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How large are the consequences of ® e
covariate imbalance in cluster randomized

trials: a simulation study with a continuous
outcome and a binary covariate at the

cluster level

Mirjam Moerbeek ® and Sander van Schie

Abstract

Background: The number of clusters in a cluster randomized trial is often low. It is therefore likely random
assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that
quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard
error bias and on power to detect treatment effects.

Methods: The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are
investigated by means of a simulation study. The factors in this study are the degree of imbalance, the
covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and
measured at the cluster level: the outcome is continuous and measured at the individual level.

Results: The results show covariate imbalance results in negligible parameter bias and small standard error
bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the
sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed
model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard
error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too
low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the
required number of clusters to achieve a desired power level is smallest.

Conclusions: The possibility of covariate imbalance should be taken into account while calculating the sample
size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments
should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified,
be actually measured and included in the statistical model to avoid severe levels of parameter and standard error
bias and insufficient power levels.

Keywords: Cluster randomization, Covariate imbalance, Unadjusted linear mixed model, Adjusted linear mixed
model, Simulation study
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Background

Randomized controlled trials are considered the gold
standard for evaluating the effect of a new treatment
relative to an old treatment, a placebo or no treatment
at all. A necessary (but not sufficient) condition for the
estimate of the treatment effect to be unbiased is that
subjects in a given treatment group are not contami-
nated by those in another. This condition is often not
fulfilled in trials that are offered in naturally existing
groups, such as schools, general practices or communities,
especially so when the treatments rely on interpersonal
communication in risk reduction sessions and peer pres-
sure groups [1]. For this reason, cluster randomization is
often preferred above individual randomization. With
cluster randomized trials complete clusters are random-
ized to treatment conditions and all subjects within a clus-
ter receive the same treatment. So, cluster randomized
trials may reduce logistical and administrative costs. Com-
munity interventions, such as mass media interventions
using TV, are directed towards the whole cluster and
cannot be delivered at the individual level. In such trials
there is no alternative to cluster randomization. Cluster
randomization has become popular in the medical, health
and behavioural sciences over the past decades and
relevant textbooks on this research design are [2—-6].

The number of clusters in a cluster randomized trial is
often low [7]. As a consequence, random assignment of
clusters to treatment conditions does not ensure the
treatment groups are comparable at baseline with re-
spect to all variables at the subject and cluster level that
have an effect on the outcome variable. In other words,
it is likely there is covariance imbalance at baseline. It is
therefore good practice to identify such variables based
on findings in the literature or experts’ expectations, to
actually measure them and to include them as covariates
in an adjusted linear mixed model. As such, an unbiased
estimate of the effect of treatment relative to the control
can be obtained. In addition to that, part of the residual
variance at the cluster and/or subject level is explained
by the covariate, which has an advantageous effect on
precision and power [8], especially so when the covariate
has a strong effect on the outcome. The drawback, how-
ever, is that this comes at the cost of degrees of freedom,
which may have a decreasing effect on the power of the
test on treatment effect, especially when the number of
clusters is small. Furthermore, it is known that less effi-
cient estimates of the treatment effect, and hence lower
power levels, are obtained with larger degrees of covari-
ate imbalance [9, 10]. Finally, covariate imbalance should
not only be taken into account while analysing the data
but also while performing an a priori power analysis to
calculate the required number of clusters to achieve a
desired power level. Ignoring the possibility of covariate
imbalance results in an underestimate of the required
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number of clusters and hence insufficient power, even
when the covariates are adjusted for in an adjusted linear
mixed model.

In practice it often occurs not all relevant covariates
are known and/or not all of them have been measured.
As a consequence, type I or type II error rates may be
inflated. The degree of inflation depends on the preci-
sion of the treatment effect estimator, which is affected
by the strength of the covariate effect and degree of
covariate imbalance. A recent study quantified the effect
of covariate imbalance on bias and precision of the treat-
ment effect estimator and the power of the test on treat-
ment effect for simple randomized trials [11]. With such
trials subjects are randomly assigned to treatment condi-
tions and there is no nesting of subjects within clusters.
One continuous covariate was considered and the
adjusted linear model was compared to the unadjusted
linear model, which does not include the covariate. The
conclusion was that, while the adjusted linear model
produces unbiased estimates of the treatment effect, the
unadjusted linear model is subject to bias. The un-
adjusted linear model was found to be less precise than
the adjusted linear model. Finally it was found that the
power of the unadjusted linear model can be much
larger than the anticipated level at certain levels of
imbalance.

The number of clusters in a cluster randomized trial is
typically much lower than the number of subjects in a
simple randomized trial, hence covariance imbalance is
more likely to occur in cluster randomized trials than in
simple randomized trials. For this reason it is worthwhile
to extend the study in reference [11] to cluster random-
ized trials. We study to what extent a loss of power is
achieved when the power calculation is done under the as-
sumption of covariate balance, while the randomization
process results in covariate imbalance. In other words, we
study the loss of power when the unadjusted linear mixed
model is assumed in an a priori power analysis but the
adjusted linear mixed model is used for data analysis. In
addition to that, we investigate the effects of ignoring rele-
vant covariates while analysing the data. Stated differently,
we study the size of the parameter and standard error bias
when the unadjusted linear mixed model is used to ana-
lyse the data while the data are generated by an adjusted
linear mixed model. Also, we study the power levels
achieved with the unadjusted linear mixed model.

The focus is on a covariate at the cluster-level. Such a
covariate may be a cluster-level characteristic, such as
school-type (e.g. public versus private) in school-based
intervention studies, or an aggregate, such as a school’s
mean socio-economic status. Associations between the
covariate and outcome tend to be much stronger be-
tween than within clusters [12, 13]. Furthermore, it is
often less expensive and less time-consuming to measure
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cluster-level covariates than subject-level covariates, sim-
ply because the number of clusters is always (much)
smaller than the number of subjects.

The data obtained from cluster randomized trials have
a multilevel data structure with subjects nested within
clusters. Such data have to be analysed by using the
mixed model. Ignoring the multilevel data structure re-
sults in too liberal tests with respect to the effect of
treatment [14]. Our approach to study the effects of co-
variate imbalance is a simulation study in which various
sizes of the covariate effect and degrees of covariance
imbalance are considered. Cluster size and the intraclass
correlation coefficient (i.e. the proportion variance at the
cluster level) are known to have an effect on precision
and power in cluster randomized trials [15], hence vari-
ous values of these two factors are considered as well.

Mixed model for cluster randomized trials

To put things in context a school-based intervention
study to evaluate the effect of a new type of smoking
prevention intervention on smoking behaviour of sec-
ondary school students is used as an example. Secondary
schools are randomly assigned to treatment conditions
and all students within a school receive the same condi-
tion. The covariate we consider is educational level; it is
binary and measured at the level of the secondary
school: vocational schools train their students for spe-
cific vocations while high schools prepare their students
for follow-up education.

The outcome we consider is continuous with higher
scores related to higher levels of smoking abstinence. It
is very likely scores of students within the same school
are correlated, for instance as a result of mutual influ-
ence and shared norms towards smoking. Ignoring such
correlation results in overoptimistic conclusions with re-
spect to the effect of intervention [14]. To account for
such dependencies the adjusted linear mixed model
should be used. The score y;; of student i in school j is
given by

¥i = Bo + 1% + Bazi + uj + ey (1)

Treatment condition is denoted x; and has the value 0
for the control and 1 for the intervention. The covariate
is denoted z; and has the value 0 for vocational schools
and 1 for high schools. Note that both x; and z; have a
subscript j but not i since they vary between but not
within schools. The regression weights /3, 51 and /3, are
the intercept and the effect of the intervention and co-
variate, respectively. The random school-level effect #; is
the discrepancy of the mean in school j and the mean
score in its treatment condition and school type, and the
random subject-level error term e; is the discrepancy of
the score of student i and the mean score of its school ;.
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Both random effects are assumed to be independent of
each other and to follow a normal distribution with zero
mean and variances o> and ¢2. The total error variance
?=0>+0> is the sum of these two variance
components.

On the basis of the adjusted linear mixed model (1)
the treatment effect is the difference in expected out-
comes across the two treatments, corrected for the
covariate:

By = My, ~Hy. B, (ﬂz, _/"zc)' (2)

Here, 4, and p, are the expected outcome scores in
1 (e}

the intervention and control condition, and 4, and p,_
are the expected covariate scores in the intervention and
control conditions. The expectations # can be replaced
by their observed means as calculated from a sample to
obtain an estimate of the treatment effect. The standard
error of this estimator is

N [ 024+ mo?
Se(ﬂl) nl”Z(l—szcz)’ (3)

with 7, and n, the common school size and number of
schools, and p,, the correlation between treatment condi-
tion and the covariate. The larger this correlation, the lar-
ger the degree of covariate imbalance. Eq. (3) shows that
the standard error se (f,) becomes larger when P,
increases. In other words, covariate imbalance results in a
loss of efficiency. The factor 1/(1-p2)) is the variance infla-
tion factor and it is the same equation as for designs with-
out nesting of subjects in clusters [9]. The standard error
(3) is estimated by replacing the variance components and
the correlation between treatment and the covariate by
their estimates 62 and 62 and 7.

The test statistic for the test on treatment effect is

calculated as ¢ =p, /se(ﬁl) and follows a central ¢

distribution with #n, -3 degrees of freedom under the
null hypothesis of no treatment effect Hy:5; =0. The
statistical power is the probability of rejecting the null
hypothesis when it is false. The number of clusters to
achieve a power level of at least 1 - in a test with a
two-sided alternative hypothesis and type I error rate a
is calculated as

2 2 [ 71 2\ 2
n2:40e+”12‘7u<1“/2+ 1/3>- ()
nl(l_pxz) /))1

This will always give a non-integer value which has to
be rounded upwards to the nearest integer to achieve
the desired power level.

In practice it often occurs not all relevant covariates
are measured, hence they cannot be included into the
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regression model. The unadjusted linear mixed model
ignores the covariate z;:

9y =B+ B+ + ¢ @

The model parameters are now indicated by an aster-
isk to distinguish them from their counterparts in the
adjusted linear mixed model (1). The error variances
also have an asterisk: 0,2 and ¢, and again the errors
are assumed normally distributed with zero mean. As z;
varies between but not within schools, it only explains
part of the error variance at the between-school level,
hence 0,> =02, 0,> >0>and 0,° + 0,% > 0% + 0=

On the basis of the unadjusted linear mixed model the
treatment effect is the difference in expected outcomes
across the treatments:

ﬁi = :uy,_ruyc (6)

Here, 4, and p, are the expected outcomes in the

intervention and control condition. Replacing the expec-
tations y by their observed means as calculated from a

sample provides an estimate /3”{ of the treatment effect.
A comparison of Egs. (2) and (6) shows that ignoring
the covariate results in a biased estimate of the effect of
treatment, unless the covariate has no effect on the
outcome (i.e. B =0) or it is balanced across treatment
conditions (i.e. 4, =u, ). The standard error of the

estimator /5] is

- 0'*24—}110'*2
se(B1) = [P0 e (7)

and it is estimated by replacing the variance components
by their estimates 67> and 67%. The test statistic for the
test on treatment effect is calculated as ¢ = f; /se(f;
and follows a central ¢ distribution with 7, — 2 degrees of
freedom under the null hypothesis of no treatment effect
Hy: 81 =0. Note that there is one more degree of free-
dom than in the adjusted linear mixed model since the
effect of the covariate is not estimated.

For simplicity it is assumed that half of the schools
are vocational schools and the others are high
schools. Furthermore, half of the schools are ran-
domly assigned to receive the intervention, which im-
plies the other half receives the control. Let us
assume the intervention results in higher outcome
scores (i.e. 51 >0) and that higher outcome scores are
observed in high schools than in vocational schools
(i.e. B2>0). Let us define positive imbalance as a
situation where, by chance, the random assignment
results in more than half of the schools in the inter-
vention condition being high schools. This would
imply ignoring the covariate in the statistical model
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results in an overestimated treatment effect. Negative
imbalance is the opposite situation and the treatment
effect is underestimated.

The number of high schools in the intervention con-
dition follows from a hypergeometric distribution with
parameters #, (the total number of schools), %nz (the
number of high schools) and %1’12 (the number of schools
that are randomized to receive the intervention). The
expectation of the hypergeometric distribution is 5,
which implies that both treatment groups consist of
as many high schools as vocational schools. The
degree of covariate imbalance is expressed by quan-
tiles from the hypergeometric distribution rather than
the percentage high schools in the intervention condi-
tion. As such we adopt the approach by Egbewale,
Lewis and Sim [11] to express the degree of covariate
imbalance. The percentage high schools in the inter-
vention condition for a given quantile depends on the
total number of schools. For the 95" quantile, for in-
stance, this percentage is equal to 70 when the total
number of schools is 20, and it is equal to 56 when
the total number of schools is 200. This illustrates
large percentage deviations from the expectation are
more likely to occur for a small number of clusters
than for a large number of clusters.

Methods

A simulation study was conducted to gain further
insight in the size of the effects of covariate imbal-
ance in cluster randomized trials. Data generation
and parameter estimation were done in R [16].
Parameter estimation was done using the function
lme from the package nlme for linear and non-
linear mixed effect models [17]. Estimation was done
by means of restricted maximum likelihood since it
produces less biased estimates of the variance com-
ponents than full information maximum likelihood, es-
pecially when the number of clusters is small.

Four factors are considered in the simulation
study: cluster size, intraclass correlation coefficient,
covariate effect size and degree of covariate imbal-
ance. For cluster size the values 5, 30 and 50 were
used. These values are common in respectively
households, school classes and departments in hospi-
tals or companies, and were also used by Maas and
Hox [18]. Note that the cluster size did not vary
across clusters; the implication of varying cluster
sizes is discussed later on. The intraclass correlation
coefficient p measures the proportion of the variance
that is located at the cluster level. It is calculated as
p=0-/(02+02), and the values 0.01, 0.05, and 0.1
were used in this simulation study. These values
cover a wide range of plausible values, with small
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values common in large clusters, such as hospitals, and
large values common in small clusters, such as house-
holds. Without loss of generality the total error variance
was fixed to ¢® =02 + 02 =1. The covariate effect size Ba
had levels 0.2, 0.5, and 0.8, which correspond to small,
medium and large effect sizes [19]. We do not consider
the case where the covariate has no effect (i.e. 5, =0) be-
cause the consequences of ignoring covariate imbalance
are expected to be negligible. The degree of covariate
imbalance is expressed as quantiles of the hypergeo-
metric distribution and the following values were
used: 0.025, 0.05, 0.1, 0.5, 0.9, 0.95, and 0.975. Values
above 0.5 imply positive imbalance (i.e. too many
high schools in the intervention condition). The value
0.5 implies perfect balance of the covariate across the
treatments and is also considered.

In total 3*3*3*7 =189 combinations of factor levels
were considered and these are called simulation condi-
tions henceforward. For each simulation condition 5000
data sets were generated from the adjusted linear mixed
model and analysed by means of the adjusted linear
mixed model and unadjusted linear mixed model. For
each combination of the cluster size and intraclass cor-
relation coefficient the required number of clusters to
achieve a power level 1-5=0.8 to detect a medium
treatment effect 51 =0.5 in a test with a two-sided alter-
native hypothesis and a=0.05 was calculated from (4).
This gives a non-integer value which is rounded upwards
such that an even number of clusters is available per
treatment condition. Only when an even number of clus-
ters per treatment is used balance of the binary covariate
at the cluster level can be achieved. This is important
because we want to include perfect balance of the covar-
iate across the treatments in our simulation study (see
above). Due to rounding upwards to integer values the
nominal power levels were somewhat larger than 0.8,
and they also varied across the simulation conditions. In
practice the possibility of covariate imbalance is often ig-
nored while calculating the required number of clusters.
The required number of clusters is therefore calculated
under the assumption of covariate balance (i.e. p,,=0),
but data are generated under various degrees of imbal-
ance and covariate effect size to study the effect of
covariate imbalance on parameter estimates and em-
pirical power.

Various criteria were used to evaluate the effects of
covariate imbalance. The primary focus was on the
treatment effect, since this is the parameter of main
interest in intervention research. The percentage param-
eter bias is defined as

parameter bias = 100% * M, (8)
1
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where /;’1 is the estimated treatment effect averaged
across the 5000 generated data sets and the population
value of B; is 0.5 in this simu}ation study. For ‘gl’}e
unadjusted linear mixed model S, is replaced by p; .
Positive biases indicate the treatment effect is overesti-
mated, which may result in too liberal tests on treatment
effect and hence inflated type I error rates. Acceptable
biases are below 10 % in absolute value [20].

The second criterion for evaluation is the percentage
standard error bias:

i)

(5

Here the mean standard error of the treatment effect
estimates is compared to the standard deviation of the
5000 treatment effect estimates. Positive bias implies the
standard errors are overestimated, which may result in a
loss of power. Acceptable biases are below 5 % in
absolute value [20].

The third criterion is the empirical power level. For
each simulation condition it is approximated as the per-
centage of data sets for which the null hypothesis of no
treatment effect was rejected in a test with a two-sided
alternative hypothesis and type I error rate a = 0.05.

standard error bias = 100% x

Results
For all simulation conditions the parameter bias of the
adjusted linear mixed model was negligible: the largest
bias was —1.1 % (figures not shown). For the unadjusted
linear mixed model the parameter biases are much lar-
ger because it ignores the covariate and in the worst
cases these biases are slightly over 100 %, as is depicted
in Fig. 1. The lines cut when the covariate is balanced
across treatments (i.e. when covariate imbalance = 0.5).
For negative covariate imbalance the bias is negative,
and vice versa for positive covariate imbalance. In terms
of the example: the effect of treatment is underestimated
when there are too many vocational schools in the inter-
vention condition, and overestimated when there are too
many high schools in the intervention condition. In
general the biases increase with increasing degree of
covariate imbalance and covariate effect size. This also
follows from a comparison of Egs. (2) and (6). The bias
is B, (#,,~#,.) and increases with covariate effect size S,
and the difference between expected covariate scores 4,
and g, in both treatment conditions. Furthermore, the
bias increases with increasing cluster size. The effect of
covariate imbalance becomes slightly less pronounced
when the intraclass correlation increases.

For the adjusted linear mixed model the standard error
biases were small and the largest bias was -5.1 %
(figures not shown). The standard error biases are much
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larger for the unadjusted linear mixed model and up to
almost 200 %, see Fig. 2. The standard error bias is al-
ways positive since the unadjusted linear mixed model
overestimates the variance component at the cluster
level, and hence it overestimates the standard error of
the treatment effect estimate (see Eq. (7)). The stand-
ard error bias increases with increasing covariate ef-
fect size and increasing cluster size. These effects
were also found for the parameter bias. For large
cluster size n; =50 the standard error bias decreases
with increasing intraclass correlation coefficient but
this effect becomes weaker when the cluster size de-
creases. Surprisingly the standard error bias is most
often largest when the covariate is uncorrelated with
treatment.

Figure 3 shows the empirical power levels as achieved
by the adjusted linear mixed model. Again note that in
this simulation study the number of clusters to achieve
80 % power was calculated under the assumption of co-
variate balance while the data were generated for various
levels of covariate imbalance. The number of clusters as
calculated from Eq. (4) is often a non-integer and has to

be rounded upwards to ensure a power of at least 80 %.
As a consequence the nominal power is somewhat above
80 %, especially in the cases where the cluster size is large
and/or the intraclass correlation coefficient is small. The
nominal power is shown by the horizontal line within each
subplot. The largest empirical power levels are observed
in case of covariate balance and these are very close to the
nominal power levels. Power decreases as the degree of
covariate imbalance increases because the standard error
of the treatment effect increases with increasing degree of
covariate imbalance (see Eq. (3)). This decrease is largest
for large cluster size and small intraclass correlation coef-
ficient. In the worst case a loss of power of almost 25 % is
observed. The covariate effect size has a negligible effect
on empirical power levels.

Figure 4 shows the power levels for the unadjusted
linear mixed model are much different from those for
the adjusted linear mixed model. For negative imbalance
the power can be much below the 80 % level. This can
be explained by an underestimation of the treatment
effect (see Fig. 1) and an overestimation of the related
standard error (see Fig. 2). In these cases the largest
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power is achieved for the smallest covariate effect size.
For large values of positive imbalance, the overestimate
of the treatment effect compensates the overestimate of
the related standard error and the power level is above
80 %. Furthermore it should be noted that an absence of
covariate imbalance does not imply the power level is
80 %. Finally, it should be noted that, as in the previous
figures, the strongest effects of covariate imbalance are
generally observed for large cluster size and small intra-
class correlation coefficient.

Discussion

In this simulation study we focussed on cluster random-
ized trials with a continuous outcome at the individual
level and a binary outcome at the cluster level. Our find-
ings are in accordance with those for simple randomized
trials with a continuous outcome [11]. Covariate imbal-
ance has a negligible effect on parameter bias and a
small effect on standard error bias when the adjusted
linear mixed model is used. Ignoring covariate balance
while calculating the required number of clusters may

result in a loss of power up to 25 % for the adjusted
linear mixed model. It is therefore good practice to
account for covariate imbalance while calculating the
number of clusters or to use more sophisticated
methods to randomize clusters to treatment condi-
tions, for instance stratification or balance algorithms,
such as the one in [21].

Covariate imbalance has much more severe conse-
quences when the covariate is ignored while analysing
the data. For the unadjusted linear mixed model the
treatment effect was overestimated or underestimated
by at most 100 % and its standard error was overesti-
mated by at most 200 % in our simulation study. In
most cases the power levels were below 80 % but for
very large levels of positive imbalance they were
above 80 %. This stresses the need to carefully
consider which covariates are important in the study
at hand, to actually measure them and to include
them in the statistical model. A new tool based on
propensity scores is useful to detect covariate
imbalances [22].
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For both models and for any of the three criteria of evalu-
ation it was observed that the strongest results occurred
when the cluster size was large and the intraclass correl-
ation coefficient was small. This is not surprising because
in these cases the number of clusters to achieve 80 % power
is smallest. The smaller the number of clusters the more
likely the percentage high schools in the intervention con-
dition deviates from 50 %. So one should take extra care in
trials with large clusters and small degree of dependence
among the subjects within a cluster. For instance, covariate
imbalance can result in more severe consequences when
the cluster randomized trial has general practices as unit of
randomization rather than households.

In our simulation we assumed all clusters were of
equal size. In practice cluster sizes vary and this can be
compensated by adding 11 % more clusters [23]. As we
argued above, a larger number of clusters results in
weaker effects of cluster imbalance.

We acknowledge the setup of our simulation study
is somewhat limited. We considered a continuous
outcome variable, a single binary covariate at the

cluster level, both levels of the covariate were equally
represented, and both treatment groups were of equal size.
It would also be interesting to consider an individual-level
covariate, such as a pre-treatment score or a socio-
demographic variable. We expect the potential implica-
tions of imbalance of an individual-level covariate to
depend on the between- and within-level variability of
such a covariate. The higher the between-level variability
as compared to the within-level variability, the more the
implications of covariate imbalance will correspond to the
implications of covariate imbalance of a covariate at
cluster level. On the other extreme, covariate imbalance
cannot occur when the individual-level covariate only var-
ies within clusters but not between clusters because treat-
ment condition is a cluster level variable. In that case both
the unadjusted linear mixed model and adjusted linear
mixed model will yield an unbiased estimate of the treat-
ment effect size, but the associated standard error will be
smaller for the adjusted linear mixed model because part
of the within-cluster variance is explained by the
covariate. The implications of imbalance of an individual-
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level covariate that varies both between and within
clusters will be between these two extremes and will have
to be studied in future research. Future research could
also focus on trials with more covariates which can be
measured at the subject and/or cluster level and which
can be measured as categorical or scale variables. In any
case we expect a loss of power in adjusted linear mixed
models and parameter and standard error biases in
unadjusted linear mixed models. As for now, it remains
unclear how large the effects may be.

Conclusion

We can conclude that covariate imbalance may result in
a loss of power in adjusted linear mixed models. It is
therefore advocated to be aware of the possibility of
covariate imbalance while calculating the number of
clusters, or to apply stratified randomization or balance
algorithms. In addition, ignoring relevant covariates
while analysing the data may lead to severely biased
estimates of the treatment effect and its standard error.
It is therefore important all relevant covariates are iden-
tified, measured and included in the regression model.

This recommendation holds for simple randomized tri-
als, but is even more important for cluster randomized
trials because for this type of trials the number of units
to be randomized is often low.
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