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Measuring inter-rater reliability for nominal
data – which coefficients and confidence
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Abstract

Background: Reliability of measurements is a prerequisite of medical research. For nominal data, Fleiss’ kappa
(in the following labelled as Fleiss’ K) and Krippendorff’s alpha provide the highest flexibility of the available
reliability measures with respect to number of raters and categories. Our aim was to investigate which measures
and which confidence intervals provide the best statistical properties for the assessment of inter-rater reliability in
different situations.

Methods: We performed a large simulation study to investigate the precision of the estimates for Fleiss’ K and
Krippendorff’s alpha and to determine the empirical coverage probability of the corresponding confidence intervals
(asymptotic for Fleiss’ K and bootstrap for both measures). Furthermore, we compared measures and confidence
intervals in a real world case study.

Results: Point estimates of Fleiss’ K and Krippendorff’s alpha did not differ from each other in all scenarios. In the
case of missing data (completely at random), Krippendorff’s alpha provided stable estimates, while the complete
case analysis approach for Fleiss’ K led to biased estimates. For shifted null hypotheses, the coverage probability of
the asymptotic confidence interval for Fleiss’ K was low, while the bootstrap confidence intervals for both measures
provided a coverage probability close to the theoretical one.

Conclusions: Fleiss’ K and Krippendorff’s alpha with bootstrap confidence intervals are equally suitable for the
analysis of reliability of complete nominal data. The asymptotic confidence interval for Fleiss’ K should not be used.
In the case of missing data or data or higher than nominal order, Krippendorff’s alpha is recommended. Together
with this article, we provide an R-script for calculating Fleiss’ K and Krippendorff’s alpha and their corresponding
bootstrap confidence intervals.
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Background
In interventional as well as in observational studies, high
validity and reliability of measurements are crucial for
providing meaningful and trustable results. While validity
is defined by how well the study captures the measure of
interest, high reliability means that a measurement is re-
producible over time, in different settings and by different
raters. This includes both the agreement among different
raters (inter-rater reliability, see Gwet [1]) as well as

the agreement of repeated measurements performed
by the same rater (intra-rater reliability). The importance
of reliable data for epidemiological studies has been dis-
cussed in the literature (see for example Michels et al. [2]
or Roger et al. [3]).
The prerequisite of being able to ensure reliability is,

however, the application of appropriate statistical mea-
sures. In epidemiological studies, information on disease
or risk factor status is often collected in a nominal way.
For nominal data, the easiest approach for assessing reli-
ability would be to simply calculate observed agreement.
The problem of this approach is that “this measure is
biased in favour of dimensions with small number of
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categories” (Scott [4]). In order to avoid this problem,
two other measures of reliability, Scott’s pi [4] and
Cohen’s kappa [5], were proposed, where the observed
agreement is corrected for the agreement expected by
chance. As the original kappa coefficient (as well as
Scott’s pi) is limited to the special case of two raters, it
has been modified and extended by several researchers so
that various formats of data can be handled [6]. Although
there are limitations of kappa, which have already been
discussed in the literature (e.g., [7–9]), kappa and its varia-
tions are still widely applied. A frequently used kappa-like
coefficient was proposed by Fleiss [10] and allows includ-
ing two or more raters and two or more categories.
Although the coefficient is a generalization of Scott’s pi,
not of Cohen’s kappa (see for example [1] or [11]), it is
mostly called Fleiss’ kappa. As we do not want to perpetu-
ate this misconception, we will label it in the following as
Fleiss’ K as suggested by Siegel and Castellan [11].
An alternative measure for inter-rater agreement is

the so-called alpha-coefficient, which was developed
by Krippendorff [12]. Alpha has the advantage of high
flexibility regarding the measurement scale and the
number of raters, and, unlike Fleiss’ K, can also handle
missing values.
Guidelines for reporting of observational studies, ran-

domized trials and diagnostic accuracy studies [13–15]
request that confidence intervals should always be pro-
vided together with point estimates as the meaning of
point estimates alone is limited. For reliability measures,
the confidence interval defines a range in which the true
coefficient lies with a given probability. Therefore, a con-
fidence interval can be used for hypothesis testing. If, for
example, the aim is to show reliability better than
chance at a confidence level of 95 %, the lower limit of
the two-sided 95 % confidence interval has to be above
0. In contrast, if a substantial reliability is to be proven
(Landis and Koch [16] define substantial as a reliability
coefficient larger than 0.6, see below), the lower limit
has to be above 0.6. For Fleiss’ K, a parametric asymp-
totic confidence interval (CI) exists, which is based on
the delta method and on the asymptotic normal distri-
bution [17, 18]. This confidence interval is in the follow-
ing referred to as “asymptotic confidence interval”. An
alternative approach for the calculation of the confi-
dence intervals for K is the use of resampling methods,
in particular bootstrapping. For the special case of two
categories and two raters, Klar et al. [19] performed a
simulation study and recommended using bootstrap
confidence intervals when assessing the uncertainty of
kappa (including Fleiss’ K). For Krippendorff ’s alpha,
bootstrapping offers the only suitable approach, because
the distribution of alpha is unknown.
The assessment of reliability in epidemiological studies

is heterogeneous, and often uncertainty is not taken into

account, which results in an inappropriate methodo-
logical use. Moreover, there is a lack of evidence which
reliability measure performs best under different circum-
stances (with respect to missing data, prevalence distri-
bution and number of raters or categories). Except for a
study by Häußler [20], who compared measures of
agreement for the special case of two raters and binary
measurements, there is no systematic comparison of re-
liability measures available. Therefore, it was our aim to

a) compare Fleiss’ K and Krippendorff ’s alpha (as the
most generalized measures for agreement in the
framework of inter-rater reliability) regarding the
precision of their estimates;

b) compare the asymptotic CI for Fleiss’ K with the
bootstrap CIs for Fleiss’ K and Krippendorff ’s alpha
regarding their empirical coverage probability;

c) give recommendations on the measure of agreement
and confidence interval for specific settings.

Methods
Fleiss’ K is based on the concept that the observed
agreement is corrected for the agreement expected by
chance. Krippendorff ’s alpha in contrast is based on the
observed disagreement corrected for disagreement ex-
pected by chance. This leads to a range of −1 to 1 for
both measures, where 1 indicates perfect agreement, 0
indicates no agreement beyond chance and negative
values indicate inverse agreement. Landis and Koch [16]
provided cut-off values for Cohen’s kappa from poor to
almost perfect agreement, which could be transferred
to Fleiss’ K and Krippendorff ’s alpha. However, e.g.,
Thompson and Walter [7] demonstrated that reliability
estimates strongly depend on the prevalence of the cat-
egories of the item investigated. Thus, interpretation
based on simple generalized cut-offs should be treated
with caution, and comparison of values across studies
might not be possible.

Fleiss’ K
From the available kappa and kappa-like coefficients we
chose Fleiss’ K [10] for this study because of its high
flexibility. It can be used for two or more categories and
two or more raters. However, similarly to other kappa
and kappa-like coefficients, it cannot handle missing
data except by excluding all observations with missing
values. This implies that all N observations are assessed
by n raters, and that all observations with less than n
ratings are deleted from the dataset. For assessing the
uncertainty of Fleiss’ K, we used the corrected variance
formula by Fleiss et al. [18]. The formulas for the esti-
mation of Fleiss’ K, referred to as K , and its standard
error se Kð Þ are given in the Additional file 1 (for details
see also Fleiss et al. [21], pages 598–626). According to
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Fleiss [18], this standard error is only appropriate for
testing the hypothesis that the underlying value is zero.
Applying the multivariate central limit theorem of
Rao [22], an approximate normal distribution can be
assumed for large samples under the hypothesis of
randomness [18]. This leads to the asymptotic two-sided 1
– α confidence interval

CIasymp Κð Þ ¼ K̂ � z1−α=2 se K̂
� �� �

with z1 − α/2 as quantile of the standard normal distri-
bution. The asymptotic CI is by definition generally only
applicable for large sample sizes; moreover, Efron [23]
stated that the delta method in general tends to under-
estimate the standard error, leading to too narrow confi-
dence intervals and to an inflation of the type-one error.
Therefore, several authors proposed resampling methods
[24–26] as an alternative for calculating confidence in-
tervals for Fleiss’ K. We will here use a standard boot-
strap approach, as suggested by Klar et al. [19] and
Vanbelle et al. [26]. In each bootstrap step b = 1,…, B a
random sample of size N is drawn with replacement
from the N observations. Each observation drawn con-
tains the associated assessments of all raters. For each
bootstrap sample the point estimate is calculated, de-
noted by Kb . The vector of the point estimates, sorted
by size, is given by ΚB ¼ K̂ 1½ �;…; K̂ B½ �

� �
. Then the two-

sided bootstrap confidence interval for the type-one
error α is defined by the empirical α/2 and 1 – α/2 per-
centiles of KB:

CIBootstrap Κð Þ ¼ K̂ B⋅α=2½ �; K̂ B⋅ 1−α=2ð Þ½ �
� �

:

Krippendorff’s alpha
Krippendorff [12] proposed a measure of agreement,
which is even more flexible than Fleiss’ K, called
Krippendorff ’s alpha. It can also be used for two or
more raters and categories, and it is not only applic-
able for nominal data, but for any measurement scale,
including metric data. Another important advantage
of Krippendorff ’s alpha is that it can handle missing
values, given that each observation is assessed by at
least two raters. Observations with only one assessment
have to be excluded.
The formulas for the estimation of Krippendorff ’s

alpha Â are given in the Additional file 1. For details, we
refer to Krippendorff ’s work [27]. Gwet [1] points out
that Krippendorff ’s alpha is similar to Fleiss’ K, especially
if there are no missing values. The difference between
the two measures is explained by different definitions
of the expected agreement. For the calculation of the
expected agreement for Fleiss’ K, the sample size is
taken as infinite, while for Krippendorff ’s alpha the
actual sample size is used.

For Krippendorff ’s alpha the theoretical distribution is
not known, even not an asymptotic one [28]. However,
the empirical distribution can be obtained by the boot-
strap approach. Krippendorff proposed an algorithm for
bootstrapping [28, 29], which is also implemented in the
SAS- and SPSS-macro from Hayes [28, 30]. The pro-
posed algorithm differs from the one described for Fleiss’
K above regarding three aspects. First, the algorithm
weights for the number of ratings per individual to ac-
count for missing values. Second, not the N observa-
tions, with each observation containing the associated
assessments of all raters, are randomly sampled. Instead
the random sample is drawn from the coincidence
matrix, which is needed for the estimation of Krippen-
dorff ’s alpha (see Additional file 1). This means that the
dependencies between the raters are not taken into ac-
count. The third difference is that Krippendorff keeps
the expected disagreement fixed, and only the observed
disagreement is calculated anew in each bootstrap step.
We performed simulations for a sample size of N = 100
observations, which showed that the empirical and
the theoretical coverage probability differ considerably
(median empirical coverage probability of 60 %). Therefore,
we decided to use in our study the same bootstrap
algorithm for Krippendorff ’s alpha as for Fleiss’ K (in the
following labelled as standard approach). This leads
to a vector of the bootstrap estimates (sorted by size)
ΑB = (Â[1],…, Â[B]). Then the bootstrap 1 – α/2 confi-
dence interval is defined by the percentiles:

CIBootstrap Αð Þ ¼ Α̂ B⋅α=2½ �; Α̂ B⋅ 1−α=2ð Þ½ �
� �

:

R-script K_alpha
As there is no standard software, where Fleiss’ K and
Krippendorff ’s alpha with bootstrap confidence intervals
are implemented (for an overview see Additional file 2),
we provide an R-script together with this article, named
“K_alpha”. The R-function kripp.alpha from the package
irr [31] and the SAS-macro kalpha from Andrew Hayes
[30] served as reference. The function K_alpha calculates
Fleiss’ K (for nominal data) with the asymptotic and the
bootstrap interval and Krippendorff ’s alpha with the
standard bootstrap interval. The description of the pro-
gram as well as the program itself, the function call for a
fictitious dataset and the corresponding output are given
in the Additional file 3.

Simulation study
We performed a simulation study in R 3.2.0. The simula-
tion program can be obtained from the authors. In the
simulation study, we investigated the influence of four
factors:
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� the number of observations, i.e., N = 50, 100, 200
� the number of raters, i.e., n = 3, 5, 10
� the number of categories, i.e., k = 2, 3, 5.
� the strength of agreement (low, moderate and high),

represented by Fleiss’ K and Krippendorff ’s alpha ∈
[0.4,0.93] (see below)

This resulted in a total of 81 scenarios. The choice of
factor levels was motivated by the real world case study
used in this article and by scenarios found frequently in
the literature.
We generated nominal data by using the multinomial

distribution with N subjects, n raters, and k categories be-
cause Fleiss’ K in its unweighted version is only appropriate
for nominal data. Varying the probabilities of the multi-
nomial distribution between 0.1 and 0.5 led to true param-
eters between 0.40 and 0.93 on the [−1; 1] scale; in half of
the scenarios the true value lied between 0.67 and 0.88 (see
Fig. 1). The true values for Krippendorff ’s alpha and Fleiss’
K differed only at the fourth to fifth decimal place.
We used 1,000 simulation runs and 1,000 bootstrap

samples for all scenarios in accordance with Efron [23],
and set the two-sided type-one error to 5 %. For each
simulated dataset, we calculated Fleiss’ K with the two-
sided 95 % asymptotic and the bootstrap confidence

interval, and Krippendorff ’s alpha with the two-sided 95 %
bootstrap interval. We investigated two statistical criteria:
bias and coverage probability. The mean bias is defined by
the mean point estimates over all simulation runs minus
the true value given. The number of simulation runs, in
which the true value was located inside the two-sided
95 % confidence interval divided by the total number of
simulation runs, gives the empirical coverage probability.
For three specific scenarios, we deleted (completely at

random) a pre-specified proportion of the data (10, 25,
and 50 %) in order to evaluate the ramifications of miss-
ing values under the missing completely at random
(MCAR) assumption. The selection criteria for the sce-
narios were an empirical coverage probability close to
95 % for Fleiss’ K and Krippendorff ’s alpha, a sample
size of 100, as well as variation in agreement, categories
and raters over the scenarios.
The three scenarios, each for a sample size of 100, are:

� I: five raters, a scale with two categories and low
agreement

� II: five raters, a scale with five categories and high
agreement

� III: ten raters, a scale with three categories and
medium agreement.

Then we applied the standard bootstrap algorithm for
Fleiss’ K and Krippendorff ’s alpha to investigate the ro-
bustness against missing values.

Case study
In order to illustrate the theoretical considerations learnt
from the simulation study, we applied the same ap-
proach to a real world dataset focusing on the inter-rater
agreement in the histopathological assessment of breast
cancer as used for epidemiological studies and clinical
decision-making. The first n = 50 breast cancer biopsies of
the year 2013 that had been sent in for routine histopatho-
logical diagnostics at the Institute of Pathology, Diagnostik
Ernst von Bergmann GmbH (Potsdam, Germany), were
retrospectively included in the study. For the present
study, the samples were independently re-evaluated by
four senior pathologists, who are experienced in breast
cancer pathology and immunohistochemistry, and who
were blinded to the primary diagnosis and immunohisto-
chemical staining results. Detailed information is provided
in the Additional file 4.

Results
Simulation study
Point estimates of Fleiss’ K and Krippendorff ’s alpha
did neither differ considerably from each other
(Additional file 5 above) nor from the true values over
all scenarios (Fig. 2).

Fig. 1 Distribution of the true values in the 27 scenarios
(independent of the sample size)
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Regarding the empirical coverage probability, it could
be shown that the asymptotic confidence interval for
Fleiss’ K leads to a low coverage probability in most
cases (and also for a sample size up to 1000, see
Additional file 5 below), while the bootstrap intervals
for Krippendorff ’s alpha and Fleiss’ K provide virtually
the same results and the empirical coverage probabil-
ity is close to the theoretical one (Fig. 3).
We investigated the effect of each variation factor indi-

vidually; to do so, we fixed one factor at a given level,
then varied the levels of all other factors, and reported
results over these simulation runs. It can be seen that
with larger sample sizes the median empirical coverage
probability gets closer to the nominal level of 95 % for
Krippendorff ’s alpha as well as for Fleiss’ K (Fig. 4a). For
a sample size of 200, the median empirical coverage
probability is quite close to the theoretical of 95 %. With
increasing number of categories the range of the cover-
age probability gets smaller (Fig. 4b). For three raters,
the coverage probability is below that for five or ten
raters, while for five and ten raters the coverage prob-
ability is more or less the same (Fig. 4c). With increasing
strength of agreement, the median empirical coverage
probability tends to get closer to 95 % for both coeffi-
cients (Fig. 4d).
Missing values cannot be considered by Fleiss’ K ex-

cept by excluding all observations with missing values.
In contrast, for Krippendorff ’s alpha all observations

with at least two assessments are included in the calcula-
tion. We investigated the robustness of both coefficients
in the case of missing values under MCAR conditions
with respect to the mean bias and the empirical two-
sided type-one error for three scenarios (I. N = 100, n =
5, k = 2, low agreement; II. N = 100, n = 5, k = 5, high
agreement; III. N = 100, n = 10, k = 3, medium agree-
ment; see also methods section). Krippendorff ’s alpha
was very robust against missing values, even if 50 % of
the values were missing. In contrast, Fleiss’ K was un-
biased only in the case of 10 % missing values in all
three scenarios. For 50 % missing values, in all three sce-
narios the bias was larger than 20 % and the coverage
probability was below 50 % (Table 1).

Results of the case study
Observed agreement in the case study showed consider-
able differences between the parameters investigated
(Table 2), ranging from 10 % (MIB-1 proliferation rate)
to 96 % (estrogen receptor group). Parameters based on
semi-objective counting (i.e., hormone receptor groups
and MIB-1 proliferation) had no higher agreement than
parameters based on pure estimation.
With respect to the comparison of both measures of

agreement, point estimates for all variables of interest did
not differ considerably between Fleiss’ K and Krippendorff ’s
alpha irrespective of the observed agreement or the number
of categories (Table 2). As suggested by our simulation

Fig. 2 Percentage bias for Krippendorff’s alpha and Fleiss’ K over all 81 scenarios. The dotted line indicates unbiasedness. On the left side the
whole range from −100 to +100 % is displayed, on the right side the relevant excerpt is enlarged
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study, confidence intervals were narrower for Fleiss’ K
when using the asymptotic approach than when applying
the bootstrap approach. The relative difference of both
approaches became smaller the lower the observed
agreement was. There was no relevant difference be-
tween the bootstrap confidence intervals for Fleiss’ K
and Krippendorff ’s alpha.
For the three measures used for clinical decision-

making (MIB-1 state, HER-2 status, estrogen IRS), point
estimates between 0.66 and 0.88 were observed, indicat-
ing some potential for improvement. Alpha and Fleiss K’
estimates for the six other measures (including four to
ten categories) varied from 0.20 to 0.74.
In the case of missing data (progesteron intensity),

Krippendorff ’s alpha showed a slightly lower estimate
than Fleiss’ K which is in line with the results of the
simulation study.
For variables with more than two measurement levels,

we also assessed how the use of an ordinal scale instead
of a nominal one affected the predicted reliability. As
Fleiss’ K does not provide the option of ordinal scaling,
we performed this analysis for Krippendorff ’s alpha only.
Alpha estimates increased by 15–50 % when using an
ordinal scale compared to a nominal one. However, use
of an ordinal scale gives for these variable correct esti-
mates of alpha as data were collected in an ordinal way.
Here, we could obtain point estimates from 0.70 (HER-2
score) to 0.88 (estrogen group) indicating substantial
agreement between raters.

Discussion
We compared the performance of Fleiss’ K and
Krippendorff ’s alpha as measures of inter-rater reliabil-
ity. Both coefficients are highly flexible as they can han-
dle two or more raters and categories. In our simulation
study as well as in a case study, point estimates of Fleiss’
K and Krippendorff ’s alpha were very similar and were
not associated with over- or underestimation. The asymp-
totic confidence interval for Fleiss’ K led to a very low
coverage probability, while the standard bootstrap interval
led to very similar and valid results for both, Fleiss’ K and
Krippendorff ’s alpha. The limitations of the asymptotic
confidence interval approach are linked to the fact that
the underlying asymptotic normal distribution holds only
true for the hypothesis that the true Fleiss’ K is equal to
zero. For shifted null hypotheses (we simulated true values
between 0.4 and 0.93), the standard error is no longer ap-
propriate [18, 23]. As bootstrap confidence intervals are
not based on assumptions about the underlying distribu-
tion, they offer a better approach in cases where the deriv-
ation of the correct standard error for specific hypotheses
is not straight forward [24–26].
In a technical sense, our conclusions are only valid for

the investigated simulation scenarios, which we, how-
ever, varied in a very wide and general way. Although we
did not specifically investigate if the results of this study
can be transferred to the assessment of intra-rater agree-
ment, we are confident that the results of our study are
also valid for this application area of Krippendorff ’s

Fig. 3 Two-sided empirical type-one error of the three approaches over all 81 scenarios. The dotted line indicates the theoretical coverage
probability of 95 %
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alpha and Fleiss’ K as there is no systematic difference in
the way the parameters are assessed. Moreover, the
simulation results for the missing data analysis are only
valid for MCAR conditions as we did not investigate sce-
narios in which data were missing at random or missing
not at random. However, in many real-life reliability
studies the MCAR assumption may hold as missingness
is indeed completely random, for example because each
subject is only assessed by a random subset of raters due
to time, ethical or technical constraints.
Interestingly, Krippendorff ’s alpha is, compared to the

kappa coefficients (including Fleiss’ K), rarely applied in
practice, at least in the context of epidemiological stud-
ies and clinical trials. A literature search performed in
Medline, using the search terms Krippendorff ’s alpha
or kappa in combination with agreement or reliability
(each in title or abstract), led to 11,207 matches for
kappa and only 35 matches for Krippendorff ’s alpha
from 2010 up to 2016 (2016/03/01). When extracting

articles published in the five general epidemiological
journals with the highest impact factors (International
Journal of Epidemiology, Journal of Clinical Epidemiology,
European Journal of Epidemiology, Epidemiology, and
American Journal of Epidemiology) from the above de-
scribed literature search, one third of the reviewed articles
didn’t provide corresponding confidence intervals (18 of
52 articles which reported kappa or alpha values). Only in
two of the reviewed articles with CIs for kappa, it
was specified that bootstrap confidence intervals were
used [32, 33]. In all other articles it was not reported
if an asymptotic or a bootstrap CI was calculated. As
bootstrap confidence intervals are not implemented in
standard statistical packages, it must be assumed that
asymptotic confidence intervals were used, although
sample sizes were in some studies as low as 10 to 50
subjects [34, 35]. As our literature search was re-
stricted to articles, in which kappa or Krippendorff ’s
alpha was mentioned in the abstract, there is the

Fig. 4 Empirical coverage probability for the bootstrap intervals for Krippendorff’s alpha and Fleiss’ K with varying factors sample size (a), number
of categories (b), number of raters (c) and strength of agreement (d). In each subplot, summary results over all levels of the other factors are
displayed. The dashed line indicates the theoretical coverage probability of 95 %
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opportunity of selection bias. It can be assumed that
in articles, which report reliability coefficients in the
main text but not in the abstract, confidence intervals are
used even less. This could also have influenced the ob-
served difference in usage of kappa and Krippendorff ’s
alpha; however, is this case we do not think that the pro-
portion of the two measures would be different.
In general, agreement measures are often criticized for

the so-called paradoxa associated with them (see [9]).
For example, high agreement rates might be associated

with low measures of reliability, if the prevalence of one
category is low. Krippendorff extensively discussed these
paradoxa and identified them as conceptual problems in
the understanding of observed and expected agreement
[36]. We did not simulate such scenarios with unequal fre-
quencies of categories or discrepant frequencies of scores
between raters. However, as the paradoxa concern both
coefficients likewise, because only the used sample size for
the expected agreement differs (actual versus infinite), it
can be assumed that there is no difference between alpha
and Fleiss’ K in their behaviour in those situations.
An alternative approach to the use of agreement coeffi-

cients in the assessment of reliability would be to model
the association pattern among the observers’ ratings.
There are three groups of models which can be used for
this: latent class models, simple quasi-symmetric agree-
ment models, and mixture models (e.g.,) [37, 38]. How-
ever, this modelling approaches request a higher level of
statistical expertise so that for standard applicants it is in
general much simpler to estimate the agreement coeffi-
cients and especially to interpret them.

Conclusion
In the case of nominal data and no missing values,
Fleiss’ K and Krippendorff ’s alpha can be recommended
equally for the assessment of inter-rater reliability. As
the asymptotic confidence interval for Fleiss’ K has a
very low coverage probability, only standard bootstrap
confidence intervals as used in our study can be recom-
mended. If the measurement scale is not nominal and/or
missing values (completely at random) are present, only

Table 2 Results of the case study (n = 50) of histopathological assessment of patients with mamma carcinoma rated by four
independent and blinded readers. The six ordinal parameters were also assessed if as they were measured in a nominal way

Parameter Levels Scale Missing
values (in %)

Observed
agreement

Fleiss’ K Krippendorff’s alpha

Point estimate Asymptotic CI Bootstrap CI Point estimate Bootstrap CI

Estrogen IRS 2 Nominal 0 96 % 0.88 0.76–0.99 0.65–1.00 0.88 0.66–1.00

MIB-1 status 2 Nominal 0 72 % 0.66 0.55–0.78 0.51–0.80 0.66 0.51–0.80

HER-2 status 3 Nominal 0 86 % 0.77 0.68–0.87 0.58–0.90 0.77 0.60–0.92

Estrogen intensity 4 Nominal 0 78 % 0.62 0.54–0.71 0.42–0.78 0.62 0.40–0.79

Ordinal - - - 0.74 0.51–0.80

Estrogen group 5 Nominal 0 86 % 0.74 0.66–0.82 0.55–0.88 0.74 0.55–0.89

Ordinal - - 0.88 0.73–0.96

Progesteron intensity 4 Nominal 10 77 % 0.74 0.63–0.84 0.56–0.89 0.69 0.53–0.83

Ordinal - - - 0.86 0.75–0.93

Progesteron group 5 Nominal 0 44 % 0.56 0.50–0.63 0.43–0.66 0.56 0.45–0.67

Ordinal - - - 0.83 0.72–0.90

HER-2 score 4 Nominal 0 46 % 0.52 0.45–0.60 0.38–0.64 0.52 0.37–0.65

Ordinal - - - 0.70 0.53–0.82

MIB-1 proliferation rate 10 Nominal 0 10 % 0.20 0.15–0.25 0.12–0.28 0.20 0.12–0.27

Ordinal - - - 0.81 0.68–0.87

Table 1 Empirical coverage probability and bias in % of
Krippendorff’s alpha and Fleiss’ K for simulated data with
varying percentage of missing values

Missing values Krippendorff’s alpha Fleiss’ K

Coverage
probability (%)

Bias (%) Coverage
probability (%)

Bias (%)

I 10 % 95.4 - 0.82 94.4 - 0.78

25 % 94.3 - 0.54 94.3 - 1.40

50 % 93.9 - 0.67 40.8 - 25.93

II 10 % 92.9 0.04 95.2 - 0.16

25 % 94.7 0.03 67.7 8.27

50 % 93.6 0.01 13.3 - 25.72

III 10 % 95.1 0.01 93.8 - 0.26

25 % 95.2 −0.02 65.5 - 7.76

50 % 94.8 −0.13 33.3 - 23.72

The scenarios are defined as: I. N = 100, n = 5, k = 2, low agreement; II. N = 100,
n = 5, k = 5, high agreement; III. N = 100, n = 10, k = 3, medium agreement (with
N as number of observations, n as number of raters and k as number
of categories)
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Krippendorff ’s alpha is appropriate. The correct choice
of measurement scale of categorical variables is crucial
for an unbiased assessment of reliability. Analysing vari-
ables in a nominal setting which have been collected in
an ordinal way underestimates the true reliability of the
measurement considerably, as can be seen in our case
study. For those interested in a one-fits-all approach,
Krippendorff ’s alpha might, thus, become the measure
of choice. Since our recommendations cannot easily be
applied within available software solutions, we offer a
free R-script with this article which allows calculating
Fleiss’ K as well as Krippendorff ’s alpha with the pro-
posed bootstrap confidence intervals (Additional file 3).

Additional files

Additional file 1: Estimators - Estimators of Fleiss’ K (with standard error)
and Krippendorff’s alpha. (DOCX 19 kb)

Additional file 2: Available software – implementation of Fleiss’ K and/
or Krippendorff’s alpha in most common statistical software programs
used in epidemiology/biometry. (DOCX 14 kb)

Additional file 3: R-script k_alpha – syntax, explanation, and analysis of
a fictitious data set. (DOCX 25 kb)

Additional file 4: Case study – description, dataset, syntax, and output.
(DOCX 21 kb)

Additional file 5: Figures A1 and A2 – scatter plot of the point
estimates of Fleiss’ K versus Krippendorff’s alpha and empirical coverage
probability of the asymptotic confidence interval for Fleiss’ K. (DOCX 92 kb)
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CI, confidence interval; MCAR, missing completely at random; se, standard
error
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