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Abstract

Background: In stark contrast to network-centric view for complex disease, regression-based methods are preferred
in disease prediction, especially for epidemiologists and clinical professionals. It remains a controversy whether the
network-based methods have advantageous performance than regression-based methods, and to what extent do

they outperform.

Methods: Simulations under different scenarios (the input variables are independent or in network relationship) as
well as an application were conducted to assess the prediction performance of four typical methods including
Bayesian network, neural network, logistic regression and regression splines.

Results: The simulation results reveal that Bayesian network showed a better performance when the variables were
in a network relationship or in a chain structure. For the special wheel network structure, logistic regression had a
considerable performance compared to others. Further application on GWAS of leprosy show Bayesian network still

outperforms other methods.

Conclusion: Although regression-based methods are still popular and widely used, network-based approaches
should be paid more attention, since they capture the complex relationship between variables.

Keywords: Disease discrimination, AUC, Network-based, Regression-based

Abbreviations: AUC, The area under the receiver-operating characteristic curve; AUC-CV, The AUC using 10-fold
cross validation; BN, Bayesian network; CV, Cross validation; GWAS, Genome-wide association study; NN, Neural

network; RS, Regression splines

Background

Recently, an explosion of data has been derived from
clinical or epidemiological researches on specific dis-
eases, and the advent of high-throughput technologies
also brought an abundance of laboratory data [1-4]. The
acquired variables may range from subject general
characteristics, history, physical examination results,
blood, to a particularly large set of genetic markers. It is
desirable to develop efficient data mining strategies to
extract more information rather than put the data aside.
Diagnostic prediction models are widely applied to guide
clinical professionals in their decision making by esti-
mating an individual’s probability of having a specific
disease [5—9]. One common sense is, from a network-
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centric perspective, biological phenomena depend on the
interplay of different levels of components [10-12]. For
data on network structure, complex relationships (e.g.
high collinearity) inevitably exist in large sets of vari-
ables, which pose great challenges on conducting statis-
tical analysis properly. Therefore, it is often hard for
clinical researchers to determine whether and when to
use which exact model to support their decision making.

Regression-based methods, although may be unreason-
able to some extent under the network framework, is
still a priority in disease diagnosis or discrimination
problem [6, 13-15], which is easier to be accepted by
clinical researchers due to the interpretability of model
parameters and ease of use. However, for regression
model, some assumptions needed to be made may limit
the use, such as linearity and additivity [16—18]. The
performance of the regression model can be affected by
the collinearity between the input variables, which is
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commonly encountered in dataset with complex rela-
tionship. Although a logistic regression model can con-
sider the relationship between the covariates by adding
interaction terms, the number of possible interactions
increases exponentially as the number of input variables
increases, resulting in the complex process of specifica-
tion of interaction and inevitably low power.

To overcome the above problems, numerous machine
learning methods have emerged as potential alternatives
to logistic regression analysis, such as neural network,
random forest, decision trees [5, 19-21]. Neural net-
works, with few assumptions about the data distribution,
can reflect the complex nonlinear relationships between
the predictor variables and the outcome by the hidden
nodes in the hidden layer. This not only greatly simpli-
fies the modeling work compared to logistic regression
model but enables us to model complex forms between
variables. If the logistic sigmoid activation function is
used, the network without a hidden layer is actually
identical to a logistic regression model, and neural
networks can be thought as a weighted average of logit
functions with the weights themselves estimated [22, 23].
Neural networks do not yet jump out from the scope of
regression, which can be viewed as a type of non-
parametric regression method.

Motivated by the network perspective, a more formal
and visualized representation, usually offered by mathem-
atical graph theory, seems to be more appropriate to de-
scribe the biological phenomena. Among these, Bayesian
networks provide a systematic method for structuring
probabilistic information about a network, which have
been receiving considerable attention over the last few de-
cades in a number of research fields [24—26]. Bayesian
networks are easily understood since they represent know-
ledge through a directed acyclic graph (DAG) with nodes
and arrows. The network structure can be either gener-
ated from data by structural learning or elicited from
experts. It could not only avoid statistical assumptions,
but also handle the relationship between a larger numbers
of predictors with their interactions.

In stark contrast to commonly accepted network-
centric perspective view for complex disease, regression-
based methods are preferred, especially for epidemiolo-
gists and clinical professionals, which usually lead to
considerate and easily interpreted results. It remains a
controversy whether the network-based methods have
advantageous performance than others in discrimination
ability, and to what extent do they outperform. In par-
ticular, complex diseases often result from multiple
genes or molecules interplays within biological pathways
or gene regulatory networks. Under such condition, are
regression-based methods with correlated genetic
markers sufficient to reflect biological reality? To the
best of our knowledge, few attempts were conducted to
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determine in which case network or regression-based
methods should be applied. The focus of this paper is,
through a series of simulations, to assess how the
network-based methods work compared to regression-
based methods in prediction performance under differ-
ent scenarios (the input variables are independent or in
network relationship). To achieve this goal, we applied
logistic regression, neural network, and Bayesian net-
work on the different datasets.

Method

Simulation studies

Simulation studies were conducted to evaluate the per-
formance of the logistic regression, neural network, and
Bayesian network. The area under the receiver-operating
characteristic curve (AUC) which is normally employed to
measure discrimination ability [27],and Brier score was
used to compare the accuracy of the three methods. Add-
itional techniques (e.g. cross-validation (CV), bootstrap-
ping, leverage correction) [28] must be used to alleviate
overfitting problem generally encountered in statistics and
machine learning. In this paper, the overfitting was cor-
rected using 10-fold cross validation (AUC-CV) to assess
the prediction performance of the above three methods.
For each simulation, 100 repeats of 10-fold CV were con-
ducted in order to yield sufficient precision.

Under the null hypothesis, the AUC should be around
0.5, meaning that the prediction model is not helpful at
all. In order to test whether the prediction methods are
stable, we first generated the datasets under the null hy-
pothesis. Network datasets were generated using soft-
ware Tetrad [29]. For each network, we first generated a
directed acyclic graph with a set of binary variables
representing the input variables and a binary outcome
variable indicating the disease status. Conditional prob-
ability table for each variable was defined subsequently.
Conditional on the values of its parent variables, there is
a defined probability that a variable will take on its
possible values. Thus the influence of variables can be
reflected by the conditional probability table. Restricting
on six nodes including five input variables and one dis-
ease outcome, we considered two scenarios of the null
hypsthesis: 1) each variable was generated independ-
ently; 2) the input variables were network constructed
but not associated with the disease. For each scenario,
100,000 individuals were generated to form a hypothet-
ical population from which the samples were randomly
selected with different sample sizes (N = 30, 50, 100, 200,
500 or 1000). To examine the stability of the three
methods, we randomly sampled N individuals respect-
ively for the calculation of the AUC and the average
AUC-CV. A total of 1000 simulations were repeated for
each sample size.
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Under the alternative hypothesis, datasets from differ-
ent network structures were generated to assess the dis-
criminatory ability as well as the prediction accuracy.
We simulated a regular network and two extreme sce-
narios including chain network and wheel network to
evaluate the performance of three different methods. For
each data set, similar simulations were accomplished as
above to obtain the AUC and the Brier score with differ-
ent sample size. In particular, more general logistic
models were employed to extract the nonlinear effect
and interactions between variables for data in regular
network. Multivariate regression splines was used to fit
the logistic model using earth function in R package
earth. We used two strategies to consider the interaction
between the input variables: 1) the product term was
determined by the network structure (i.e. the product
term between two variables was added to the model only
if there was an edge between the variables). 2) all the pair-
wise product terms between the variables were added in
the logistic model and selected by stepwise algorithm.

In addition, we might be also interested in how the
network methods perform under the special case when
the input variables are in completely linear relationship.
We generated 100,000 individuals with five independent
variables, with each variable following a Binomial distri-
bution. Given the effect of the input variables /5 = (1.5,
1.5,1.5,1.5,1.5), the binary response indicating disease
status was generated using logistic regression model.
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The performances of Bayesian network and neural
network were implemented using the R package
bnlearn and the R package neuralnet. For Bayesian
network, score-based structure algorithms hill climb-
ing (HC) method (hc function) was employed for
structure learning and Bayes method for parameter
learning (bn.fit function). The neuralnet function was
used to fit the neural network, and the number of
hidden nodes in neural network was determined using
cross validation.

Application

The Bayesian network, neural network, logistic regres-
sion and regression splines were also applied to a real
genotype data for predicting leprosy of Han Chinese
with a case control design, which contains 706 cases
and 514 controls. The genetically unmatched controls
were removed to avoid population stratification.
Previous genome-wide association study (GWAS) of
leprosy of Han Chinese [30] has identified significant
associations between 16 SNPs in seven genes
(CCDC122, C130rf31, NOD2, NFSF15, HLA-DR, RIP-
K2and LRRK2). In this paper, we fitted the three
models using the identified 16 SNPs respectively to
compare their abilities in predicting Leprosy. The 100
repeats of AUC and Brier score with cross validation
were calculated for all the methods.
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Fig. 1 The cross-validation AUC of the Bayesian network, neural network, logistic regression, and regression splines under the null hypothesis.
a depicts the null hypothesis when each variable including both input and disease was generated independently; b shows the null hypothesis
when the input variables were network constructed but not associated with the disease
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Result
Figure 1 shows the estimated AUC and the average
AUC-CV of the Bayesian network, neural network
and logistic regression under the null hypothesis men-
tioned above. It reveals that the AUC-CV of all the
methods are close to 0.5 when the sample size is
large (more than 500), illustrating the AUC-CV could
be a convincing indicator to assess the prediction per-
formance. While AUC is far from 0.5 especially with
small sample size and might not be considered in the
comparison.

Figure 2a shows a simulated disease network, this
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Figure 2b depicts the average AUC-CV slightly in-
crease monotonically by sample size, and they are
close to the true value when sample size arrives
1000. The result indicates that Bayesian network
outperforms the logistic regression and neural net-
work when such network exists. The logistic regres-
sion with interaction terms improved the AUC-CV
quite slightly, while regression splines improved the
discriminatory ability by capturing the non-linear ef-
fect. Table 1 depicts the Brier scores of the methods.
The Bayesian network still has the best prediction
accuracy, followed by the regression splines. The

network data were generated through software Tet- other four methods have comparably inferior
rad [29] under the given conditional probabilities. performance.
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Table 1 Brier score of all the methods for regular network

Method Brier score with 10-fold CV

30 50 100 200 500 1000
Bayesian network 0236 0222 0209 0201 0.198  0.191
Regression Spline 0286 0265 0235 02182 0210 0.208
Neural network 0323 0278 0248 0246 0241 0233
Logistic Regression 0317 0281 0259 0250 0243 0242
Interaction 1 0335 0289 0263 0251 0244 0241
Interaction 2 0452 0351 0279 0257 0246  0.242

Figure 2d shows the performance under different
sample sizes given the datasets generated from chain
network (Fig. 2c). It seems that the AUC-CV of all
methods are not significantly affected by sample size.
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The Bayesian network has superior performance followed
by the neural network, while the regression models work
inefficiently that may be partly due to the correlated
structure between the input variables. Similar trends can
be found for Brier score of the methods.

Given the datasets generated from wheel network
shown in Fig. 3a, it depicts the discriminatory ability
and accuracy of all these methods are comparable,
while the regression models have slightly inferior
performance with small sample size. Figure 3c
demonstrates that the 10-fold cross-validation AUC
of these methods slightly increase monotonically by
sample size, while the Brier score decrease monoton-
ically by sample size (please see Additional file 1:
Table S3). The prediction ability of the methods are
quite close when the independent variables satisfied
the linearity.
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Fig. 3 The cross-validation AUC of the methods with wheel network structure and data simulated by logistic model. a depicts the structure of
the wheel network and b shows the cross-validation AUC of Bayesian network, neural network logistic regression, and regression splines; ¢ shows
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Result of application

Table 2 shows the SNP information and univariate
analysis result with Leprosy of the selected 16 SNPs
in the model. Seven SNPs entered the multivariate
logistic regression model using stepwise approach
with results shown in Table 3. Hill climbing method
was employed for structure learning and Bayes
method for parameter learning using R package
bnlearn. Hugin software [31] was used to better
visualize the graphical representation of the Bayesian
network that is shown in Fig. 4. One hidden layer
with four units was used in neural network. Table 4
depicts the AUC and Brier score with 100 repeats of
10-fold cross validation of all the methods. The re-
sults show Bayesian network, though just slightly im-
proved, outperforms other two methods, which
indicate the network relationships exist in the 16
SNPs. Neural network has inferior performance than
the other methods, which may be due to the fact
that it is difficult to determine the optimum value
for number of hidden layers and nodes.

Discussion

Several studies demonstrated the importance of investi-
gating a disease from the network perspective. It remains
an interesting problem whether the network-based
methods have advantageous performance than others,
and to what extent do they outperform. The focus of this
paper is to bridge this gap and assess their performance
in prediction mainly through a series of simulations,
with four methods (Bayesian network, neural network,
logistic regression and regression splines). We employed
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the adjusted AUC and Brier score to assess the predic-
tion performance of all the methods. The adjusted AUC
are close to 0.5 under null hypothesis when the sample
size is larger than 500. It reveals that the discriminatory
ability of all methods varies quite slightly with sample
size. Four datasets under different assumptions were de-
signed and Bayesian network showed a better perform-
ance when the variables are in a network relationship
(Fig. 2a) or in a chain structure (Fig. 2c). The regression
splines improved the model performance a lot by
extracting the nonlinear effect, while the interaction
model improved slightly. But they are still inferior to
Bayesian network, which indicates that it is not straight-
forward to capture the whole network information using
regression method. For the network structure, we parti-
tioned the effects into additive and non-additive effects
to quantify the proportion of the relationships between
the input variables and the outcome is non-additive on
the logit scale as one reviewer suggested. We have em-
bedded ordinary regression in a larger model including
all two-way interactions and calculated the proportion of
likelihood ratio chi-square statistics, it showed that 23 %
of the effects are due to non-additive effects. The AIC
for the additive model and the full model of all the
population are 134194.5 and 133034.1 respectively. Par-
ticularly, for the special wheel network structure, our
simulation results illustrated that the Bayesian network
has similar performance of logistic regression model
(Fig. 3a), which is strongly consistent with the previous
findings [31], same phenomenon has also been found in
the case when data was generated using a logistic model
(Fig. 3c). Further application on leprosy GWAS show

Table 2 SNP information and associations with Leprosy for 16 previously identified SNPs within the Seven Susceptibility Genes

SNP CHR Position Minor allele Major allele Gene MAF P value OR

rs602875 6 32681607 G A HLA-DR-DQ 0.25 3.94E-11 0.54
rs42490 8 90847650 A G RIPK2 037 5.87E-05 0.71
rs40457 8 90892832 G A RIPK2 024 7.07E-04 0.72
rs10982385 9 116532838 G T TNFSF15 047 244E-03 1.28
rs4574921 9 116578155 C T TNFSF15 0.37 1.74E-04 1.39
rs10114470 9 116587593 C T TNFSF15 047 4.67E-06 0.68
rs6478108 9 116598524 T C TNFSF15 048 4.98E-07 0.66
rs1873613 12 38838684 C T LRRK2 0.22 3.15E-03 0.75
rs9533634 13 43295815 C T CCDC122 021 397E-04 0.70
rs3088362 13 43331630 A C CCbC122 032 2.11E-09 1.75
153764147 13 43355925 G A C130rf31 0.38 2.02E-10 1.74
rs10507522 13 43377000 G A C130rf31 025 1.97E-08 0.59
rs9302752 16 49276604 C T NOD2 0.38 3.09E-12 1.85
rs7194886 16 49282694 T C NOD2 0.19 343E-07 1.74
rs8057341 16 49295481 G A NOD2 025 2.13E-03 135
rs3135499 16 49323628 C A NOD2 0.24 1.81E-03 1.36
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Table 3 Parameter estimates by multivariate logistic regression

SNP Estimate z P OR

rs602875 -0.636 -6.200 563E-10 0.529
rs42490 -0.378 -4.140 347E-05 0.685
rs6478108 -0.391 -4.275 1.91E-05 0677
rs1873613 -0.276 -2.570 0.0102 0.759
rs3088362 0.526 5.154 2.55E-07 1.691
rs10507522 -0494 -4.735 2.19E-06 0610
rs9302752 0.665 7.007 243E-12 1.945

Bayesian network, though just slightly improved, still
outperforms other methods, followed by regression
splines and logistic regression, and neural network has
the worst performance after cross validation. Consider-
ing that it seems to be unreasonable to predict leprosy
using the non-risk SNPs, we thus have chosen the spe-
cific 16 risk SNPs which have been identified and vali-
dated from the GWAS of leprosy.

Logistic regression models are well suited to be used
when some assumptions is satisfied (Fig. 3c), while they
work inferior when the assumptions are violated and
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cannot capture the nonlinear and unknown relationships
often existed in the variables. It would be of great value
to add penalized MLE to the comparators to make the
comparison with logistic regression more informative,
which remains a goal of our future work. Neural net-
works can reflect the complex relationships between the
predictor variables and the outcome by the hidden
nodes in the hidden layer. However, as a weighted aver-
age of logit functions with the weights themselves esti-
mated, it does not jump out from the scope of
regression yet. Moreover, the network structure must be
pre-specified and no gold standard can be adopted to
determine the optimum value for number of hidden
layers and nodes. Bayesian networks capture the com-
plex relationship well between a larger number of
predictors with their interactions without statistical as-
sumptions, when the disease is caused through pathways
or networks, and the usefulness of Bayesian networks
for predicting is clearly recognized through simulation.
Even when the dataset were generated from regression
model, the Bayesian network techniques had a consider-
ate performance (Fig. 3c). Actually, the Bayesian network
is confirmed theoretically to be equivalent to a logistic
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Zhang et al. BMC Medical Research Methodology (2016) 16:100

Table 4 The AUC and Brier score of all the methods in
predicting leprosy

AUC AUC-CV Brier Score-CV
Bayesian Network 0.7323 0.7199 0.2088
Regression spline 0.7301 0.6986 0.2253
Logistic Regression 0.7441 0.7016 0.2219
Interaction 0.7569 0.6873 0.2304
Neural Network 0.8392 0.6454 0.2597

regression problem under a simple graph-theoretic condi-
tion (e.g. wheel network in our simulation) [31, 32]. One
major drawback of Bayesian network is that its perform-
ance can be heavily influenced by the network structure,
which sometimes may not capture the real population
structure information, though many algorithms have been
provided for network structure learning.

These comparisons are dependent on the character of a
particular data set, and one cannot conclude whether one
method will be superior to the others in a given data set
without dissecting the data structure. Overall, regression-
based methods are recommended for well-designed re-
search projects with a small amount of variables where re-
searchers can understand the potential predictors and
possible interactions, since it is easier to be implemented
and to be accepted by clinical researchers. For the dataset
with complex relationships, especially for commonly ac-
cepted network-centric perspective for complex disease,
network-based methods such as Bayesian network are
more appropriate to act as an exploratory tool. These
methods can extract the patterns and relationships in data
without constraining the predictors, and achieve a high
performance in discrimination.

Conclusion

Although regression-based methods are still popular and
widely used, network-based approaches should be paid
more attention, since it captures the complex relation-
ship between variables.

Additional file

Additional file 1: Relevant tables for the comparison of Brier score.
(DOCX 18 kb)
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