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Abstract

Background: Power analysis is a critical aspect of the design of experiments to detect an effect of a given size. When
multiple hypotheses are tested simultaneously, multiplicity adjustments to p-values should be taken into account in
power analysis. There are a limited number of studies on power analysis in multiple testing procedures. For some
methods, the theoretical analysis is difficult and extensive numerical simulations are often needed, while other
methods oversimplify the information under the alternative hypothesis. To this end, this paper aims to develop a new
statistical model for power analysis in multiple testing procedures.

Methods: We propose a step-function-based p-value model under the alternative hypothesis, which is simple
enough to perform power analysis without simulations, but not too simple to lose the information from the alternative
hypothesis. The first step is to transform distributions of different test statistics (e.g., t, chi-square or F) to distributions of
corresponding p-values. We then use a step function to approximate each of the p-value’s distributions by matching
the mean and variance. Lastly, the step-function-based p-value model can be used for theoretical power analysis.

Results: The proposed model is applied to problems in multiple testing procedures. We first show how the most
powerful critical constants can be chosen using the step-function-based p-value model. Our model is then applied to
the field of multiple testing procedures to explain the assumption of monotonicity of the critical constants. Lastly, we
apply our model to a behavioral weight loss and maintenance study to select the optimal critical constants.

Conclusions: The proposed model is easy to implement and preserves the information from the alternative
hypothesis.

Keywords: Critical constants, Multiple testing procedures, Power analysis, p-value

Background
Power analysis is a key technique in the experimental
design to reveal an effect of a given size. Traditional power
calculation usually assumes a single hypothesis test, but it
is quite common for researchers to test several hypothe-
ses simultaneously. Clinical trials often require two or
more hypotheses to be tested, and studies which involve
comparing treatments using multiple outcome measures
happen frequently in medical research [8]. The devel-
opment of high-throughput biology leads to a dramatic
increase in the number of hypothesis tests in genomics
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[20]. However, there are a limited number of studies on
power analysis in multiple testing procedures. For scien-
tific studies withmultiple hypotheses, in order to correctly
control the false positives, multiplicity adjustments to
p-values should be taken into account in power anal-
ysis. A consequence of multiplicity adjustments is the
loss of power [21] and the change in sample size
requirements [16].
The p-value is a tail probability given the null hypothesis

is true. Under the null hypothesis, the p-value is a uni-
formly distributed random variable between 0 and 1. If the
null hypothesis is false, the p-value’s distribution depends
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on the alternative hypothesis, which usually satisfies the
inequality

Pr(P ≤ p) ≥ p, (1)

i.e., the random variable P is less than a standard uniform
random variable in the stochastic order, where the random
variable P is the probability of rejecting the null hypothesis
when the alternative hypothesis is true.
In order to perform a p-value based power analysis,

certain distribution models are needed to describe the
behavior of p-values under the alternative hypothesis. In
general there are two approaches. The p-value models
based on the original test statistics [17] or based on copu-
las [27] are usually with complex expressions, and further
calculations or evaluations require integrations. So the
theoretical analysis is difficult and numerical simulations
are often needed. The p-value models based on Dirac
function [10, 24] are over-simplified, which limits their
application areas.
In this paper, we propose the step-function-based

p-value models under the alternative hypothesis, which
are simple enough to perform theoretical power analysis,
but not too simple to lose the information from the alter-
native hypothesis. Two applications in multiple testing
procedures are shown and one application in weight-loss
treatment is given.

Methods
A widely used p-value model assumes that the statis-
tic under the null hypothesis follows N(0, 12), and
the statistics under the alternative hypothesis follows
N(δ, 12). The p-values are calculated based on one-sided
test [17].
The density function of the normal-distribution-based

p-value model is

h(p) = φ
(
�−1(p) + δ

)

φ
(
�−1(p)

) , (2)

with mean and variance

E[P] =
∫ +∞

−∞
�(x)φ (x + δ) dx,

var[P] =
∫ +∞

−∞
[�(x)]2 φ (x + δ) dx

−
(∫ +∞

−∞
�(x)φ (x + δ) dx

)2
.

Alternatively, we propose a step-function-based p-value
model under the alternative hypothesis, which has a den-
sity function

h(p) =

⎧
⎪⎪⎨

⎪⎪⎩

f , 0 ≤ p ≤ 1 − g
f − g

,

g,
1 − g
f − g

< p ≤ 1,
(3)

with mean and variance

E[P]= 1 − 2g + fg
2

(
f − g

) , var[P]= 1 + 4fg2 + 4f 2g − 3f 2g2

12
(
f − g

)2 ,

where 0 ≤ g ≤ 1 ≤ f . The parameter (f , g) indicates
the deviation of the random variable P under the step-
function-based p-value model from a standard uniform
random variable.
For comparison between the normal-distribution-based

p-value model and the step-function-based p-value
model, the parameters (f , g) of the step-function-based
p-value model were chosen to match the means and
the variances for the normal-distribution-based p-value
model with parameter δ, as shown in Table 1. For the sim-
plified step-function-based p-value model with parameter
f, means are matched with the normal model.
In addition, a simplified step-function-based p-value

model with a single parameter f ∈[ 1,+∞) is achieved
when assuming g = 0. The corresponding density func-
tion is

h0(p) =

⎧
⎪⎪⎨

⎪⎪⎩

f , 0 ≤ p ≤ 1
f
,

0,
1
f

< p ≤ 1.
(4)

with mean and variance

E[P]= 1
2f

, var[P]= 1
12f 2

.

For the simplified step-function-based p-value model, a
larger parameter f corresponds to a larger effect size. As a

Table 1 Normal-distribution-based p-value model and step-function-based p-value model

Normal Step-function Simplified step-function

δ Mean SD f g (1 − g)/(f − g) f 1/f

0.2 0.444 0.286 1.249 0.795 0.451 1.127 0.888

0.5 0.362 0.274 1.728 0.555 0.380 1.382 0.724

1 0.240 0.236 2.937 0.288 0.269 2.086 0.480

2 0.079 0.130 9.061 0.059 0.105 6.357 0.157

3 0.017 0.049 37.143 0.007 0.027 29.503 0.034
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special case, when f = 1, the distribution is uniform [ 0, 1].
The probability density functions and the cumulative dis-
tribution functions of the normal-distribution-based and
the step-function-based p-value models are compared in
Fig. 1. The step-function-based p-value models serve an
approximation to the p-valuemodels based on the original
test statistics.
Based on the univariate model, the corresponding mul-

tivariate p-value model has a density function

h(p1, · · · , pn) =
n∏

i=1
hi (pi) , (5)

where different hi(·)’s may have different parameters fi’s
and gi’s. In the following sections, the simplified step-
function-based p-value model is applied to two problems
in multiple testing procedures.

Results
Application: optimal choices of the critical constants
Assume n hypotheses {Hi}ni=1 with p-values

{
pi

}n
i=1. Sort

p-values as p(1) ≤ · · · ≤ p(n), and H(1), · · · ,H(n) are
the corresponding null hypotheses. Consider testing the
global null hypothesis ∩n

i=1Hi under the control of type I
error [15]

Pr
(∪n

i=1
{
p(n−i+1) ≤ ciα

}) ≤ α.

The global test compares p(n−i+1) with its correspond-
ing critical constant ciα for every i = 1, · · · , n. If for
some i’s, p(n−i+1) ≤ ciα, then the global null hypoth-
esis is rejected. Simes [25] proposed a test with ci =
(n − i + 1) /n, and other choices of ci’s were proposed by
Rom [22], Cai and Sarkar [7], Gou and Tamhane [11].

Among different choices of critical constants ci’s, peo-
ple usually run simulations [19] or rely on numerical
calculations [14] to make power comparison in order
to choose suitable sets of critical constants. Besides the
existing computationally intensive methods, the step-
function-based p-value model is an alternative choice to
theoretically calculate the powers and make comparisons
between different multiple testing procedures.
In this section we first show how themost powerful crit-

ical constants can be chosen using our proposed method
for a global test with two hypotheses, and then we can
apply the successive recursion process to calculate the
power for a global test with n hypotheses. For a global
test with two single hypotheses, the control of type I error
under independence requires

Pr
({
p(2) ≤ c1α

} ∪ {
p(1) ≤ c2α

}) = α,

where c1 ≥ c2. This equality is equivalent to

(1 − 2c2) + c1 (2c2 − c1) α = 0. (6)

From (6) we get c2 = 1−c21α
2(1−c1α)

, and the derivative dc2
dc1 =

− (c1−c2)α
1−c1α , which is less than zero. So c2 decreases when c1

increases.
By using the simplified step-function-based p-value

model, without loss of generality, we assume 1 ≤ f1 ≤ f2,
the probability of rejecting the global hypothesis is

Rejection probability

=

⎧
⎪⎨

⎪⎩

c2
(
f1 + f2

)
α + c1 (c1 − 2c2) f1f2α2, when f1 ≤ f2 ≤ 1

c1α ,(
c1f1 + c2f2

)
α − c1c2f1f2α2, when f1 ≤ 1

c1α ≤ f2 ≤ 1
c2α ,

1, when f1 ≥ 1
c1α orf2 ≥ 1

c2α .

When the global hypothesis contains two single
hypotheses (n = 2), there are two configurations of
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Fig. 1 Normal-distribution-based and step-function-based p-value models (δ = 0.5)
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true and non-true null hypotheses where the global null
hypothesis is false: (1) one true null hypothesis (n0 = 1)
and one false null hypothesis (m = 1), and (2) two false
null hypotheses (m = 2).
First, assume that one null hypothesis is true and the

other is false, say, f1 = 1 and f2 = f , then the power is

Power =

⎧
⎪⎨

⎪⎩

c2
(
1 + f

)
α + fc1 (c1 − 2c2) α2 when f ≤ 1

c1α ,(
c1 + fc2

)
α − fc1c2α2, when 1

c1α ≤ f ≤ 1
c2α ,

1, when f ≥ 1
c2α .

When f ≤ 1
c1α , from (6) it follows that c1 (c1 − 2c2) α =

1 − 2c2, therefore

c2
(
1 + f

)
α + fc1 (c1 − 2c2) α2 = (

f − (
f − 1

)
c2

)
α,

hence power increases when c2 decreases (c1 increases).
When 1

c1α ≤ f ≤ 1
c2α , from (6) we get c1c2α =

1
2

(
2c2 − 1 + c21α

)
, consequently

(
c1 + fc2

)
α − fc1c2α2 = α

2
(
f + 2c1 − f αc21

)

= 1
2f

(
1 + f 2α − (

f αc1 − 1
)2) .

Note that f αc1 ≥ 1, so power increases when c1
decreases (c2 increases).
We calculate the maximal power for different f ’s.

When we assume the alternative hypothesis has a small
effect size, where f ≤ 1/

√
α, the maximal power is

achieved when c2 = 0 and c1 = 1/
√

α. When we
assume the alternative hypothesis has a moderate effect
size, where 1/

√
α < f ≤ (

1 + √
1 − α

)
/α, the max-

imal power is achieved when c1 = 1/
(
f α

)
and c2 =(

f 2α − 1
)
/
(
2αf

(
f − 1

))
, so when f increases, we can fol-

low the strategy to decrease c1 (increase c2) to achieve the
maximal power. When we assume the alternative hypoth-
esis has a large effect size, where f >

(
1 + √

1 − α
)
/α, the

maximal power is achieved when we choose a test with
c2 ≥ 1/

(
f α

)
, so when f is large enough, different tests

have similar power.

max Power =

⎧
⎪⎪⎨

⎪⎪⎩

f α, when f ≤ 1√
α
,

1+f 2α
2f , when 1√

α
< f ≤ 1+√

1−α
α

,

1, when f > 1+√
1−α

α
.

(7)

Second, assume that both null hypothesis are false with
the same effect size, say, f1 = f2 = f , then the power is

Power =
{
2fc2α + f 2c1 (c1 − 2c2) α2, when f ≤ 1

c1α ,
1, when f ≥ 1

c1α .

When f ≤ 1
c1α , from (6) we get c1 (c1 − 2c2) α = 1−2c2,

then

2fc2α + f 2c1 (c1 − 2c2) α2 = f α
(
f − 2

(
f − 1

)
c2

)
,

power increases when c2 decreases (c1 increases).

We calculate the maximal power for different f values.
When we assume both hypotheses are false and with a
small effect size, where f ≤ 1/

√
α, the maximal power is

achieved when c2 = 0 and c1 = 1/
√

α. When we assume
both false hypotheses have a big effect size, where f ≥
1/

√
α, the maximal power is achieved when the test satis-

fies c1 ≥ 1/
(
f α

)
. By taking both f ≤ 1/

√
α and f ≥ 1/

√
α

into account, it follows that c1 = 1/
√

α and c2 = 0 is the
uniformly best choice when both null hypotheses are false.

max Power =
{
f 2α, when f ≤ 1√

α
,

1, when f > 1√
α
. (8)

In general, for a global test with n single hypothe-
ses, where m of them are true significances (false null
hypotheses), define the probabilities as

Bn,m,i

=

⎧
⎪⎪⎨

⎪⎪⎩

Prn,m
(
p(n) ≤ c1α

)
, i = 1,

Prn,m
(
p(n) > c1α, · · · , p(n−i+2) > ci−1α, p(n−i+1) ≤ ciα

)
, i = 2, · · · , n,

Prn,m
(
p(n) > c1α, · · · , p(1) > cnα

)
, i = n + 1,

where Prn,m indicates the probability for n hypotheses,
wherem is the number of the true significances, and n0 =
n − m is the number of the true nulls.
Since

Bn,m,n = Prn,m
(
p(n) > c1α, · · · , p(2) > cn−1α, p(1) ≤ cnα

)

= (n − m)Prn−1,m
(
p(n−1) > c1α, · · · , p(1)

> cn−1α)Pr1,0 (p ≤ cnα)

+ mPrn−1,m−1
(
p(n−1) > c1α, · · · , p(1)

> cn−1α)Pr1,1 (p ≤ cnα) ,

we have the recurrence relation for i = n

Bn,m,n = (n−m)cnαBn−1,m,n+m
(
fcnα ∧ 1

)
Bn−1,m−1,n.

(9)

Similarly, for general i, since

Bn,m,i = Prn,m
(
p(n) > c1α, · · · , p(n−i+2)

> ci−1α, p(n−i+1) ≤ ciα
)

= n−m
n−i+1Prn−1,m

(
p(n−1) > c1α, · · · , p(n−i+1)

> ci−1α, p(n−i) ≤ ciα
)
Pr1,0 (p ≤ ciα)

+ m
n−i+1Prn−1,m−1

(
p(n−1) > c1α, · · ·, p(n−i+1)

> ci−1α, p(n−i) ≤ ciα
)
Pr1,1 (p ≤ ciα) ,

we have the general recurrence relation for i

Bn,m,i = n − m
n − i + 1

ciαBn−1,m,i

+ m
n − i + 1

(
fciα ∧ 1

)
Bn−1,m−1,i.

(10)

Finner and Roters [9], Cai and Sarkar [7], and Gou and
Tamhane [11] defined a special case of the probability
Bn,m,i for m = 0 to calculate the type I error under the
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global null hypothesis. They proved a recurrence relation-
ship among Bn,0,i’s. We generalize this result to Bn,m,i’s and
have this recurrence relationship (10) under the simplified
step-function-based p-value model for power analysis.
By starting from

B1,0,1 = c1α, B1,0,2 = 1 − c1α,
B1,1,1 = fc1α ∧ 1, B1,0,2 = 1 − fc1α ∧ 1,

and using the recurrence relation (10), the power is calcu-
lated by

Powern,m =
n∑

i=1
Bn,m,i (11)

Note that
n+1∑

i=1
Bn,m,i = 1,

and the control of type I error is satisfied if
n∑

i=1
Bn,0,i ≤ α.

When f is specified and the set of critical constants
{ci}ni=1 is given, the exact power can be calculated by using
(11). Since only arithmetic calculations are needed, the
power can be computed very fast.
For theoretical analysis, we consider the situation where

f is not too small.

Powern,m = 1, when f ≥ 1
cn+1−mα

.

The largest possible cn+1−m is achieved by using the set
of critical constants which satisfies c1 = c2 = · · · =
cn+1−m = c, and cn−m+2 = · · · = cn = 0. The control of
type I error requires that

n−m∑

i=0

(
n
i

)
(cα)n−i (1 − cα)i ≤ α, (12)

the largest possible cn+1−m can be solved from (12). If
we only take the leading term, we have an approximate
solution

cn+1−m �
1

m
√(n

m
)
αm−1

So when

f � m
√

(nm)
α

the maximal power is achieved when the test satisfies
cn+1−m ≥ 1/

(
f α

)
.

Note that when m is relatively large (e.g., more than
n/2), the bound m

√(n
m
)
/α is small, and the global tests

with large c1, · · · , cn+1−m and small cn+2−m, · · · , cn tend

to have large power. Similar observations were reported
by Gou and Tamhane [11] based on simulations.
Note that in this application power is simply the prob-

ability of rejecting H0 = ∩n
i=1Hi where at least one Hi

is false. For testing multiple hypothesis, powers can be
of different types: individual, average, disjunctive, and
conjunctive, and the appropriate power concept is deter-
mined on a case-by-case basis [4]. These power definitions
can also be used in the proposed method by using the
step-function-based p-value model.
Power analysis can be complex whenmultiple hierarchi-

cal objectives are involved. Alosh and Huque [1] discussed
the power for testing hierarchically ordered endpoints.
The step-function-based p-value model can be applied to
various clinical trials, e.g., group sequential designs [18],
graphical procedures [5, 6].

Application: monotonicity of the critical constants
For multiple test procedures, critical constants are often
required to satisfy [7, 12]

c1 ≥ c2 ≥ · · · ≥ cn (13)

This requirement is called themonotonicity assumption
of critical constants.
Suppose that we have a set of critical constants

c∗1, · · · , c∗n, and c∗k < c∗k+1, so the monotonicity assumption
is not satisfied. Note that

Pr
(
∪n
i=1

{
p(n+1−i) ≤ c∗i α

}) = Pr
(
∪n
i=1,i�=k

{
p(n+1−i)

≤ c∗i α
}∪{

p(n+1−k) ≤c∗k+1α
})

So if a test with critical constants c∗1, · · · , c∗k−1,
c∗k , c

∗
k+1, · · · , c∗n controls type I error below α, then another

test with critical constants c∗1, · · · , c∗k−1, c
∗
k+1, c

∗
k+1, · · · , c∗n,

which satisfies the monotonicity assumption, also con-
trols type I error below α, and has the same power with
the previous test which does not satisfy the monotonic-
ity assumption. Hence, only the set of critical constants
which satisfies the monotonicity assumption needs to be
considered.
Manymultiple tests have critical constants which satisfy

a strict monotonicity assumption [11, 22, 25]

c1 > c2 > · · · > cn. (14)

Some multiple tests satisfy the monotonicity assump-
tion (13), but do not satisfy the strict monotonicity
assumption (14) [3, 26]. In general, these tests are not as
powerful as the tests which satisfy the strict monotonic-
ity assumption (14) [11]. Our step-function-based p-value
models can explain that this assumption is necessary
because the corresponding tests are generally more pow-
erful than other tests which do not satisfy this assumption.
For multiple tests with two single hypotheses, by using

the simplified step-function-based p-value model, we
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have several observations: (1) when there is one true null
hypothesis and one false null hypothesis, only if f =(
1 + √

1 − α
)
/α, the test which does not satisfy (14) can

bemore powerful than or as powerful as all the tests which
satisfy (14), (2) when there are two false null hypothe-
ses, the test does not satisfy (14) is less powerful than
some of the tests which satisfy (14) for all f values. In
general, on the parameter space of the effect size (under
simplified step-function-based p-value model, the effect
size is a function of parameter f ), the tests which do not
satisfy (14) have more power than all other tests which
satisfy (14) only at a zero measure subspace of the effect
size. This fact explains that usually people prefer multiple
tests which satisfy the strict monotonicity property (14),
because these tests are generally more powerful than the
tests which do not satisfy (14).

Aworked example
Annesi et al. [2] evaluated behavioral weight-loss treat-
ments. They recruited 110 women whose BMI’s are
between 30 and 40 kg/m2, and randomly assigned the par-
ticipants to a comparison treatment with a print manual
and telephone follow-ups, or an experimental treatment
of the coach approach exercise-support protocol. The self-
efficacy for controlled eating (SE-eating) is one of the
psychological predictors of behavioral changes. Annesi et
al. [2] reported that during the weight-loss phase (month
0-6), the SE-eating increases in the experimental group
were significantly greater than the increases in the com-
parison group with t = 2.88, and there was no significant
between-group difference during the weight-loss mainte-
nance phase (month 6-24) with t = −0.48.
The increases of the self-efficacy for controlled eat-

ing were evaluated both during the weight-loss phase
and during the weight-loss maintenance phase, so the
multiplicity adjustment is advised to apply. To choose
the optimal multiplicity correction based on the esti-
mated effect size from the pilot study, we recommend
our proposed step-function-based p-value model because
it is easy to implement and preserves the information
from the alternative hypothesis. If we take the weight-
loss study by Annesi et al. [2] as a pilot study, we
have the information that the standardized SE-eating
increase during the weight-loss phase is normally dis-
tributed with mean δ = 2.88 and variance 1, and the
increase during the weight-loss maintenance phase is nor-
mally distributed with mean δ = 0 and variance 1.
To match the mean for the normal-distribution-based
p-value model with parameter δ = 2.88, the parame-
ter f of the simplified step-function-based p-value model
is 23.979. From (7) and by using the significance level
α = 0.05, the maximal power is (1 + f 2α)/(2f ) = 62 %,
and the optimal choice of critical constants is (c1, c2) =(
1/

(
f α

)
,
(
f 2α − 1

)
/
(
2αf

(
f − 1

))) = (0.8341, 0.5036).

So the larger p-value is compared with 0.8341α and the
smaller p-value is compared with 0.5036α, and if any p-
value is less than the corresponding critical value, the
global null hypothesis will be rejected.
The step-function-based p-value models for power

analysis simplify the theoretical analysis that is difficult
in many situations. At the same time, information of loss
remains at an acceptable level. Finner and Gontscharuk
[10] and Sarkar et al. [24] used a tool called the Dirac–
uniform configuration for power analysis, where all p-
values under the false null hypotheses follow a Dirac dis-
tribution with point mass at 0. When the Dirac-uniform
configuration is applied to Annesi et al.’s [2] study, the
information of δ is lost, and any choice of positive critical
constants (c1, c2) will result a claim of significance. Under
the p-value model based on Dirac function, all choices of
critical constants have the same power, and the optimal
choice is unable to be located.
The Dirac-uniform configuration is too brief to include

necessary information to choose the optimal critical con-
stants. Hung et al. [17] discussed a p-valuemodel based on
normal distribution. By using Annesi et al.’s [2] research as
a pilot study, one test statistic isN(δ, 12), and the other test
statistic is N(0, 12). The probability of rejecting the global
null hypothesis is

Power =
[∫ �−1(c1α)

−∞

∫ �−1(c1α)

−∞
+

∫ �−1(c2α)

−∞

∫ +∞

�−1(c1α)

+
∫ +∞

�−1(c1α)

∫ �−1(c2α)

−∞

]

φ(x1 + δ)φ(x2) dx1dx2
= c1α · �

(
�−1 (c1α) + δ

)

+ c2α
(
1 − �

(
�−1 (c1α) + δ

))

+ (1 − c1α) �
(
�−1 (c2α) + δ

)
,

The optimal choice of critical constants is followed by
solving

maximizec1,c2 Power (c1, c2) (15)
subject to (1 − 2c2) + c1 (2c2 − c1) α = 0.

This optimization problem has no explicit solution.
When δ = 2.88 and α = 0.05, the optimal solution
is (c1, c2) = (1.0076, 0.4998). While the step-function
based p-value model and the normal-distribution based
p-value model produce similar choices of critical con-
stants (c1, c2), the model based on step function has an
explicit solution of critical constants and requires little
computational effort.

Discussion and conclusions
We have given a step-function-based p-value model and
its simplified version. These p-value models are simple
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and concise to perform theoretical power analysis. In
addition, different test statistics, for example, t, chi-square
or F, can be transformed to the p-value scale. These
models can be applied to the field of multiple testing pro-
cedures to explain the assumption of monotonicity of the
critical constants. We also use these p-value models to
choose suitable sets of critical constants with more power.
In this paper, we consider the independent p-values for the
multivariate cases. Dependence structures can be brought
into these p-value models, like Sarkar et al. [23] or Gou
and Tamhane [13], and we will report the dependent mul-
tivariate p-value models in a separate paper. Finally, there
are many applications of the step-function-based p-value
models, and multiple testing procedure is an example in
point.
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