for the extraction of features that are less smooth from
temporal data [20, 21]. Wavelet-based principal compo-
nent analysis (WPCA) has recently been applied success-
fully to analysis of foetal movement monitoring data [22,
23]. The temporally more flexible WPCA could be able
to detect rapid temporal changes in wastewater data.

The aim of this study was to explore whether the well-
established FDA framework is sufficiently flexible to model
temporal changes properly in wastewater data. We com-
pared the stability of results, applying traditional principal
component analysis (PCA) [24], FPCA [25, 26], and WPCA
[22, 23] using various basis functions and smoothing
approaches, and investigated the sensitivity to missing data.

Methods

Data material

Raw sewage samples were collected from the inlet of 47
sewage treatment plants in 42 cities from 21 European
countries, servicing a combined population of approxi-
mately 24.7 million inhabitants [27]. Samples were
collected from each location over seven consecutive days,
starting for 36 of the 42 cities on Wednesday 6th March
2013 and ending on Tuesday 12th March 2013. For the
remaining six cities sampling during this week was not
possible, and a different week in the same month was
chosen. At all locations, automated sampling devices were
used to collect subsamples over 24 h. These subsamples
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were then pooled to a 24 h composite sample. For cities
with more than one sewage treatment plant, results were
combined to a city average using a weighted mean [27].
Daily mass loads normalized by the population size of the
catchment (mg/10 000 people/day) were considered. Four
cities had no values above the limit of quantification
(LOQ) and were thus excluded, leaving a total of 38 cities
for further statistical analysis.

Statistical analysis

Data description

The unit of observation in the analysis is a seven day week
starting Wednesday and ending Tuesday. As wavelet ana-
lysis generally requires individual time series to have a
length of a power of two observations [21], we added the
first observation to the end of the time series, generating an
eight day time series, for ease of comparison. This
additional day is needed only for technical purposes and
does not have any impact on the results [21]. Missing data
across all the 38 cities was 2.2 %. As standard frequentist
functional data analysis (FDA) needs complete data sets for
analysis, we performed single imputation [28] using the
bootstrapping-based expectation maximization algorithm
[29], before proceeding with the analysis on the imputed
dataset. Moreover, the wastewater data was heavily skewed,
and the data was log-transformed prior to further analysis.

Principal component analysis
Principal component analysis (PCA) is a statistical meth-
odology which is used to reveal the internal structure of
the data in order to explain variability [24]. Let N
indicate the sets of observations, the core concept in
PCA is that of taking a linear combination of the vari-
able values within each set,

fi = Elef)’jx,'/,i = 17 ooy Z\[7 (1)
where f3; is a weighting coefficient applied to the ob-
served values x; of the j™ variable. In our data p=8
(days) and N =38 (cities). PCA implies identifying a sets
of normalized weights that maximize variation in fs,
where the greatest variance is explained by the first
coordinate, that is, the first principal component (PC),
and the second greatest variance on the second coordin-
ate, and so on. The PCs are mutually uncorrelated by
construction [24].

Using traditional PCA, each day of the week is consid-
ered a single variable and each PC resulting from the PCA
is defined as a linear combination of the original variables.
Since in PCA the load of a drug at a given day is assumed
to be independent of the drug load at any other day, be it
preceding or following days, the correlation between indi-
vidual days is not taken into account. This assumption is
however likely to be violated for wastewater data where
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consecutive days are naturally correlated in time. PCA on
temporal data will yield temporal PCs, but as intra-
correlation of individual time series is not modelled, the
temporal aspect of the data will be ignored, leading to a
lower ability to recover the true underlying signal of inter-
est [30]. So while PCA is a well-known, well-established
statistical method for extracting structure in the data,
results should be interpreted with care for temporal data.

Functional principal component analysis

FDA is a statistical methodology specifically developed for
analysing temporal data [25]. The first step of FDA is to fit
a mathematical function to the temporal observations,
and the statistical analysis is then performed on this math-
ematical function rather than the raw data. The time
series for the 38 European cities were converted into 38
continuous smooth curves using both Fourier and B-
spline basis functions. The optimal smoothing was found
using the generalized cross validation (GCV) criterion
[31]. A single choice of smoothing parameter for all cities
is usually recommended [32], but for exploratory purposes
we also fitted an optimal individual smoothing parameter
for each city. This smoothing removes the random day-to-
day variation, e.g. non-systematic error, measurement
error and normal fluctuations in the drug load.

Functional principal component analysis (FPCA) is an
extension of traditional PCA to functional data [25]. We
applied FPCA to identify the main temporal features
across the individual 38 fitted smooth curves. In the func-
tional context [25], where individual daily observations x;
are replaced with smooth functions xs), the discrete
index j of the multivariate analysis (eq. 1) is replaced by
the continuous index s, and the weights S; become
functions fS(s). Performing PCA in the functional context
then becomes taking a linear combination of functions,

£ o= / B(s) x(s)ds, i = 1, .., N, @)

where the summation over j in the traditional PCA (eq. 1)
is replaced by integrations over s (eq. 2). As in traditional
PCA, FPCA implies identifying a sets of normalized
weighting functions that maximize variation in f/s. These
mutually independent functional principal component
(FPC) curves explain the main modes of temporal variabil-
ity across the individual fitted curves for all cities. Also, a
score for each individual time series is provided, indicating
the intensity with which each of the FPC patterns is
present in that particular temporal ecstasy (MDMA) load
curve. FPCA is performed on continuous functions f{¢)
instead of the original data points and the correlation
between individual time points, here days of the week, is
modelled through the fitted basis function for each city.
The various types of basis functions applicable in the FDA
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framework gives flexibility in the types of temporal signals
that can be modelled, given that the temporal behaviour
of the data under study is sufficiently smooth.

Wavelet-based principal component analysis
Wavelets is a mathematical framework developed for
analysing high-dimensional data, such as time series or
images [19]. While FDA uses global basis functions, such
as trigonometric functions, wavelet basis functions are
localized in both time and space, allowing for modelling
of less smooth temporal data, even spikes [20, 21].
Wavelet basis functions are generally not expressed
explicitly as functions. Instead individual basis functions
are specified by recursive difference equations condi-
tioned on a mother wavelet [33]. The mother wavelet
Y(t) and a corresponding father wavelet ¢(¢) can be
interpreted as a high-pass and low-pass filter of the
original data respectively.

The wavelet decomposition of a function y(¢) is a
projection of that function onto a wavelet basis as

¥(t) = Zk ez gok pox(t)
+ 27 o Zkez djk wix(t), (3)

with Z the set of all integers, and @jo(f) and ¥ (t)
the basis functions [21]. The scalars cjo(t) and d(t),
which can be combined into a long coefficient vector B;,
then represent individual s temporal observations y(f)
in wavelet coefficient space.

Before proceeding with the wavelet principal component
analysis (WPCA), for each vector of wavelet coefficients
we applied wavelet shrinkage on the coefficients B; to filter
out the noise inherited from y,(¢) [34]. Numerous thresh-
olding rules exist. In this study, we considered universal
thresholding [35] and Bayesian [36] wavelet shrinkage.

Wavelet-based principal component analysis (WPCA)
is an application of standard PCA to the wavelet domain
[22]. Performing PCA on the smoothed B; coefficients in
the wavelet domain using eq. 1, results in a set of new
variables which are linear combinations of the smoothed
wavelet coefficients B;, PCA in wavelet domain as
applied here thus assumes independency of the coeffi-
cients B;. Intra-correlation of the individual time series
is taken care of during the transformation process from
time domain to wavelet domain (eq. 3). Back transform-
ing the PCs obtained in wavelet domain to time domain
gives the wavelet principal components (WPCs). The
process also provides a score for each individual y(¢)
indicating the intensity with which each of the WPC
patterns is present in that particular temporal MDMA
load curve. While WPCA is temporally more flexible
than FPCA, it is also technically less tractable.
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Bootstrapping

To compare analytical results from the different FPCA
approaches, we constructed confidence intervals (Cls) using
non-parametric bootstrapping [37, 38]. We performed
FPCA on 1000 re-samples obtained by a random sample
with repetition from the original 38 temporal data sets,
calculating the pointwise empirical 95 % CI for each FPC.
The procedure was repeated for both Fourier and B-spline
basis functions, as well as no smoothing, common-optimal
smoothing and individual-optimal smoothing parameters.
Similar analyses were also performed for WPCA.

Sensitivity to missing data

In order to evaluate the robustness of FPCA to missing
values we performed the FPCA for Fourier and B-spline
basis functions and for the three different smoothing
parameters, deleting at random 5, 10, 15 and 20 % of the
original observations. Similar analyses were also per-
formed for WPCA.

Values below LOQ

In wastewater-based epidemiology (WBE) the common
practice of handling values below the LOQ is to replace
those values with LOQ/2 [27]. This approach will, how-
ever, replace missing information with an identical value,
that is, it will replace uncertainty with extreme precision
[39]. We explored the consequence of this approach by
comparing it to a more rigorous statistical procedure,
namely replacing values below LOQ by random draws
from a uniform distribution on the interval [0, LOQ].
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Software

All analyses were performed in R 3.2.2 [40]. The imputation
was performed using Amelia II and the amelia package
[41] and the FPCA using package fda [26]. No R package
for WPCA currently exists, and WPCA was performed by
building on features of package wavethresh [21].

Results

The original data for each city load of ecstasy (MDMA)
throughout the week, along with the day-by-day average,
is shown in Fig. 1. The data indicate a slight increase in
the drug load at the weekend.

Principal component analysis

Results from principal component analysis (PCA) on
raw data are shown in Fig. 2a. The first three principal
components (PCs) together explained 96.4 % of the total
variation between cities. The first PC explained 86.9 %
of the total variation and was positively and equally
correlated with the load of MDMA on each day of the
week. The second PC explained 7.0 % of the total vari-
ation and was positively and negatively correlated with
the loads on Sunday/Monday and Wednesday/Thursday
respectively. The third PC explained 2.4 % of the total
variation and was most strongly correlated with the
loads on Friday/Saturday.

Functional principal component analyses

Fourier basis functions

For Fourier basis functions using different smoothing pa-
rameters, the first three functional principal components

log(mg/day/10000 inhabitants)

Fig. 1 Raw data

Wed Thu Fri Sat

*concentration values <LOQ replaced by a random draw from a uniform distribution on the interval [0, LOQ]

Sun Mon Tue Wed
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(A) Principal component analysis on raw data
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(F) Daubechies least asymmetric wavelet
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Fig. 2 (See legend on next page.)




Salvatore et al. BVIC Medical Research Methodology (2016) 16:81

Page 6 of 12

(See figure on previous page.)

Fig. 2 Principal component analysis (PCA), functional principal component analysis (FPCA) and wavelet-based principal component analysis
(WPCA). Panel a — Principal components (PCs) resulting from a PCA on raw data; Panel b — Functional principal components (FPCs) resulting from
a FPCA using Fourier basis functions and three different smoothing parameters; Panel ¢ — Functional principal components (FPCs) resulting from
a FPCA using B-splines basis functions and three different smoothing parameters. Panel d- Wavelet principal components (WPCs) resulting from
a WPCA using the Haar mother wavelet and three different shrinkage rules; Panel e — Wavelet principal components (WPCs) resulting from a
WPCA using the Daubechies extremal phase mother wavelet and three different shrinkage rules; Panel f — Wavelet principal components (WPCs)
resulting from a WPCA using the Daubechies least asymmetric mother wavelet and three different shrinkage rules

(FPCs) are shown in Fig. 2b and supplementary material
(Additional file 1: Figure S1 a-c). The first functional prin-
cipal component (FPC1) explained 88.1-90.8 % of the tem-
poral variation between cities, slightly more than PCA,
representing the general level of MDMA in the wastewa-
ter. The second FPC (FPC2) explained 6.4-6.9 % of the
temporal variation, representing the difference between
the midweek level and the weekend peak; cities with a
negative FPC2 score had a large difference between the
midweek level and the weekend peak of MDMA, with a
high level of MDMA at the weekend, while cities with a
positive FPC2 score had a small difference between the
midweek level and weekend peak of MDMA, with a
smoothed load throughout the week. The third FPC
(FPC3) explained 2.1-2.6 % of the temporal variation, repre-
senting the timing of the weekend peak; cities with a nega-
tive FPC3 score had an earlier weekend peak, while cities
with a positive FPC3 score had a later weekend peak.

B-spline basis functions

For the B-spline basis functions using different smoothing
parameters, the first three FPCs are shown in Fig. 2c and
supplementary material (Additional file 1: Figure S1 d-f).
The first FPC explained 87.5-92.1 % of the observed tem-
poral variation between cities representing the general level
of MDMA in the wastewater, while the second and third
FPCs explained 5.8-6.8 % and 1.7-2.9 % of the total vari-
ation, representing the difference between the midweek
level and the weekend peak, and the timing of the weekend
peak respectively. The interpretation of the first three FPCs
were the same as those for Fourier basis functions, but
when using B-splines the third FPC varied quite a lot
depending on the choice of the smoothing parameter.

Wavelet-based principal component analysis

Figure 2d-f show the first three wavelet principal compo-
nents (WPCs) for each of the three mother wavelets.
The temporal patterns are qualitatively consistent with
those from PCA and functional principal component
analysis (FPCA), but the WPC patterns seem to be
somewhat more smoothed throughout the week.

For the Haar wavelet (Fig. 2d), the first three WPCs
together explained 94.8-99.6 % of the total variation
between cities. The first WPC (WPC1) explained 84.5-
87.2 % of the total variation, representing the general

level of MDMA in the wastewater. The second WPC
(WPC2) explained 7.3-9.2 % of the temporal variation,
showing a negative peak on Wednesday/Thursday and a
positive peak on Sunday respectively, representing the
difference between the midweek level and the weekend
peak. Finally the third WPC (WPC3) explained 3.1-3.2 %
of the temporal variation, with a peak on Friday/Satur-
day, representing the timing of the weekend peak.

For Daubechies extremal phase wavelet (Fig. 2e), the
first three WPCs explained 96.1-97.9 % of the total vari-
ation between cities. WPC1 explained 81.5-82.6 % of the
total variation, representing the general level of MDMA in
the wastewater. WPC2 explained 12.7-12.8 % of the tem-
poral variation, showing a negative peak on Wednesday
and a positive peak on Sunday, representing the difference
between the midweek level and the weekend peak. Finally
WPC3 explained 1.9-2.4 % of the temporal variation, with
a negative peak on Tuesday and a positive peak on Friday/
Saturday, representing the timing of the weekend peak.

For Daubechies least asymmetric wavelet (Fig. 2f), the
first three WPCs explained 95.9-98.2 % of the total vari-
ation between cities. WPC1 explained 83.0-84.4 % of the
total variation, representing the general level of MDMA
in the wastewater. WPC2 explained 10.1-10.8 % of the
temporal variation, with a negative peak on Wednesday
and a positive peak on Sunday, representing the differ-
ence between the midweek level and the weekend peak.
Finally WPC3 explained 2.8-3.0 % of the temporal
variation, with negative peaks on Monday/Tuesday and
positive peaks on Friday/Saturday, representing the
timing of the weekend peak.

Bootstrapping

The bootstrapping confidence intervals (Cls) for Fourier
and B-spline basis functions for each FPC and smooth-
ing parameter are shown in Fig. 3.

For the Fourier basis function, the bootstrapping
shows that the FPCs are quite stable for each choice of
smoothing parameter (Fig. 3a-c). The 95 % Cls are
narrower for the first FPC than for the second and third
FPCs. The results further indicate that common-optimal
smoothing (Fig. 3b) is the best choice when using
Fourier basis functions as the FPCs fluctuate less and
the Cls are narrower, especially for the third FPC.
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(A) Functional principal component analysis using Fourier basis functions with no smoothing and 1000 bootstrapping samples
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(D) Functional principal component analysis using B-spline basis functions with no smoothing and 1000 bootstrapping samples
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(E) Functional principal component analysis using B-spline basis functions with common-optimal smoothing and 1000 bootstrapping samples
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(F) Functional principal component analysis using B-spline basis functions with individual-optimal smoothing and 1000 bootstrapping samples
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*concentration values <LOQ replaced by a random draw from a uniform distribution on the interval [0, LOQ]

Fig. 3 (See legend on next page.)




Salvatore et al. BVIC Medical Research Methodology (2016) 16:81

Page 8 of 12

(See figure on previous page.)

B-splines basis functions and individual-optimal smoothing parameter

Fig. 3 Bootstrapping confidence intervals (Cls) resulting from functional principal component analysis (FPCA) on 1000 re-samples obtained by

a random sample with repetition from the original data sets. Panel a — Bootstrapping Cl resulting from a FPCA using Fourier basis functions and
no smoothing parameter; Panel b — Bootstrapping Cl resulting from a FPCA using Fourier basis functions and common-optimal smoothing
parameter; Panel ¢ — Bootstrapping Cl resulting from a FPCA using Fourier basis functions and individual-optimal smoothing parameter; Panel

d - Bootstrapping Cl resulting from a FPCA using B-splines basis functions and no smoothing parameter; Panel e — Bootstrapping Cl resulting
from a FPCA using B-splines basis functions and common-optimal smoothing parameter; Panel f — Bootstrapping Cl resulting from a FPCA using

For the B-spline basis functions, the bootstrapping in-
dicates that the FPCs are less stable compared to the
Fourier basis (Fig. 3d-f). Also, in this case, the 95 % Cls
are narrower for the first FPC than for the second and
third FPCs. Again common-optimal smoothing (Fig. 3e)
appears to be the best choice when using B-spline basis
functions as the FPCs fluctuate less and the ClIs are nar-
rower, especially for the third FPC.

Results for WPCA were similar to those of FPCA (not
shown).

Sensitivity to missing data

For the Fourier basis functions, the analyses indicate that,
without smoothing, the FPCs are stable up to 5 % missing
data (Fig. 4a), while for individual-optimal smoothing and
for the often recommended common smoothing the FPCs
are stable up to 15 % missing data (Fig. 4b-c).

For the B-spline basis functions, the analyses indicate
that without smoothing the FPCs are not stable even at
5 % missing data (Fig. 4d), while for individual-optimal
smoothing and the recommended individual-optimal
common smoothing the FPCs are stable up to 10 %
missing data (Fig. 4e and f). Considerably more fluctu-
ation is found in each FPC for B-spline basis functions
compared to Fourier basis functions.

Results for WPCA were similar to those of FPCA (not
shown).

Values below LOQ

The temporal patterns extracted by FPCA by imputation
of the concentration values below the limit of quantifica-
tion (LOQ) using the fixed value of LOQ/2 or a random
draw from a uniform distribution are qualitatively the
same, but temporally shifted (not shown). However, the
temporal shift in those patterns is balanced by the city
scores on each FPC, indicating that the crude imputation
by LOQ/2 works reasonably well in practical applications.

Discussion

In this study, we have explored functional principal com-
ponent analysis (FPCA) as a tool for analysing temporal
wastewater data, comparing it to traditional principal
component analysis (PCA) and the temporally more flex-
ible wavelet PCA (WPCA), as well as exploring the
robustness of the extracted FPCA patterns and sensitivity

to missing data. The results were generally consistent
between PCA, FPCA and WPCA. WPCA did not detect
any rapid temporal changes in the data. FPCA thus ap-
pears not to smooth away essential information in the
temporal data, and there is no need to go beyond FPCA
to the less tractable WPCA. The analyses establish FPCA
using Fourier basis functions and common optimal
smoothing as a precise, flexible and stable method for ana-
lysing wastewater-based epidemiology (WBE) data.

WBE provides an objective estimate of the use of a
specific drug for all people contributing to the wastewater
treatment plant in a catchment area over a time period.
Recently the advantages of functional data analysis (FDA)
over the traditional statistical analyses usually applied to
WBE data for information extraction have been demon-
strated [18]. FDA is analytically tractable and a well-
established mathematical framework for temporal data
[25], and a series of R packages for calculations exist [26].
This greatly assists the introduction of more advanced
statistical analysis to a novel field within the health
sciences, and the initial concern that FDA might over-
smooth the underlying temporal process in wastewater
data was shown to be non-existent. FDA is indeed suffi-
ciently flexible and stable for the analysis of WBE data.

In this work, we have investigated FDA for WBE fur-
ther. First comparing various FPCA using both Fourier
and B-spline basis functions [25, 26] to crude PCA [24]
and the more temporally flexible WPCA [22, 23]. We
further explored the stability of the FPCA results
through bootstrapping, and sensitivity to missing data by
randomly deleting 5, 10, 15 and 20 % of the original
data. FPCA using Fourier basis functions stood out as
the most accurate method. Performing the same analyses
for WPCA gave similar results, but as WPCA was found
to not add any new insight beyond FPCA, results from
these further analyses are not presented.

A Fourier basis is particularly useful for periodic data,
where the temporal pattern is stable, there are no strong
local features and the curvature of the underlying process
tends to be of the same order everywhere [25]. The single
week time period often found in WBE data, and investi-
gated in this work, lies on the boundary between a peri-
odic and non-periodic temporal process. In the latter
scenario, B-spline basis functions tend to perform better
[25], combining polynomials with greater flexibility.
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Fig. 4 Sensitivity to missing for functional principal component analysis (FPCA) results. Panel a — Functional principal components (FPCs) resulting
from a FPCA using Fourier basis functions and no smoothing parameter for 5, 10, 15, 20 % of missing; Panel b — Functional principal components
(FPCs) resulting from a FPCA using Fourier basis functions and common-optimal smoothing parameter for 5, 10, 15, 20 % of missing; Panel

¢ - Functional principal components (FPCs) resulting from a FPCA using Fourier basis functions and individual-optimal smoothing parameter for
5,10, 15, 20 % of missing; Panel d — Functional principal components (FPCs) resulting from a FPCA using B-splines basis functions and no
smoothing parameter for 5, 10, 15, 20 % of missing; Panel e — Functional principal components (FPCs) resulting from a FPCA using B-splines basis
functions and common-optimal smoothing parameter for 5, 10, 15, 20 % of missing; Panel f — Functional principal components (FPCs) resulting
from a FPCA using B-splines basis functions and individual-optimal smoothing parameter for 5, 10, 15, 20 % of missing

Using Fourier basis functions, the patterns shown by
each functional principal component (FPC) are consist-
ent regardless of the choice of smoothing. A common
optimal smoothing parameter did, however, lead to an
increase in the total variation explained by the first FPC
(FPC1). Using B-splines temporal patterns were mainly
the same as those found using a Fourier basis. However,
the third FPC appears less capable of modelling the dif-
ference between weekdays and weekend loads, and there
were larger differences between the different choices of
smoothing parameter. Overall common-optimal smooth-
ing seemed to perform better than ‘no smoothing’ or
individual-optimal smoothing, where some spurious
variability was detected.

Naive statistical analyses have pointed to a significant dif-
ference in wastewater drug loads between weekdays and the
weekend [15-17]. FDA does however indicate a smooth
transition between weekdays and the weekend [18], blurring
the lines between which days actually constitute the week-
end. It was, therefore, a concern that the FDA approach
might over-smooth the data, so we explored WPCA as an
alternative. Wavelet basis functions, unlike Fourier and B-
spline basis functions, are able to model more extreme
behaviour within a temporal phenomenon, even spikes [22,
23]. They work well with discontinuity or rapid changes,
combining the frequency-domain of the Fourier series with
the time-localized features of splines [21], and should thus
be able to model a more rapid change between weekdays
and weekend, should this rapid change indeed exist.

While wavelets are flexible, wavelet basis functions are
not expressed explicitly as functions, with individual
basis functions specified by recursive difference equa-
tions conditioned on a mother wavelet, making the
wavelet basis system less tractable than Fourier or B-
spline bases [22].

The temporal features extracted by wavelet principal
components (WPCs) using the Haar wavelet indicate a
principal difference between weekdays and weekend
loads. Indeed, the analysis almost points to a possible
dichotomization of the data in this sense. While this
would be in line with our society’s cultural a priori defin-
ition of weekdays and weekend, the day-by-day results
as found by crude PCA indicates that this might be an
oversimplification. All analyses other than Haar wavelets

indicate a smooth transition between weekday and week-
end loads.

Results using Daubechies’ wavelets are similar to those
found by traditional PCA on the raw data, except the
first WPC explained more of the temporal variation
from the ecstasy (MDMA) curves. Generally, in the
WPCA the choice of the thresholding rule when
performing the wavelet shrinkage had relatively little im-
pact on the WPCA results.

Even though the patterns extracted by PCA, FPCA
and WPCA were qualitatively consistent, the interpret-
ation of the principal components (PCs) and WPCs can
be difficult to compare to the FPCs. In PCA, individual
days are assumed to be independent variables, that is,
the drug load at a given day is independent of the drug
load at any other day, so PCA does not take the possible
correlation between consecutive days of the temporal
data set into account. PCA on WBE is generally not
advised, since it treats days as independent entities with-
out controlling for the intra-correlation between them,
ignoring the fact that the seven days constitute a single
entity, a week. Further, WPCA is an extension of trad-
itional PCA, but less direct than FPCA. In the version of
WPCA applied here, PCA is performed on the smoothed
wavelet coefficients in wavelet domain, where the wave-
let coefficients constitute the independent variables for
the subsequent PCA, before back calculating each WPC
to time domain. As a result the patterns of the WPCs do
not have the same scale as the PCs and FPCs, making
direct comparison between the methods difficult.

The WPCA is not only less mathematically tractable
than the FPCA approach. The epidemiological interpret-
ation of the FPCs is often easier as the FPC curves can
be illustrated by plots showing how an individual curve
differs from the mean curve if the FPC scores are high
or low (Additional file 1: Figure S1), rather than mere
plotting of the FPC curves [26].

When exploring FPCA further, the bootstrapping
showed that, using Fourier basis, the confidence inter-
vals (CIs) are narrower than all the other cases, and
when exploring sensitivity to missing data we found that
results are stable even with 15 % missing data.

Both this and earlier explorations of FDA for WBE data
are restricted by having only one week of observations.
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Longer observation times would allow for statistical
methods that could separate long-term temporal changes
from the weekly pattern, such as the Fourier Poisson time-
series regression model recently applied to suicide counts
[42]. Similarly, more frequent sampling would allow for
assessing changes throughout both day and week.

Conclusions

In this paper we have explored FPCA as a method for
analysing temporal wastewater data. FPCA extracted all
temporal features discovered by the temporally more
flexible wavelet approach, overcoming the initial concern
of over-smoothing the underlying temporal process. The
FPCA approach was not particularly sensitive to the
choice of basis function or to missing data, but Fourier
basis functions with common-optimal smoothing par-
ameter generally performed better.

Additional file

Additional file 1: Figure S1. Functional principal components (FPCs)
resulting from functional principal component analysis (FPCA). Shows the
mean of the fitted curves (solid line) and how the shape of an individual
curve differs from the mean curve if a multiple of the principal component
curve is added to (+ +) or subtracted from (- -) the mean curve. Panel

A —First three FPCs resulting from a FPCA using Fourier basis functions and
no smoothing parameter; Panel B — First three FPCs resulting from a FPCA
using Fourier basis functions and common-optimal smoothing parameter;
Panel C - First three FPCs resulting from a FPCA using Fourier basis
functions and individual-optimal smoothing parameter; Panel D — First three
FPCs resulting from a FPCA using B-splines basis functions and no
smoothing parameter; Panel E — First three FPCs resulting from a FPCA
using B-splines basis functions and common-optimal smoothing parameter;
Panel F - First three FPCs resulting from a FPCA using B-splines basis
functions and individual-optimal smoothing parameter. (PDF 27 kb)
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