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Abstract

Background: Persistent Pseudomonas aeruginosa (PPA) infection promotes lung function deterioration in children
with cystic fibrosis (CF). Although early CF diagnosis through newborn screening (NBS) has been shown to provide
nutritional/growth benefit, it is unclear whether NBS lowers the risk of PPA infection and how the effect of NBS vary
with age. Modeling the onset age of PPA infection is challenging because 1) the onset age of PPA infection is interval
censored in patient registry data; and 2) some risk factors such as NBS may have time-varying effects.

Methods: This problem fits into the framework of a recently developed Bayesian dynamic Cox model for interval
censored data, where each regression coefficient is allowed to be time-varying to an extent determined by the data.

Results: Application of the methodology to data from the CF Foundation Patient Registry revealed interesting
findings. Compared with patients with meconium ileus or diagnosed through signs or symptoms, patients diagnosed
through NBS had significantly lower risks of acquiring PPA infection between age 1 and 2 years, and the benefit in
survival rate was found to last up to age 4 years. Two cohorts of five years apart were compared. Patients born in cohort
2003–2004 had significantly lower risks of the PPA infections at any age up to 4 years than those born in 1998–1999.

Conclusions: The study supports benefits of NBS on PPA infection in early childhood. In addition, our analyses
demonstrate that patients in the more recent cohort had significantly lower risks of acquiring PPA infection up to age
4 years, which suggests improved CF treatment and care over time.

Keywords: Cox model, Dynamic model, Reversible jump Markov chain Monte Carlo, Time-varying effect

Background
Cystic fibrosis (CF) is a potentially lethal, lifelong reces-
sive genetic disorder found mostly among Caucasians,
affecting over 30,000 people in the United States [1]. It
is caused by mutations in the gene for the cystic fibro-
sis transmembrane conductance regular protein. Chronic
lung infections and obstructive lung diseases, eventu-
ally leading to cardiorespiratory failure, are the main
causes of death (80 %) in patients with CF. Pseudomonas
aeruginosa (PA), a ubiquitous environmental bacterium,
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is the most significant and prevalent pathogen that accel-
erates lung infections and shortens survival time of CF
patients (e.g., [2, 3]). With improved treatment of CF, sur-
vival has increased significantly over time in the last three
decades, with median predicted survival age increased
from ∼28 years up to 40.7 years [1]. Early diagnosis
of CF through newborn screening (NBS) provides long-
lasting nutritional/growth benefits (e.g., [4, 5]). Nonethe-
less, findings of NBS on PA infections are inconsistent,
possibly due to variable PA status (i.e., first, ever, current,
persistent/chronic, or mucoid) and different statistical
models used. PA infections can be transient or intermit-
tent, especially using upper respiratory tract cultures in
early childhood [6]. The first PA infection is most likely
transient and, hence, is not a good indicator of lower air-
way infections. Transient PA infections can be eradicated
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by antibiotics treatments when they are diagnosed, but
such eradication is difficult if they began early in life and
became persistent [7]. On the other hand, as a primary
cause of increased CF morbidity and mortality, persistent
PA (PPA) infection can be used as a surrogate endpoint for
survival [8]. Therefore, it is very important to character-
ize PPA infection in CF patients for treatment devise and
patient management.
The Cystic Fibrosis Foundation (CFF) consensus report

recommended that respiratory tract cultures should be
obtained every three months in patients with stable pul-
monary status [9]. In reality, however, the interval varies
from days to months or years. Consequently, the onset age
of PPA infection is interval censored. Two challenges are
present in analyzing such data. First, standard Cox pro-
portional hazards models for right censored data need to
be adapted to account for the interval censoring scheme
(e.g., [10–12]). Second, the effects of risk factors may be
time-varying; for example, risks of PPA infection among
different patient groups may be changing instead of fixed
over time [13]. To address these challenges, a Cox model
with time-varying coefficients for interval censored data
is required.
We present a case study of analyzing the onset age

of PPA infection using a dynamic Bayesian Cox model
with time-varying coefficients for interval censored data
[14]. Cox models with time-varying coefficients have
been studied for interval censored data (e.g., [15–18]); a
recent comprehensive treatment is [19]. Nonetheless, the
dynamic Bayesian Coxmodel has a unique feature: it char-
acterizes each coefficient by piecewise constant but the
number of pieces is determined dynamically by the data
instead of fixed. That is, the extent to which each covariate
effect varies over time is driven by the need from the data.
Some coefficients can be more time-varying while others
can be less time-varying or approximately constant over
time. The model is fitted in the Bayesian framework with
reversible jump Markov chain Monte Carlo, and com-
parison to fully time-varying coefficient models [16] and
standard Cox models are made with a Bayesian model
selection criterion. Implementation of the methodology is
publicly available in an open source R package dynsurv
[20], which facilitates application to similar problems,
especially analyses of interval censored event times from
disease registry.
The case study revealed interesting findings that may

not be obtained from standard techniques with time-
independent covariate effects. Several factors that might
be associated with onset of PPA infection in children
with CF are examined, including gender, CF diagnostic
modes, genotype, and birth cohort. Patients with pan-
creatic sufficiency (10.6 % of the total), who in general
have milder CF were excluded from the analysis, and only
those classical CF cases with pancreatic insufficiency were

included. We hypothesized that children with CF in the
more recent cohort, diagnosed earlier through NBS, or
with mild genotypes were less likely to acquire PPA infec-
tions. The standard Coxmodel and its extensions allowing
time-varying coefficients were fitted to test the hypoth-
esis. The standard Cox model cannot capture how the
effects vary over time. The dynamic Bayesian Cox model
was found to outperform its competitors, uncovering the
temporal dynamics of these effects. Our results suggested
that patients diagnosed through NBS had significantly
lower risk of PPA infection between age 1 to 2 years and
the benefit in survival curve persisted up to age four years;
patients born more recently were found to have lower
risks of PPA infection up to age four years, which has not
been reported before; no significant difference was found
between female and male patients anywhere in the first
four years.

Methods
Data
The study population consisted of patients reported in the
2008 CFF Patient Registry (CFFPR). CFFPR is a database
established andmanaged by the CFF that tracks the health
and treatments of people with CF in the US, collecting
data for appropriately 28,000 patients annually [1]. Widely
regarded as the nation’s only comprehensive source of val-
idated data for CF, it provides clinicians and researchers
access to a large sample of data that can be used to identify
and study health trends, learn about effective treatments,
and design clinical trials for potential new therapies (e.g.,
[21]). Patients with pancreatic insufficiency (receiving
pancreatic enzymes replace therapies), who were geno-
typed and diagnosed before age 5 years in two birth
cohorts (born in 1998–1999 denoted as BC[98–99], and
born in 2003–2004 denoted as BC[03–04]) were selected
from the 2008 CFFPR. A very small portion (0.68 %) of
the patients who died before age 5 were not included. The
remaining 2341 patients were included in our analyses
and their followup data to the end of 2008 were extracted
from the 2008 CFFPR for this study with appropriate
administrative permissions.
We defined PA infection to be persistent if two or more

positive PA infections occur within a 4–9 month time
period without any negative results in between [22, 23].
The onset ages of PPA infection are subject to interval
censoring. A PPA infection event is indicated by the first
occurrence of consecutive positive PA infections in a 4–9
months period. In this case, the onset age of PPA infection
is interval censored: the left endpoint is zero or the age at
the last visit before the sequence, the right end point is the
age at the first visit of the sequence. For example, a patient
had the first two consecutive positive PA infections at
age 2.34 and 2.93 years, respectively, and the last visit
before the pair was at age 1.40 years. Then the censoring
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interval for this patient was (1.40, 2.34). If PPA infection
was never identified for a patient within the observed
followup period, the censoring interval was constructed
from the age at the last visit to infinite (or right-censored).
The stringent requirement to confirm for persistency in
PA infections resulted 267 patients that were interval cen-
sored, with amedian interval length of 0.30 year, and 2,074
patients that were right censored. Note that, although a
child only enters the CFFPR after being diagnosed as hav-
ing CF, the onset age of PPA infection can be either after or
before the diagnosis age; in the latter case, the censoring
interval would have left end point zero.
In addition to birth cohort, other risk factors includ-

ing gender, mode of diagnosis, and genotype were also
examined. Mode of CF diagnosis (DX) indicates how each
patient in the CFFPR was diagnosed as having CF. Classi-
fied according to common clinical practices, DX is a cat-
egorical variable with four levels: (1) patients identified at
birth because of an intestinal obstruction known as meco-
nium ileus (MI); (2) patients diagnosed through NBS, typ-
ically in the neonatal period and often pre-symptomatic;
(3) patients identified at variable ages because of positive
family history (FH); and (4) patients identified because of
symptoms (SYMP) other than MI at a median age of 8–9
months [24]. In general, most CF patients with pancre-
atic insufficiency will be diagnosed before age 5 [25]. The
SYMP group does not necessarily include more severe
patients with CF than the NBS group. All patients with CF
regardless of diagnosis modes received similar standard
cares after CF diagnosis. The potential pulmonary bene-
fit of early diagnosis of pre-symptomatic patients through
NBS has been supported by other studies (e.g., [13, 26]).
Genotype (Geno) is classified based on the most com-
mon mutation F508del (e.g., [27, 28]) with three levels: (1)
F508del homozygous— F508del/F508del (FF); (2) F508del
heterozygous — F508del/other (FO); and (3) other/other
(OO).
Tables 1 and 2 summarize the frequencies of two clini-

cal variables DX and Geno by two demographic variables
gender and BC. There were 1266 (54.1 %) patients in
BC[98–99] and 1075 (45.9 %) patients in BC[03–04]. The
two genders are more or less balanced. In the four DX
groups, the SYMP group is the largest, and the FH group
is the smallest; the NBS group has an increased relative
frequency in BC[03–04] because more states in the US
implemented NBS. In the three genotype groups, FF and
FO consist of the majority of patients with CF, as about
90.6 % of patients with CF have at least one copy of the
F508del mutation.

Preliminary analysis
As an exploratory analysis, the standard Cox model with
constant coefficient for interval censored data was fit-
ted to examine the association between the covariates

Table 1 Frequency table (with column percentage) of birth
cohort, gender, mode of diagnosis and genotype

BC[98–99] BC[03–04]

Female Male Total Female Male Total

DX SYMP 385 341 726 249 281 530

(58.1) (56.6) (57.4) (48.9) (49.7) (49.3)

MI 184 172 356 148 137 285

(27.7) (28.5) (28.1) (29.1) (24.2) (26.5)

NBS 63 60 123 87 111 198

(9.5) (9.9) (9.7) (17.1) (19.6) (18.4)

FH 31 30 61 25 37 62

(4.7) (5.0) (4.8) (4.9) (6.5) (5.8)

Geno FF 357 319 676 276 311 587

(53.8) (52.9) (53.4) (54.2) (54.9) (54.6)

FO 250 218 468 184 206 390

(37.7) (36.2) (37.0) (36.2) (36.4) (36.3)

OO 56 66 122 49 49 98

(8.5) (10.9) (9.6) (9.6) (8.7) (9.1)

and the onset age of PPA infection. Two methods are
used: the iterative convex minorant (ICM) algorithm for
interval censored data [12] implemented in R package
intcox; and the Bayesian method implemented in R
package dynsurv. The levels Female, SYMP, FF and
BC[98–99] were, respectively, used as the reference levels
for gender, mode of diagnosis, genotype and birth cohort
in hereafter model fitting Table 3 summarizes the esti-
mated coefficients. As package intcox does not provide
standard errors for the parameter estimates, they were
obtained from 1,000 bootstrap samples. The results from
the Bayesian inference were obtained with the default
prior choices in package dynsurv.

Table 2 Frequency table (with column percentage) of gender,
genotype and mode of diagnosis

Female Male

Geno FF FO OO Total FF FO OO Total

DX SYMP 323 241 70 634 319 235 68 622

(51.0) (55.5) (66.7) (54.1) (50.6) (55.4) (59.1) (53.2)

MI 197 120 15 332 176 100 33 309

(31.1) (27.6) (14.3) (28.3) (27.9) (23.6) (28.7) (26.4)

NBS 82 54 14 150 98 66 7 171

(13.0) (12.4) (13.3) (12.8) (15.6) (15.6) (6.1) (14.6)

FH 31 19 6 56 37 23 7 67

(4.9) (4.4) (5.7) (4.8) (5.9) (5.4) (6.1) (5.7)
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Table 3 Estimated coefficient by iterated convex minorant (ICM)
algorithm and the Bayesian posterior mean in standard Cox
model for onset age of PPA infection

ICM (intcox) Bayesian (dynsurv)

Estimate Std. Err. Pr(> |z|) Estimate 95 % credible interval

Gender (Male) 0.158 0.121 0.191 0.128 (−0.111, 0.360)

DX (MI) −0.048 0.142 0.736 −0.068 (−0.347, 0.208)

DX (NBS) −0.435 0.221 0.048 −0.422 (−0.857,−0.028)

DX (FH) −0.030 0.283 0.917 −0.011 (−0.537, 0.509)

Geno (FO) −0.137 0.139 0.327 −0.139 (−0.411, 0.123)

Geno (OO) 0.200 0.198 0.312 0.158 (−0.255, 0.534)

BC[03-04] −0.450 0.130 0.001 −0.497 (−0.751,−0.242)

The estimates of the time-independent coefficients
from the two methods are reasonably close, leading to
similar observations. Patients diagnosed throughNBS had
significantly lower risks at level 5 % compared with those
diagnosed by SYMP; patients in BC[03–04] had signif-
icantly lower risks than those in BC[98–99] at the 5 %
level for PPA infection. Nonetheless, the standard Cox
model cannot capture any potential temporal dynamics
of covariate influences which have been reported for PA
infections [13]. We therefore fitted the Bayesian dynamic
Cox model with data driven time-varying regression coef-
ficients [14].

Bayesian dynamic cox model
Model and likelihood
Suppose that n independent subjects are observed. For
subject i, i = 1, . . . , n, let Ti be the unobserved event time
of interest (onset age of PPA infection), and (Li,Ri] be
the observed censoring interval containing Ti. Let Xi be
a p-dimensional vector of covariates for subject i. To go
beyond the proportional hazards assumption in the stan-
dard Cox model, the dynamic Cox model [14] allows the
covariate coefficient to be time-varying:

λ(t|Xi) = λ0(t) exp
{
X�
i β(t)

}
, (1)

where λ0(t) is the baseline hazard and β(t) is the
p-dimensional regression coefficients of Xi at time t.
Model (1) is seemingly the same as the time-varying coef-
ficient Cox model [16]. Both models assume that λ0(t)
and β(t) are left continuous step functions and the poten-
tial jump points are limited to a fine grid of time points
G = {0 = s0 < s1 < . . . < sK < ∞}. Sinha et al. [16] place
the jump points at all K grid points, which is unnecessary
for coefficients that are relatively stable. This motivated
Wang et al. [14] to allow the number of jump points J,
J ≤ K , to be covariate specific and data-driven; some
coefficients can be more time-varying than others.

A data augmentation approach facilitates the inferences.
For a finite censoring interval (Ri < ∞), let dNi,k =
I
(
Ti ∈ (sk−1, sk]

)
, indicating whether Ti is in the kth

interval on the grid. The at risk indicator Yi,k is deter-
mined by dNi,k ’s. If dNi,k = 1 for certain k, then Yi,l = 1
for l < k,Yi,l = 0 for l > k and Yi,k = (Ti − sk−1)/�k ,
where �k = sk − sk−1 is the width of the kth interval. For
a right censoring interval (Ri = ∞), dNi,k = 0 for all k,
and Yi,k = I(sk ≤ Li). The information in Ti is now equiv-
alently contained in {dNi,k ,Yi,k}Kk=1, which are treated as
missing data. Let � = {log λ0(t),β(t); t > 0} contain all
the piecewise constant parameters of the baseline hazard
and the regression coefficients. When the event indica-
tor dNi,k and at-risk indicator Yi,k , k = 1, . . . ,K , are all
observed, the complete data likelihood is

L
(
�|

{
dNi,k ,Yi,k}Kk=1,Xi; i = 1, . . . , n

})

=
n∏

i=1

K∏
k=1

{
λk exp(XT

i βk)
}dNi,k

exp
{
−�kλkexp(XT

i βk)Yi,k
}
.

Prior specification
As log λ0(t) can be viewed as the regression coefficient of
ones, its prior is specified similar to other component in
�(t).Without loss of generality, let θ(t) be a component in
�(t). The prior distribution of J is discrete uniform over
{1, . . . ,K}. Given that there are J jumps in θ(t), the jump
times 0 < τ1 < . . . < τJ = sK are random except the
last one. Given both J and the jump times, a hierarchical
Markov process prior is specified for θ(t):

θ(τ1)|ω ∼ N (0, a0ω), a0 > 0,
θ(τj)|θ(τj−1),ω ∼ N (θ(τj−1),ω), j = 2, 3, . . . , J ,

ω ∼ IG(α0, ξ0), α0 > 0, ξ0 > 0,

where a0,α0, and ξ0 are hyperparameters, N
(
μ, σ 2) is a

normal distribution with mean μ and variance σ 2, and
IG(α0, ξ0) is an inverse gamma distribution with shape
parameter α0 and scale parameter ξ0 such that the mean
is ξ0/(α0 − 1) for α0 ≤ 1. The introduction of ω gives
much more room to adjust the amount of penalty on the
smoothness of θ(t) automatically than the case where ω is
specified as a hyperparameter [16]. The prior on the vari-
ance of θ(τ1) is specified to be more noninformative by
multiplying a hyperparameter a0 > 1.
Each component in � has its own J and ω.

Posterior computation
A reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm [29] is necessary for posterior sampling
to make inferences because the dimension J of each com-
ponent in � is dynamic. Let dN = {dNi,k : i =
1, . . . , n, k = 1, . . . ,K} and Y = {Yi,k : i = 1, . . . , n, k =
1, . . . ,K}. In addition to the parameters of interest �,
the augmented event indicators and at-risk indicators for
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finite censored intervals and the second level parame-
ters ω = {ω0,ω1, . . . ,ωp}, which correspond to � =
{
0,
1, . . . ,
p} also need to be updated in the iterations.
A Gibbs sampling framework draws {Ti : Ri < ∞},� and
ω’s iteratively as follows:

1. For each subject i with Ri < ∞, sample event time Ti
given �, and compute event indicators dNi,k and
at-risk indicators Yi,k , k = 1, . . . ,K .

2. For each j ∈ {0, 1, . . . , p}, sample 
j given 
−j (all
components in � except the j th), dN ,Y , and ω.

3. For each j ∈ {0, 1, . . . , p}, sample ωj given � from an
IG distribution resulting from the conjugate prior of
ωj.

The second step is where the reversible jump part
comes in, and a random number of jumps Ji for each
i = 0, 1, . . . , p leads to a posterior with variable dimen-
sions. Three types of moves — birth, death, and update
— with probability 0.35, 0.35 and 0.3, respectively, are
used to add a jump point, remove a jump point, and
update the jump sizes with no jump points fixed. See [14]
for details.
It is often of interest to compare the survival curves of

two groups of subjects. This was not discussed in [14] but
can be conveniently constructed from the posterior sam-
ple. Given covariate vector X, the survival function S(t|X)

corresponding to the piecewise constant hazard λ(t|X) in
Model (1) evaluated at a grid point sk , k = 1, . . . ,K , is

S(sk|X,�) = exp

⎧
⎨
⎩−

∑
i≤k

λi(si)eX
�β(t)

⎫
⎬
⎭ ,

Let �(i) be the posterior draw of � from the ith RJM-
CMC iteration, i = 1, . . . ,N . The survival function at each
grid point sk , k = 1, . . . ,K , is estimated by the posterior
mean

Ŝ(sk|X) = 1
N

N∑
i=1

S(sk|X,�(i)).

The credible interval for the survival curve at sk can be
constructed based on the quantiles of S(sk|X,�(i)), i =
1, . . . ,N . For two different sets of covariates X1 and X2,
the difference in survival curves at sk can be estimated
Ŝ(sk|X1) − Ŝ(sk|X2), with credible intervals constructed
from the quantiles of S(sk|X1,�(i)) − S(sk|X2,�(i)), i =
1, . . . ,N .

Convergence check andmodel comparison
Convergence check for the RJMCMC is challenging. The
parameters�(t) as functions of time retain their interpre-
tations when the sampler moves across models with dif-
ferent dimensions, and are to bemonitored [30]. Nonethe-
less, each component in �(t) has K points, resulting

K(p+ 1) parameters which are too many to monitor alto-
gether. Posterior samples of each component in �(t) as
a curve can be made into animations for visual checking.
Alternatively, the curves evaluated at a small number of
fixed time points can be monitored with the usual con-
vergence checks. The number of pieces J for each curve
is more difficult to converge than points on the curves
from our experience, so it provides an easy alternative to
monitor.
The advantage of the dynamic model in comparison

to the standard Cox model and the fully time-varying
coefficient Cox model [16] can be shown through model
comparison in the Bayesian framework. Due to random
dimension of the dynamic model, Wang et al. [14] rec-
ommended to use the log pseudo marginal likelihood
(LPML). For a modelM, the LPML is

LPMLM = �n
i=1 log [CPOM(i)] ,

where the CPO represents the conditional predictive
ordinate, which is essentially a Bayesian cross-validation
approach [31]. In the current application, for the ith sub-
ject, the CPO statistics is defined as

CPOM(i) = Pr
(
Ti ∈[ Li,Ri] |D(−i)

obs

)
,

where D(−i)
obs is the observed interval censored data

with the ith subject removed. In practice, CPOM(i)
can be calculated as the harmonic mean of copies of
Pr (Ti ∈ (Li,Ri] | �,Xi) evaluated at RJMCMC samples
from� given the observed data. Model with higher LPML
are preferred to models with lower LPML.

Results
To make a fair comparison between the two cohorts, we
excluded data after age 5 years from patients in BC[98–99]
because patients in BC[03–04] had no data after age
5 years reported in the 2008 CFFPR. The time grid was set
to be equally spaced in (0, 5) with increment 0.1, which is
sufficiently fine to capture the temporal dynamics of the
covariate effects [13] and at the same time not too dense to
cause unnecessarily large computing burden. To conform
with the grid, the end points of the censoring interval were
rounded: the left end was rounded down, and the right
end was rounded up to the nearest 0.1 year. The age win-
dow we report for the PPA infection, however, was chosen
to be (0, 4) years, because at the data extraction time (end
of 2008), patients born in 2004 did not reach 5 years old
yet, and the definition of PPA involves at least two visits of
4–9 months apart.
The prior for the regression coefficients 
(t) was set as

the Markov process prior as described earlier. The mul-
tiplier a0 was fixed at 100 to allow for a noninformative
specification for the first piece of coefficient function. The
prior distribution of ω was set to be IG(1, 1), which is
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quite vague as it does not even have finite first moment.
Alternative priors were used for sensitivity analysis later.
With R package dynsurv [20], 200,000 RJMCMC itera-
tions were generated. With a burn-in period of 130,000,
the remaining iterations were thinned by 10, resulting in
a sample of size 7,000. This sample was checked for con-
vergence and used for computing the LPML for model
comparisons with competing models. The trace plots of J
for all coefficients are presented in Additional file 1.
The estimated time-varying coefficients with their 95 %

credible intervals from the dynamic Cox model (1) for
the onset age of PPA infection are displayed in Fig. 1.
The temporal dynamics of all the coefficients revealed
subtle, interesting findings that cannot be seen from the
standard Cox models with time-independent coefficients
reported in Table 3. Males appeared to have higher risks of
acquiring PPA infection than females after age 2, but the
effect was not significant at 5 % at any time before age 4.
Patients diagnosed through NBS had lower risk of PPA
infection than those diagnosed through SYMP, and the
difference was significant at 5 % level between age 1 and
2 years; afterwards, the effect diminished. Patients diag-
nosed by MI or FH had no difference in PPA infection
risk in comparison to those diagnosed by SYMP, with their
effects quite flat around zero at all ages before 4 years.
Similarly, patients with genotype FO or OO had no signif-
icant difference in PPA risk in comparison with those with
genotype FF at any time before age 4 years either. Patients

in BC[03–04] had significantly and persistently lower risk
of PPA infection than those in BC[98–99] at all ages before
4 years.
It is of interest to compare the survival curves between

subgroups of CF patients, which may provide additional
clinical insights to those obtained from instantaneous risk
modeled in (1). Figure 2 shows the estimated survival
curves of patient groups with certain covariate informa-
tion. The left panel compares the survival curves of four
female patient groups with genotype FF in BC[98–99],
each from one of the four diagnosis modes: SYMP, NBS,
MI, and FH. Females diagnosed through NBS had appar-
ently longer survival time to PPA infection than those in
the other three groups, whose survival curves were very
close to one another. The right panel compares the sur-
vival curves of two female patient groups with genotype
FF and diagnosed through SYMP, one in BC[03–04] and
the other in BC[98–99]. Females in BC[03–04] has longer
survival time to PPA infection than those in BC[98–99].
The differences between the survival curves for sub-

groups of interests and their 95 % credible intervals
are displayed in Fig. 3. The left panel shows the differ-
ence between females diagnosed through NBS and those
diagnosed through SYMP, both with genotype FF from
BC[98–99]. The largest difference was about 4.4 % at
age 4 years. The 95 % credible intervals barely covered
zero before age 2 years and excluded zero between age
2 and 4 years. This suggest that, although the difference
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Fig. 2 Estimated survival curves of patients from different treatment groups or cohorts. The left panel shows the estimated survival function of
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genotype FF diagnosed via symptoms from different birth cohorts

in instantaneous risk of PPA infection between patients
diagnosed by NBS and those diagnosed by SYMP became
insignificant after age 2 (Fig. 1), the benefit of NBS in low-
ering PPA infection risk sustained to at least age 4 years in
children CF patients. The right panel shows the difference
in survival curves between females from BC[03–04] and

females from BC[98–99], both with genotype FF and diag-
nosed through SYMP. The credible intervals were above
zero during age 0 to 4. Females in BC[03–04] had a sig-
nificantly greater survival rate to PPA infection than those
females in BC[98–99] at the 5 % level. The difference was
almost linearly increasing and attained the highest point
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of about 5 % at age 4, which suggests significant improve-
ments in CF patient care in the recent cohort that is not
accounted for by the other predictors. Similar results were
observed in other group comparisons (data not shown).
The performance of the dynamic Cox model (1) in

comparison with competing models for the PPA anal-
ysis can be assessed using LPML. Let M1,M2, and
M3 be, respectively, the standard Cox model with
time-independent coefficients, the fully time-varying
coefficient model of Sinha et al. [16], and model (1). Inde-
pendent gamma priors with shape 0.1 and rate 0.1 were
placed on the pieces of baseline hazards in both M1 and
M2. For each time-independent regression coefficient in
M1, an independentN (0, 1) prior was specified. An inde-
pendent Markov process prior with a fixed ω = 1 was
placed on each time-varying coefficient in M2 [16]. The
LPML values are −6275.93,−5995.99, and −1925.58 for
M1,M2, andM3, respectively. ModelM3 outperformed
the other two by a drastic gain. Compared with M1, it
allows temporal dynamics in regression coefficients that
are not possible inM1. Although the coefficients in Fig. 1
look flat, a complete time-invariant coefficient Cox model
would not capture the subtle dynamics, especially in the
coefficients of gender and DX[NBS]. Compared withM2,
it has a much smaller number of effective parameters and
provides much narrower credible intervals for the time-
varying coefficients (see plot for estimated coefficients
from M2 in Additional file 1). Specifically, the posterior
mean number of pieces J for the coefficients inM3 ranges
from 2 to 5 (see the histograms in Additional file 1), which
are much smaller than K = 50, the unnecessarily large
number of pieces in M2. The dynamic model M3 strikes
a balance between flexibility and parsimony of the Cox
model in this application. It is also a compromise between
bias variance tradeoff.
Sensitivity analysis was performed with a few other

specification of hyperparameters and the results were
fairly stable. For example, when prior IG(α0, 1) was speci-
fied for ω with α0 ∈ {0.5, 2, 3, 4} underM3. The estimated
coefficients from each prior specification are plotted in
Web Figures in Additional file 1, which are virtually
unchanged from Fig. 1. The dynamic model M3 still
outperformsM1 andM2 by a large margin in LPML.

Discussion
We examined risk factors associated with the onset
age of PPA infection in children with CF, using the
Bayesian dynamic Cox model, which enables us to deal
with interval-censored data and capture the time-varying
effects of risk factors. The results of the analyses generated
interesting findings on PPA infections in young children
with CF. The early benefit of NBS on PPA infection
persisted until the end of our study at age 4 years, as
shown from the estimated survival curves constructed

from posterior samples, although no additional benefit in
instantaneous risk was found during ages 2–4 years. Such
time-varying effect of NBS cannot be observed from time-
independent Coxmodel. This observation echoes findings
regarding growth benefit of NBS: early growth benefit
of NBS sustained through adolescence with no addi-
tional benefit observed during puberty in the Wisconsin
Randomized Clinical Trial (RCT) of CF Neonatal Screen-
ing project [4, 5]. It is noted that after CF diagnosis,
all children received standard cares regardless their diag-
nostic modes. These findings indicate that children diag-
nosed through conventional methods maintain a similar
disease progression as children diagnosed through NBS
did after diagnosis, with disease outcomes remaining
below but neither falling further behind nor catching
up appreciably. The results justify the importance of
and the need for continuing efforts to improve CF care
after NBS.
Nevertheless, concerns regarding earlier acquisition of

PA in children diagnosed through NBS still exist, as the
NBS arm of the Wisconsin RCT had higher rates of
ever PA positive infections because of earlier exposure to
older patients with CF until care protocols were modi-
fied to ensure segregated followup care [32]. Since that
time, following the recommendations of the Centers for
Disease Control and Prevention [33] to maintain PA-
segregated care when implementing CF NBS, no evidence
indicates that NBS is associated with early PA acquisi-
tion [34–37]. In fact, analysis utilizing older CFFPR cohort
born 1986–2000 found that NBS results in lower preva-
lence of PA infection compared with traditional diagnosis
via symptoms/signs in the first seven years of life [13].
Such benefit attenuated with age and became insignif-
icant by age 10 years. The present study also demon-
strated the time-varying effect of NBS on PPA in the
early childhood. Further studies are needed to exam-
ine its long-term effect to adolescence, when lung func-
tion may start to decline and lung disease progressively
deteriorates [38].
We used the birth cohort as a surrogate to capture

all the effects that are not captured by gender, diagno-
sis mode, and genotype. Our analyses also demonstrate
that patients born in cohort 2003–2004 had significantly
lower risks of the PPA infections at any age up to 4 years
than those born in 1998–1999. Since NBS was increasing
implemented and became nationwide in the U.S in 2010,
children in the recent cohort are more likely to be diag-
nosed earlier through NBS. After adjusting for diagnostic
modes, however, cohort effect still exists, indicating sig-
nificant advances in CF treatment over time. The effects
of gender and genotype are generally flat and not signifi-
cant at the 5 % level. Nonetheless, using F508del mutation
only to define genotype had limitations, as some other
CF-causing mutations are also associated with severe CF
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phenotype [39, 40]. As more mutations are studied for
molecular defect consequences, our future analyses is to
re-define genotype using mutation class information. It is
worth pointing out that there is no standard definition for
chronic/persistent PA. Other approaches to define PPA as
well as mucoid PA will be explored in our future analyses.
The different frequency in PA cultures can also influence
the determination of the onset age. More frequent cul-
tures would yield more accurate estimate. Given the visits
occur fairly regularly (every three months), the influence
of irregular cultures on the analyses would be small.

Conclusions
The statistical methods that we used appropriately
address a challenging feature of the CFFPA data — inter-
val censored onset age of PPA infections. Moreover, our
model allows the effects of the risk factors to be time-
varying. Therefore, the findings using this new method
are more convincing than those using the existing models
based on less sophisticated statistical methodologies. Our
study supports benefits of NBS on PPA infection in early
childhood. In addition, patients in the more recent cohort
were found to have significantly lower risks of acquiring
PPA infection up to age 4 years, which suggests improved
CF treatment and care over time.

Additional file

Additional file 1: Model diagnosis. The additional file mainly includes
diagnosis plots and sensitivity check for the dynamic Cox model.
(PDF 338 kb)
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