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Abstract

Background: In observational studies, matched case-control designs are routinely conducted to improve study
precision. How to select covariates for match or adjustment, however, is still a great challenge for estimating causal
effect between the exposure E and outcome D.

Methods: From the perspective of causal diagrams, 9 scenarios of causal relationships among exposure (E),
outcome (D) and their related covariates (C) were investigated. Further various simulation strategies were
performed to explore whether match or adjustment should be adopted. The “do calculus” and “back-door criterion”
were used to calculate the true causal effect (β) of E on D on the log-odds ratio scale. 1:1 matching method was
used to create matched case-control data, and the conditional or unconditional logistic regression was utilized to
get the estimators (β

⌢
) of causal effect. The bias (β

⌢
‐β) and standard error (SEðβ⌢Þ) were used to evaluate their

performances.

Results: When C is exactly a confounder for E and D, matching on it did not illustrate distinct improvement in the
precision; the benefit of match was to greatly reduce the bias for β though failed to completely remove the bias;
further adjustment for C in matched case-control designs is still essential. When C is associated with E or D, but not
a confounder, including an independent cause of D, a cause of E but has no direct causal effect on D, a collider of
E and D, an effect of exposure E, a mediator of causal path from E to D, arbitrary match or adjustment of this kind
of plausible confounders C will create unexpected bias. When C is not a confounder but an effect of D, match or
adjustment is unnecessary. Specifically, when C is an instrumental variable, match or adjustment could not reduce
the bias due to existence of unobserved confounders U.

Conclusions: Arbitrary match or adjustment of the plausible confounder C is very dangerous before figuring out
the possible causal relationships among E, D and their related covariates.

Keywords: Simulation study, Matched case-control designs, Causal diagrams

Background
In observational studies, confounding factors (C) that
are pre-exposure variables associated with the exposure
E and the outcome D will distort the estimation of the
target causal effect [1–4]. Generally, the magnitude of
confounding bias mainly depends on the strength of the
effects from confounder C to exposure E and from con-
founder C to outcome D. If one of these two effects is
precisely null, confounding bias does not exist at all.

Furthermore, the directions of effect from C to E and
from C to D determine the direction of the bias. Usually,
confounding factors could mainly lead to three kinds of
biases in an attempt to find the causal effect from E to
D, including over-estimation, under-estimation, or even
missing the direction of the effect [5].
In analytic epidemiology, various strategies could be

adopted to remove confounding bias, such as Restric-
tion, Adjustment, Stratification [6, 7], while strategy of
matching on confounders C (e.g. matched case-control
designs) mainly focuses on improving estimation preci-
sion of the effect of E on D, rather than removing
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confounding bias [8, 9]. For matched case-control de-
signs, matching refers to the selection of controls group
that is identical, or nearly so, to the cases group with re-
spect to the distribution of one or more potentially con-
founding factors. Generally, two matching strategies,
including individual matching and frequency matching,
could be selected to force the distribution of the match-
ing factors to be identical across groups of individuals
[10]. In particular, individual matching involves selection
of one or more controls group with matching factor
values equal to cases group. From the perspective of
causal diagrams, several qualitative studies had suggested
that matching on confounders not only fails to remove
confounding bias but also adds colliding bias [11–15].
Therefore, it is still necessary to adjust for the matching
variables.
However, for obtaining unbiased and precise estima-

tion, it is crucial to choose matching variables cor-
rectly and further determine whether they should be
adjusted for. For matching variables, matching on
common child nodes of exposure and outcome, or me-
diators of the exposure and outcome will generally
lead to irremediable bias [13, 14]. For further adjustment,
conditional logistic regression models are customarily

used to adjust for matching variables, which just pro-
vide conditional rather than causal estimation of odds
ratio [16]. Sometimes, unconditional logistic regres-
sion models can also be adopted to adjust for match-
ing variables, but they will lead to lower precision
for the parameters estimation when the number of
matched variables is larger under given limited sample
size [17].
In this paper, we performed various quantitative simu-

lations under the following 9 scenarios to illustrate the
benefits of correct match and further proper adjustment,
and to highlight the consequences of improper match
and further inappropriate adjustment. a) C is a con-
founder for the exposure E and the outcome D (Fig. 1a);
b) C is a common cause of E and D with an absence of
cause effect between them (Fig. 1b); c) C is an independ-
ent cause of D (Fig. 1c); d) C is a cause of E, but has no
direct causal effect on D (Fig. 1d); e) C is a common ef-
fect (i.e. collider) of E and D (Fig. 1e); f ) C is an effect of
outcome D (Fig. 1f ); g) C is an effect of exposure E
(Fig. 1g); h) C is a mediator of causal path from E to D
(Fig. 1h); i) C is an instrumental variable for E and D
(Fig. 1i). All above scenarios almost involve common
roles of C in analytic epidemiology.

Fig. 1 Nine simulation scenarios. E, C, D indicate exposure, matching factor, outcome, respectively. Let variable S indicate whether a person is
selected for case-control study or not, the square around S indicates the analysis is conditional on individuals having been selected into the
matched case-control study. Dashed line C–D show the colliding bias (i.e., selective bias) due to matching on C. S is a collider on C→S←D.
Colliding bias will arise if conditioning on colliding node (i.e., S). a) C is a confounder for the exposure E and the outcome D; b) C is a common
cause of E and D with an absence of cause effect between them; c) C is an independent cause of D; d) C is a cause of E, but has no direct causal
effect on D; e) C is a common effect (i.e. collider) of E and D; f) C is an effect of outcome D; g) C is an effect of exposure E; h) C is a mediator of
causal path from E to D; i) C is an instrumental variable for E and D
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Methods
A brief introduction to causal diagrams and calculation of
causal effect
In the past few decades, causal diagrams, one kind of di-
rected acyclic graphs (DAGs), have been widely used to
visually summarize hypothetical causal relations among
variables of interest. Modern causal diagrams were more
recently developed to merger probability theory with
path diagrams [2, 18–20]. The resulting theory provides
a powerful yet intuitive device for deducing the statis-
tical associations implied by causal relations. Further-
more, given a set of observed statistical associations, a
researcher armed with causal diagrams theory can sys-
tematically characterize all causal analysis. In causal dia-
grams, the d-Separation criterion is an essential graphic
rule for linking causal relations to statistical associations
[20, 21]. They help epidemiologists to draw logically
sound conclusions about certain types of statistical rela-
tions and facilitate many tasks, such as understanding
confounding bias and selection bias [15], choosing co-
variates for adjustment or match [10], analyzing direct
and indirect effects [22], using instrumental variable to
estimate causal effect when unobserved confounders
exist [23]. In this paper, we used causal diagrams to
illustrate the relationships among variables in above 9
scenarios.
Furthermore, do-calculus together with back-door criter-

ion proposed by Pearl [20, 24, 25] were used to calculate
the causal effect of exposure (X) on outcome (Y). Given a
causal diagram G, together with non-experimental data on
a subset V of observed variables in G, we estimate the
causal effect of X on Y by calculating P(y|do(X = x)) from
a sample estimation of P(V = v). Namely, we aim to esti-
mate what the intervention do(X = x) would have on a set
of response variable Y, where X and Y are two subsets of
V. For identifying P(y|do(X = x)), the “back-door criterion”
[20] was further used to test if a set Z⊆ V of variables is
sufficient, where Z satisfied the following conditions. (i)
it blocked every path from X to Y that has an arrow into
X (“blocks the back door”); and (ii) no node in Z is a
descendant of X. If a set of variable Z satisfies the back-
door criterion relative to (X, Y), then the causal effect of
X on Y is identifiable and is calculated by the following
formula,

P yjdo X ¼ xð Þð Þ ¼
X

Z

P yjx; zð ÞP zð Þ

In this paper, this formula was used to calculate the
true causal effect β of exposure E on outcome D from
source population. It was regarded as a gold standard
to assess the bias of estimation in all 9 simulation
scenarios.

Simulation scenarios
Figure 1 showed the causal diagrams of 9 simulation sce-
narios for estimating causal effect of E on D, which illus-
trated 9 different roles of C respectively. Based on Fig. 1(a)
to (i), Monte Carlo simulations were used to generate simu-
lation data. We made the following assumptions for the
simulation: 1) all variables are binary following a Bernoulli
distribution; 2) the correlations between variables are
positive unless otherwise specified; and 3) the associ-
ation between covariates (E and C) and the outcome D
is log-linearly additive effect. Logistic regression models
were used to simulate child nodes from their correspond-
ing parent nodes. Take scenario 1 [seeing Fig. 1(a)] as an
example, let P(C = 1) = π, then P(E = 1|C) = exp(α0 + α1C)/
[1 + exp(α0 + α1C)] for the child node E from its parent
node C; similarly, P(D = 1|C, E) = exp(β0 + β1C + β2E)/[1 +
exp(β0 + β1C + β2E)]; where the parameters α0,β0 denoted
the baseline prevalence of E and D respectively, and each ef-
fect parameter (α1, β1, β2) refers to the log-odds ratio condi-
tional on other covariates. The simulated source population
with 100,000 subjects was generated from above procedure.
1000 cases were randomly sampled from this simulated
source population with D = 1, while 1000 controls were ran-
domly sampled from D= 0; so far none-matched case-
control data with 1000 cases and 1000 controls was created.
For matched case-control data, we still used the above same
1000 cases as the cases group, for individual with C = 1 in
cases group, we matched its control by randomly sampling
a subject with C = 1 and D= 0 from the source population;
similarly, for individual with C = 0, we matched its control
with C = 0 and D= 0 from the source population.
Besides, unconditional and conditional regression models

were applied to above two datasets to assess their perfor-
mances. For non-matched case-control data, both uncondi-
tional logistic regression model without adjusting for C,
logit p D ¼ 1jEð Þð Þ ¼ β0 þ β′

1
E, (model 1), and with adjust-

ing for C, log it(p(D = 1|E,C)) = β0 + β1
″E + β2C, (model 2),

were performed for comparing their bias (β
⌢

1‐β , where β
⌢

1
was the estimation by the logistic regression models, while
β was the true causal effect from source population) and
precision by the standard error of β

⌢

1 (SEðβ
⌢

1Þ). For matched
case-control data, the following three models were used to

compare their bias (β
⌢

1‐β) and precision (SEðβ⌢1Þ): model 3)
unconditional logistic regression without adjusting for C;
model 4) unconditional logistic regression with adjusting for
C; and model 5) conditional logistic regression.
Various simulation scenarios were performed by varying

across a target effect parameter [e.g. C→ E in Fig. 1(a)]
and keeping all others constant to explore the trends of

bias (β
⌢

1‐β) and standard error (SEðβ⌢1Þ). 1000 simulations
were repeated in each scenario. All simulation studies
were conducted using software R from CRAN (http://
cran.r-project.org/).
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Results
Scenario 1 (C is a confounder for E and D, Fig. 1a)
Theoretically, in this scenario, the confounder C is d-
connected with outcome D via two natural paths: C→D
and C→ E→D, which contribute to the crude association
between C and D. Nevertheless, under matched case-
control designs, C is unconditionally independent of D
due to the identical distribution of C in cases and controls
group (i.e. the sum of C→D, C→ E→D and C–D is null).
Furthermore, the path C–D is of equal magnitude, but op-
posite direction to the C→ E→D and C→D. Therefore,
the joint distribution of E, C and D is unfaithful to the DAG
of Fig. 1a due to matching on C. As C is a confounder, both
paths C→ E and C→D will lead to the bias for E on D
before matching, while after matching, a new colliding
bias path C–D is created and the two bias paths (C→ E,
C→D) still exist. In this situation, the total bias is con-
tributed by the path of C→ E, C→D and C–D [13–15].
Figure 2 showed the simulation results under scenario

1. It indicated that given other parameters fixed and

varying across the effect of C→ E (Fig. 2a), the bias (β
⌢

1‐β)

elevated linearly with effects of C→ E increasing in the
model without adjusting for C under non-matched case-
control designs (model 1), while elevated in the opposite
direction with effects of C→ E increasing in the model
without adjusting for C under matched case-control de-
signs (model 3); after adjusting for C, the bias was ap-
proximate to zero in all models of adjustment for C under
non-matched case-control designs (model 2) and matched
case-control designs (model 4 or model 5). For their preci-
sion (Fig. 2c), the SEðβ⌢1Þ of all above five models in-
creased with effects of C→ E increasing, and model 5
obtained largest standard error, followed by model 4,
model 2, model 3, model 1. Similarly, given other pa-
rameters fixed and varying across C→D (Fig. 2b), the
bias (β

⌢

1‐β) still elevated linearly with effects of C→D
increasing in model 1, while lowered with effects of
C→D increasing in model 3. After adjusting for C, the
bias was still nearly approximate to zero in model 2,

model 4 or model 5. For their precision (Fig. 2d), the S

Eðβ⌢1Þ of all above five models kept stable with effects
of C→D increasing, and model 5 attained largest standard
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Fig. 2 Bias (upper panels) and standard error (i.e. SE, lower panels) of log transformed odds ratio estimations for different effect sizes of CE and CD.
Each line indicated one model. The left panel displayed the bias and standard error on the estimated values of exposure E for different odds ratio
(from 1 to 10) of CE respectively. The right panel showed the bias and standard error of estimated values on exposure E for different odds ratio
(from 1 to 10) of CD respectively. Note: model 1, unconditional logistic regression model without adjusting for C for non-matched case-control
designs; model 2, unconditional logistic regression model with adjusting for C for non-matched case-control designs; model 3, unconditional logistic
regression model without adjusting for C for matched case-control designs; model 4, unconditional logistic regression model with adjusting for C for
matched case-control designs; model 5, conditional logistic regression model with adjusting for C for matched case-control designs
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error, followed by model 4, model 2, model 1, model 3.
These results suggested that confounding bias and colliding
bias generally changed in opposite directions and adjust-
ment was indispensable after matching on C.

Scenario 2 (C is a common cause of exposure E and
outcome D without causal effect between them, Fig. 1b)
It is similar to scenario 1 (Fig. 1a) except that instead of
having causal effect between E and D. In this situation,
the path C→D leads to the association of C and D in a
non-matched case-control designs. But two effect paths
of C and D offset each other after matching, that is the
effect of C–D is of equal magnitude, but opposite direc-
tion to C→D [14].
Simulation showed that (Fig. 3): keeping other parame-

ters constant, and varying across C→ E (Fig. 3a), the

bias (β
⌢

1‐β ) elevated linearly with effects of C→ E in-
creasing in the model without adjusting for C under
non-matched case-control designs (model 1), while ap-
proximate unbiased estimations were got in model 2,
model 3, model 4 and model 5. All five models revealed

an increased effect with effects of C→ E increasing.
Among them, model 2 got largest standard error,
followed by model 4, model 5, model 3 and model 1.
Similarly, as E← C→D is a confounding path (Fig. 3b),

the bias (β
⌢

1‐β ) elevated linearly with effects of C→D
increasing in model 1, while the bias was almost null
after adjustment (model 2, model 3, model 5) or match

(model 4). The SEðβ⌢1Þ revealed a linearly increasing
trend for the five models, while the model 2 illustrated
largest standard error, followed by model 4, model 5,
model 1, model 3. These results indicated that both
matching and adjustment could block the bias path
E← C→D, but adjustment for C would lead to lower
precision. Therefore, the best choice is the model with-
out adjusting for C in matched case-control designs
(model 3) in scenario 2.

Scenario 3 (C is a cause of outcome D, Fig. 1c)
As C is not a confounder, C and E are independent
causes of D, respectively, the marginal effect from E to
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Fig. 3 Bias (upper panels) and standard error (i.e. SE, lower panels) of log transformed odds ratio estimations for different effect sizes of CE and CD.
Each line indicated one model. The left panel displayed the bias and standard error of different odds ratio (from 1 to 10) of CE. The right panel
showed the bias and standard error of different odds ratio (from 1 to 10) of CD. Note: model 1, unconditional logistic regression model without
adjusting for C for non-matched case-control designs; model 2, unconditional logistic regression model with adjusting for C for non-matched
case-control designs; model 3, unconditional logistic regression model without adjusting for C for matched case-control designs; model 4,
unconditional logistic regression model with adjusting for C for matched case-control designs; model 5, conditional logistic regression
model with adjusting for C for matched case-control designs
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D is an unbiased estimator. In this situation, matching
on or adjustment for C will inevitably lead to bias for E
on D due to conditional on C by matched case-control
designs or logistic regression model [14].
As expected, only model without adjusting for C in

non-matched case-control designs (model 1) got un-
biased and precise estimation (Fig. 4), and both match
and adjustment would increase bias and lower precision
with effects of C→D increasing in model 2 to model 5.

Scenario 4 (C is a cause of exposure E, Fig. 1d)
The C has a direct effect on E and an indirect effect on
D through E. So C is not a confounder for E and D. In
this situation, if matching on C, a new association is
generated between C and D (denoted with C–D). Thus
E←C–D becomes an open bias path for E on D [14].
Simulation results (Fig. 5) supported above deductions,
and revealed that only model without adjusting for C in
matched case-control designs (model 3) led to bias
(Fig. 5a). In matched case-control designs, although the
bias could be remedied by adjusting for C, the precision
(Fig. 5b) would become lower (model 4 and model 5).

Scenario 5 (C is a common effect of exposure E and
outcome D, Fig. 1e)
In this scenario, as C is not a confounder but a collider,
match on or adjustment for C (model 2 to model 5) will
generate colliding bias [14, 15]. The simulation results
under varying across the effects of E→ C and C←D
(Fig. 6) verified that only model without adjusting for C
in non-matched case-control designs (model 1) got un-
biased estimation.

Scenario 6 (C is an effect of outcome D, Fig. 1f)
In this scenario, the C is not a confounder but an effect
(child node) of outcome D, so match on or adjustment
for C is not necessary. Simulation results showed that
both matching on C and adjusting for C did not lead to
bias of β (Fig. 7a), but adjustment for C (model 2, model
4 and model 5) led to lower precision (Fig. 7b).

Scenario 7 (C is an effect of exposure E, Fig. 1g)
For this scenario, although C is associated with E (E→C)
and D (C← E→D), it is not a confounder. In practice, it
is difficult to distinguish it from confounder by statistical
association study. Theoretically, matching on this kind of
spurious confounders will open bias path E→C–D and
thus lead to biased estimation of β. On the other hand, ad-
justment for C will not lead to biased estimation of β but
will lower its precision. Simulation results are concordant
with above deductions, which revealed the biased estima-
tion of β (Fig. 8a) by matching on C (model 3), and
showed lower precision (Fig. 8b) by adjusting for C (model
2, model 4 and model 5).

Scenario 8 (C is a mediator of causal path from E to D,
Fig. 1h)
In this scenario, although C is associated with E (E→ C)
and D (C→D), it is not a confounder but a mediator.
Matching on C will block the path E→C, while adjust-
ing for C will block the path C→D. Therefore, either
match or adjustment will inevitably block the causal
path E→ C→D, and thus leads to the biased estimation
of β [14]. Both Fig. 9a and b illustrated that only model
without adjusting for C in non-matched case-control de-
signs (model 1) got unbiased estimation of β in the
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Fig. 4 Bias (left panels) and standard error (i.e. SE, right panels) of log transformed odds ratio estimations for different effect sizes of CD. Each line
indicated one model. Note: model 1, unconditional logistic regression model without adjusting for C for non-matched case-control designs;
model 2, unconditional logistic regression model with adjusting for C for non-matched case-control designs; model 3, unconditional logistic
regression model without adjusting for C for matched case-control designs; model 4, unconditional logistic regression model with adjusting for C
for matched case-control designs; model 5, conditional logistic regression model with adjusting for C for matched case-control designs
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Fig. 6 Bias (left panels) and standard error (i.e. SE, right panels) of log transformed odds ratio estimations for different effect sizes of EC and DC.
Each line indicated one model. Note: model 1, unconditional logistic regression model without adjusting for C for non-matched case-control
designs; model 2, unconditional logistic regression model with adjusting for C for non-matched case-control designs; model 3, unconditional logistic
regression model without adjusting for C for matched case-control designs; model 4, unconditional logistic regression model with adjusting for C for
matched case-control designs; model 5, conditional logistic regression model with adjusting for C for matched case-control designs
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situation of varying across effects of E→C and C→D.

In these two situations, lower precision of β
⌢

1 (Fig. 9c
and d) were observed by adjusting for C (model 2, model
4 and model 5).

Scenario 9 (C is an instrumental variable for E and D,
Fig. 1i)
In Fig. 10, we can easily find that C is not a confounder
but an instrumental variable (IV), though C is associated
with E (C→ E) and D (C→ E→D). This instrumental
variable C can be used to control for the unobserved
confounder U for estimating the causal effect of E on D
[26]. However, instead of controlling for the confounding
effect of U through either matching on or adjusting for C,
the biased estimation for effect of E→D could not be

reduced. The simulation results (Fig. 10) indicated that all
the five models led to similar bias.

Discussion
From the perspective of causal diagrams, several studies
had claimed that matching on confounders C in matched
case-control designs can improve estimation precision for
the effect of exposure (E) on outcome (D), though it fails
to remove confounding effect of C [8, 9]. Therefore, fur-
ther adjustment for C using conditional or unconditional
logistic regression model after matching is widely used to
eliminate the confounding bias of C in analytic epidemi-
ology [13, 14]. When C is exactly a confounder for E and
D (scenario 1, Fig. 1a), however, our simulation results did
not illustrate distinct improvement of precision for esti-
mating effect of E on D by matching on C (model 3)
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comparing with by non-matching designs (model 1).
Nevertheless, the benefit of matching on C was to
greatly reduce the bias for estimating the effect of E on
D (model 3) though failed to completely remove the
bias (Fig. 2a and b). Further adjusting for C using logistic
regression model (model 4 or model 5) after matching al-
most removed the bias (Fig. 2a and b). Our simulation re-
sults suggested that further adjusting for C in matched
case-control designs is still essential, while adjustment
(Fig. 2c and d) by unconditional logistic regression model
(model 4) tend to be more precise than by conditional
logistic regression (model 5). Similarly, in scenario 2
(Fig. 1b), C also is a confounder though the causal effect
from E to D does not exist. In this situation, both match-
ing on or adjusting for C could obtain unbiased estimation
of E on D (Fig. 3), but matched case-control designs with-
out adjusting for C (model 3) was the optimal strategy.
In practice, it is usually difficult to identify confounders

just from statistical association [7, 27]. 1) In scenario 3
(Fig. 1c), both C and E are independent causes of D,
matching on or adjustment for C will inevitably lead to
bias for E on D due to conditional on C (Fig. 4) [14]. 2) In
scenario 4 (Fig. 1d), C is associated with E (C→ E) and D
(C→ E→D), but not a confounder. In this situation,
matching on C, a new association was generated between
C and D (denoted with C–D). Thus E←C–D became an
open bias path for E on D, and generated its biased esti-
mation (Fig. 5). Fortunately, further adjustment for C after
match could remedy this bias (model 4 and model 5 in
Fig. 5) [14]. 3) In scenario 5 (Fig. 1e), C is not a con-
founder but a collider, match on or adjustment for C
(model 2 to model 5) will inevitably generate colliding
bias; only non-matched case-control designs without
adjusting for C (model 1) got unbiased estimation (Fig. 6a
and b) [14, 15]. 4) In scenario 8 (Fig. 1h), C is associated
with E (E→C) and D (C→D), it is not a confounder but
a mediator. Matching on C will block the path E→C,
while adjusting for C will block the path C→D [14].
Therefore, either match or adjustment will inevitably
block the causal path E→C→D, and thus lead to the
biased estimation of β (Fig. 9). In this situation, only model
without adjusting for C in non-matched case-control de-
signs (model 1) got unbiased estimation of β. However, ad-
justment for C (model 2, model 4 and model 5) would

reduce the precision of β
⌢

1 (Fig. 9c and d). It was, there-
fore, dangerous and improper to arbitrarily match on or
adjust for the plausible confounder C [28].
Above simulation scenarios (scenario 1, 2, 3, 4, 5, 8)

have been explored by shahar and Mansournia et al., but
beyond that we proposed three new causal diagrams
(scenario 6, 7, 9) with respect to match or adjustment
strategies. Our simulation results showed that, for case-
control study designs, when C is not a confounder but
an effect (child node) of outcome D (scenario 6, Fig. 1f ),

match on or adjustment for C is not necessary (Fig. 7) in
that it did not lead to biased estimation of β (Fig. 7a). In
scenario 7 (Fig. 1g), C is associated with E (E→ C) and
D (C← E→D), but not a confounder. Matching on
this kind of spurious confounders would open bias path
E→ C–D and thus led to biased estimation of β (Fig. 8).
Although adjusting for C did not lead to biased estima-
tion of β, it would reduce precision (Fig. 8). Specifically,
when C is an instrumental variable for E and D, although
it is associated with E (C→ E) and D (C→ E→D),
matching on or adjusting for it, the biased for effect of
E→D could not be reduced (Fig. 10).

Conclusions
In conclusion, for using match or adjustment strategy in
case-control studies, investigators should firstly attempt
to figure out the possible causal relationships among
exposure (E), outcome (D) and their related covariates
(C) empirically based on the etiologic and pathological
mechanism and then determine whether match or ad-
justment should be adopted. Otherwise, arbitrary match-
ing on or adjusting for the plausible confounder C is
dangerous.
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