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Abstract

Background: Typical survival studies follow individuals to an event and measure explanatory variables for that
event, sometimes repeatedly over the course of follow up. The Cox regression model has been used widely in the
analyses of time to diagnosis or death from disease. The associations between the survival outcome and time
dependent measures may be biased unless they are modeled appropriately.

Methods: In this paper we explore the Time Dependent Cox Regression Model (TDCM), which quantifies the effect
of repeated measures of covariates in the analysis of time to event data. This model is commonly used in
biomedical research but sometimes does not explicitly adjust for the times at which time dependent explanatory
variables are measured. This approach can yield different estimates of association compared to a model that adjusts
for these times. In order to address the question of how different these estimates are from a statistical perspective,
we compare the TDCM to Pooled Logistic Regression (PLR) and Cross Sectional Pooling (CSP), considering models
that adjust and do not adjust for time in PLR and CSP.

Results: In a series of simulations we found that time adjusted CSP provided identical results to the TDCM while
the PLR showed larger parameter estimates compared to the time adjusted CSP and the TDCM in scenarios with
high event rates. We also observed upwardly biased estimates in the unadjusted CSP and unadjusted PLR methods.
The time adjusted PLR had a positive bias in the time dependent Age effect with reduced bias when the event rate
is low. The PLR methods showed a negative bias in the Sex effect, a subject level covariate, when compared to the
other methods. The Cox models yielded reliable estimates for the Sex effect in all scenarios considered.

Conclusions: We conclude that survival analyses that explicitly account in the statistical model for the times at
which time dependent covariates are measured provide more reliable estimates compared to unadjusted analyses.
We present results from the Framingham Heart Study in which lipid measurements and myocardial infarction data
events were collected over a period of 26 years.

Keywords: Time dependent covariate model (TDCM), Cross sectional pooling (CSP), Pooled logistic regression (PLR),
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Background
A time dependent explanatory variable is one whose
value for a subject may change over the period of time
that the subject is observed [1, 2]. The most common
type of time dependent covariate is a repeated measure-
ment on a subject or perhaps a change in the subject’s
treatment. Data for a subject can be presented as mul-
tiple observations, each of which applies to a time inter-
val of observation, which is usually the time period
between the exams when the longitudinal measures were
recorded. The Cox proportional hazard regression model
is often used to analyze covariate information that
changes over time, with the hazard proportional to the
instantaneous probability of an event at a particular time
[3, 4]. Typical settings where time dependent covariates
occur include HIV studies in which baseline characteris-
tics are recorded and immunological measures such as
CD4+ lymphocyte counts or viral load are measured re-
peatedly to assess patients’ health until HIV conversion.
Therneau and Grambsch considered a well-known ex-
ample of the time dependent Cox model (TDCM) using
the Stanford Heart Transplant Program [3].
There is extensive literature and a wide range of statis-

tical packages for modeling time dependent covariate
data. Some previous work includes Fisher and Lin [1];
Cupples et al. [5]; D’Agostino et al. [6]; Pepe and Cai [7];
Prentice and Gloeckler [8]; Abbott [9]; Green and Symons
[10]; Ingram and Kleinman [11]; Kalbfleisch and Prentice
[12]; Wu and Ware [13].
Models that can accommodate time-dependent covari-

ates are commonly used in biomedical research but
sometimes do not explicitly adjust for time in the model.
Not adjusting for time can yield different estimates of
association compared to a model that adjusts for time.
In order to address the question of how different these
estimates are, we compare three methods that model the
association between a longitudinal process and a time-
to-event outcome. We consider the TDCM in which the
longitudinal measures are used as time dependent covar-
iates in a Cox model [4]. We compare the TDCM to
Pooled Logistic Regression (PLR) and Cross Sectional
Pooling (CSP). The PLR and CSP methods pool observa-
tions over disjoint time intervals of equal length into a
single sample in order to predict the short term risk of
the event. The CSP, unlike the PLR, utilizes information
on the length of time to event in each interval as well as
whether or not the event occurs. We consider models
that adjust and do not adjust for the timing of the longi-
tudinal measures in the PLR and also time-interval and
non-time-interval models for the CSP. In this paper we
refer to all CSP stratified models with time intervals as
time adjusted models.
The Framingham Heart Study (FHS) has been collecting

data prospectively since 1948 to examine the relationship

of potential risk factors to the development of cardiovas-
cular disease [5]. Since risk factors for disease have been
collected prospectively and repeatedly measured over time
(every 2–4 years), the FHS provides an important example
to study various approaches for survival analysis with re-
peated measures. The PLR has been frequently employed
in the analysis of FHS data [5, 6]. For FHS, the PLR treats
the two to four-year examination interval as a mini-follow
up study in which the current risk factors are updated at
the interval start to predict events during the interval. In
this paper we applied the above methods to FHS data in
which triglycerides (TG) were measured at generally com-
parable time intervals, about every 4 years, over a 26-year
period in the FHS Offspring cohort. Time to myocardial
infarction was also recorded for each participant, with
some subjects remaining free of myocardial infarction at
the end of the study period and these subjects were
administratively censored at that time. The research
protocols of the Framingham Heart Study are reviewed
annually by the Institutional Review Board of the Boston
University Medical Center and by the Observational
Studies Monitoring Board of the National Heart, Lung
and Blood Institute. Participants signed a consent form
approved by the Institutional Review Board.
Our main objectives are to: (i) compare the TDCM to

Pooled Logistic Regression (time adjusted and un-
adjusted models) and Cross Sectional Pooling (time ad-
justed and unadjusted models) in simulation studies; and
(ii) illustrate the methods and compare their results by
applying them to FHS data. We begin by presenting an
overview of these methods for modeling time dependent
covariates in the context of longitudinal and survival
data. We then evaluate the methods using simulation
studies and conclude with a discussion of the results
from the simulation and the Framingham Heart Study.

Methods
In modeling longitudinal and survival data the main focus
may be on the longitudinal component, the survival com-
ponent, or both, depending on the objectives of a study.
When the focus is on one aspect, the other component
is then secondary; so its parameters may be viewed as
nuisance parameters [14]. Our goal is to characterize
the relation between time-to-event (dependent) and the
longitudinal measures (independent) in models that ac-
count for the time at which the longitudinal measures
are recorded.
In this section, we consider methods for modeling the

association between longitudinal measures and time-to-
event data in a survival model. We consider the under-
lying model to include longitudinal response data and
time-to-event data for a sample of size n, consisting of
[Ti

*, δi, [Yi(t), 0 ≤ t ≤ Ti], i = 1, 2,…, n] observations where
Ti is the time-to-event for the ith subject. The vector
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Yi(t) = [Yi1(t),…, Yip(t)]
t is a set of longitudinal measures,

and mi ≤ p is the number of time intervals for the ith

subject. In addition, each subject has possibly right cen-
sored failure Ti =min(Ti* , Ci) and the event indicator
δi (δi = 1 if Ti* ≤ Ci; δi = 0 if Ti* >Ci). The parameter δi
indicates whether the observed failure time is a true fail-
ure time Ti*, or a censoring time Ci.
The study design that we consider in our paper has

fixed time points where each person has observations at
which covariates are measured. Such a study design is
common for longitudinal studies. In particular, individ-
uals are measured for a time-varying covariate (Y) at the
beginning of each time interval and all intervals are of
the same length (in our simulations, 5 years). In this
context, the regression coefficients represent the associ-
ation between Y and an event that occurs during the
subsequent interval. We require this study design in order
to compare the PLR model, which does not explicitly con-
sider time, with those approaches that do incorporate time
into the model. For CSP and TDCM, time intervals of
equal length are not needed as an assumption of the
model. In all the models that we considered, the assump-
tion is that the time dependent covariates remain constant
between examination times.

Time dependent Cox regression modeling
A time dependent explanatory variable is one that may
change over the period of time that the subject is ob-
served [2]. The most common time dependent covari-
ates are repeated measures on a subject or a change in
the subject’s treatment. A proportional hazard model is
often used to analyze covariate information that changes
over time. One way of handling time-dependent re-
peated measurements in SAS is to specify programming
statements to capture the appropriate covariate values of
the subjects in each time interval of observation. TDCM
can be fit using the standard partial likelihood for the
Cox model where the values for the time dependent co-
variates are updated in each of the event-specific likeli-
hood terms.
The hazard for the TDCM at time t can be written as:

h t; Y i; Xið Þ ¼ h0 tð Þ � exp Y i tð ÞTβþ Xi
Tα

� �

¼ h0 tð Þ � exp
Xmi

k¼1

Y ik tð ÞTβk þ Xi
Tα

 !

ð1Þ
Where h0(t) represents the baseline hazard function,

Xi is a vector of time invariant explanatory covariates
with regression parameters. Yik(t) is a general covariate
form in which mi = p is the number of longitudinal mea-
sures for each subject i. We define t1 < t2 < t3 <… < tD as
a set of ordered observed event times with D unique

failure times and Yi(ti) as the covariates associated with
the individual whose failure time is ti for i = 1, …, D fail-
ure times. The parameter βk measures the association
between the observed longitudinal measures and the
hazard of failure time h(t). The risk set R(ti) at failure
time ti is the set of all individuals who are still under
study at a time just prior to ti. In most applications, βk = 0
for intervals other than the current one (ti). The partial
likelihood based on the hazard function specified in (1)
can be written as:

L α; βð Þ ¼
YD
i¼1

exp Y i tið ÞTβþ Xi
Tα

� �
X

l�R tið Þexp Y l tið ÞTβþ Xl
Tα

h i
8<
:

9=
;

ð2Þ

In the partial likelihood above, each term is the condi-
tional probability of choosing individual i to fail from
the risk set, given the risk set at failure time ti and given
that one failure occurs. The inference is similar to the
Cox model. The only difference is that the values of
Yi(ti) now change for each risk set. The α and β esti-
mates can be obtained by maximizing the likelihood in
(2). In TDCM the covariates are measured repeatedly
and an assumption of this model is that the hazard de-
pends on the covariate through its current value.

Pooled repeated observations
The use of standard logistic regression techniques to es-
timate hazard rates was detailed by Efron [15]. His ap-
proach, known as partial logistic regression, entailed the
use of parametric logistic regression modeling on cen-
sored data to obtain estimates and standard errors. The
pooled repeated observations approach, described by
Cupples et al. [5], has been frequently employed in the
Framingham Heart Study. In this method each observa-
tion interval is considered a mini-follow up study in
which the current risk factors are updated to predict
events in the interval. Once an individual has an event
in a particular interval all subsequent intervals from that
individual are excluded from the analysis.

Pooled logistic regression (PLR)
In PLR, logistic regression is used to link predictors to
the event outcome. The outcome is an event indicator,
which records whether an event occurs in the interval or
not and does not account for when the event occurs
within the interval. A response occurring near the begin-
ning of a follow-up period is treated the same in analysis
as one occurring at the end of that period. This model
relates the probability of an event occurring in an inter-
val to a logistic function of the risk factors [5].
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Ln
P tk ;Y i; Xið Þ

1−P tk ;Y i; Xið Þ
� �

¼ βo þ Y i tkð ÞTγ þ Xi
Tαþ θk

ð3Þ
The parameter βo is the intercept for the logistic

model. The Yi(tk) represent the observed longitudinal
measures for the interval; the parameter θk denotes the
effect of time tk. The time point tk is an element of the
vector representing when the longitudinal measures
were recorded. Thus, this model adjusts for the interval
in which the observations were made. In our application
of this model, we assumed a linear trend on the time ef-
fects θk. One drawback of PLR is that the model does
not utilize information for the point in time during the
interval at which an event occurs or the exact time in an
interval that an individual is lost to follow-up. Thus, the
contribution of the risk factor to disease is dependent on
the length of follow-up period [10]. While there may be
concern with the PLR regarding the dependence of mul-
tiple records within an individual contributing to several
intervals, Allison (2010) has noted that in working with
a dataset with multiple records for intervals within each
individual there is no inflation of test statistics resulting
from a lack of independence [16]. This property is due
to the fact that the likelihood factors into a distinct term
for each interval. Allison also cautioned that this conclu-
sion may not apply when the dataset includes multiple
events for each individual. Singer and Willett (2003) also
noted that the hazard, or odds in PLR, describes the
conditional probability of event occurrence, where the
conditioning depends upon the individual survival until
that particular time period. This allows all records within
the person-period dataset to be considered as condition-
ally independent [17].
We should also note that the PLR model provides esti-

mates of conditional odds ratios for having the event in
an interval rather than of the hazard ratio. Efron [15]
discussed the use of the logistic model for survival data
and showed that this approach gives direct estimates of
the hazard rate and provides approximate standard er-
rors. They refer to this parametric model as partial logis-
tic regressions due to its connection to Cox’s (1975, ex.
2) theory of partial likelihood. Moreover, Efron’s condi-
tional logistic regression model and pooled logistic

regression are equivalent when the length of time inter-
val tends towards zero. Green and Symons [10] found
that when the follow-up period is short and the event is
rare, the logistic regression estimates and their standard
errors approximate those from the proportional hazards
mode.

Cross sectional pooling (CSP)
The CSP uses Cox regression within interval to utilize
information on the length of time to event within each
interval as well as whether or not the event occurs. The
model relates the instantaneous risk of an event to the
longitudinal measures though a hazard function.

hj t;Y i; Xið Þ ¼ hj0 tð Þ � exp Y i tð ÞTγ þ Xi
Tα

� �
ð4Þ

Where hj0(t) represents the baseline hazard function
for the jth interval, γ is the association parameter; t is
the time-to-event in the interval. In the time adjusted
CSP a stratified Cox model is implemented with time in-
tervals (j) when longitudinal measurements were taken.
In the unadjusted model, the hazard is assumed to be
the same across all time intervals and analysis is per-
formed without stratification. In stratified Cox with time
intervals, the regression coefficients are assumed to be
the same in each interval; however, the baseline hazard
function may vary.

Simulation studies
We conducted a series of simulations to evaluate the
performance of the CSP, TDCM and PLR methods for
modeling longitudinal and survival data. We structured
the simulated data to resemble observed data from the
Framingham Heart Study as the covariates were mea-
sured at specific time intervals (each ~4 years) and held
fixed until the next measurement time point. For the
simulations we used 5 year intervals. In Table 1, we pro-
vide the simulation model and the parameters used for
simulating the longitudinal and survival data. The longi-
tudinal trajectories were generated from a linear model
with age of the participant at entry into the study as a
predictor, while survival times were generated using a
Weibull model to depend on the longitudinal measures
and an additional set of covariates, possibly time-varying.

Table 1 Model and parameters in simulation study

Longitudinal model Yij = Ui1 + Ui2 * tij + τ * Age + εij

Survival model h(t) = λ(t)exp{α1Age + α2Sex + γYij}

Covariance matrix for random effects (Ui1 , Ui2) G ¼ 0:29 −0:00465
−0:00465 0:000320

� �

# of exams Random effects (Ui1 , Ui2) Residual error (σ2) Age (α1) Sex (α2) Link (γ)

6 (4.250, 0.250) 0.116 0.050 −0.500 (0.000, 0.500, 1.000)

Yij: Observed Longitudinal Measures; λ(t): Baseline Hazard Function; h(t): Hazard Function
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In each 5-year time period if the survival time was less
than or equal to the time period of the mini follow-up de-
fined by the timing of longitudinal measures, then the
event was considered to be observed and the time-to-
event in that interval was the survival time; otherwise the
time-to-event for the interval was censored at the end of
the interval [18]. We assumed random non-informative
right censoring for subjects remaining event free through
the last time interval. We present an algorithm below for
generating the simulated data.
We simulated independent multivariate datasets con-

sisting of longitudinal measures and time-to-event out-
comes. The following algorithm was implemented to
generate the longitudinal data using steps 1–5 and the
survival data using steps 6 and 7:
Longitudinal component

1. Generate baseline covariates similar to FHS.
a. Baseline Age ~ normal (35,5) and Sex ~ Bernoulli

(0.54)
2. Generate longitudinal trajectories (φβ(tij)) for each

subject (i = 1, 2, …, n) and for each time point
(j = 1, 2, …,mi) using the linear model:
φβ(tij) = Ui1 + Ui2 * tij + τ * Age
a. Parameter estimates for the mean and variance-

covariance matrix (G) of the random effects,
covariance matrix and residual errors were
obtained by fitting a random effects model to
the FHS data.

b. Generate random effects (Ui1 ,Ui2) from a
bivariate normal distribution with mean and
variance-covariance (G) obtained (2a). The random
effects (Ui1 ,Ui2) represent the intercept and slope.

3. Generate the observed longitudinal measures (Y)
from a multivariate normal distribution with mean
φβ(tij) and variance (V): V ¼ ZiGZi

T þ Ri; where

Zi ¼

1 0
1 5
1 10
1 15
1 20
1 25

2
6666664

3
7777775
and Ri e diagmatrix σ2ð Þ

In our simulation models the continuously changing
values of the triglycerides (covariates) are measured at
regular 5 year intervals. The models are designed to cap-
ture the covariate measurements at specific longitudinal
time points similar to the Framingham Heart Study.
Survival Component:

4. Choose parameter estimate values for Age, Sex and
the link parameter which measures the strength of
the association between the longitudinal measures
and the time-to-event.

5. Generate the time-to-event (T) for each time period
in which the longitudinal measures were taken, from
the inverse of the cumulative hazard distribution.
Survival times generated with the Cox proportional
hazard model using the Exponential and Weibull
distributions. When the shape is equal to 1, the
Weibull distribution equals the exponential
distribution. By varying the shape parameter and the
scale parameter, the required event rates (10 %, 50 %,
and 90 %) can be attained for the survival data.

h(t;Age, Sex, Yij) = λ(t)exp{α1Age + α2Sex + γYij}.

Survival times are generated for each interval to de-
pend on the longitudinal measures at the beginning of
the interval and a set of covariates (Age at each exam
and Sex). The survival time for each participant was
computed by considering the cumulative survival time
across intervals until an event occurred. Subjects with-
out an event at the last interval are censored after the 5-
year period of the interval.
The parameter estimates used in our simulations for

the random effects, covariance matrix and residual er-
rors were obtained by fitting a random effects model to
the FHS Data. Baseline age at entry to the study was
simulated from a normal distribution with mean 35 and
standard deviation 5; sex was assigned according to a
draw from a Bernoulli distribution with proportion fe-
male = 0.54; these parameters are similar to those of the
FHS Data. The observed longitudinal measures (Yij) were
generated from a multivariate normal distribution with
means and variances specified above in the simulation
scheme. Survival time was generated for each interval
using the value of age from the start of the interval. The
survival time for each participant was computed by con-
sidering the cumulative survival time across intervals
until an event occurred. Each replicated data set was
simulated to contain 1000 subjects with up to 6 observa-
tion intervals. We fit the methods described in section 2
to analyze each of 1000 replicated data sets and used
10,000 replicates to evaluate Type I error. We assessed
the performance of these methods using bias, accuracy
and coverage. Bias was assessed as the deviation in the
estimate from the true simulated parameter. Mean
square error (MSE) provided a measure of overall accur-
acy by incorporating the bias and the variability. Cover-
age of the confidence interval was the proportion of
times the obtained confidence interval contains the true
specified value.
We implemented the following methods for analysis:

(1) Unadjusted Cross-sectional pooling (CSP_UN); (2)
Adjusted Cross-sectional pooling (CSP_AD); (3) Time
dependent Cox regression models (TDCM); (4) Un-
adjusted Pooled logistic regression (PLR_UN); (5) Adjusted
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Pooled logistic regression (PLR_AD). In Table 2 we provide
a comparison of the similarities and differences across the
different methods. In the CSP and PLR methods Age at
each exam was included in the model as a time varying co-
variate; the data structure had multiple rows per subject
where each row was considered a mini-follow up study in
which the current risk factors were updated to predict
events in the interval. In the TDCM the baseline Age vari-
able was included in the model; the data structure was a
single row per subject where the overall survival time was
specified for each subject for analysis in SAS. We also ran
a model in which a time dependent Age was implemented
for the TDCM and we obtained the same results. For CSP
and PLR the Age at each exam was calculated by adding
the difference in time from the current exam and the first
exam to the Age at baseline. In the analysis with these
methods, updating age did not make a difference as any
update occurred by the same amount for everyone. In
the time adjusted PLR, we adjusted for the time inter-
val in which the longitudinal measures were recorded
by including a time variable (coded as 0, 5, 10, 15, 20
and 25) in the model. In the time adjusted CSP we
used a stratified Cox with time intervals to adjust for
the different time intervals in which the longitudinal
measures were recorded. The statistical analyses were
performed using SAS Software (version 9.3; SAS Institute,
Cary, NC) and data simulation was performed in R (R
Development Core Team, 2012).

Results
We present results from the simulation studies for the
methods described in section 2. Type I errors were com-
puted for the longitudinal effect on survival, (γ = 0), using
10,000 replicates and a sample size of 1000 (Table 3). In
all simulation schemes the time adjusted CSP (CSP_AD)
and TDCM provided identical results, as expected.
The time adjusted and the unadjusted methods pro-
vided Type I error rates close to the nominal level of
0.05, with all results less than or equal to 10 % devi-
ation from the nominal levels.

We varied the event rate (90 %, 50 % and 10 %) and the
association parameter (γ = 0.00, 0.50, and 1.00). The Age
(α1 = 0.050) and Sex (α2 =− 0.500) parameters were con-
stant in all the models. In Table 4 and Fig. 1 we present the
estimates, SEs, coverage probability, bias and MSE for the
longitudinal effect on survival using the time dependent
Age simulation scheme. The TDCM and the time adjusted
CSP (identical results) showed lower bias and higher cover-
age probability compared to the other methods. The PLR
methods provided higher estimates compared to the other
methods with greater bias in the unadjusted model. The es-
timates for the unadjusted and the time adjusted CSP
methods provide similar results in instances when the lon-
gitudinal effect on survival was small. The standard errors
were higher in the time adjusted models compared to the
unadjusted models. The time adjusted PLR had larger
standard errors and better coverage, compared to the un-
adjusted PLR. When the event rate was high (90 %) and the
longitudinal association with survival was high (γ = 1.000)
the unadjusted PLR showed the largest bias (0.342) com-
pared to other methods. The bias, though still large, was at-
tenuated in the time adjusted PLR method (0.255). The
unadjusted CSP showed a bias of 0.082 compared to the
time adjusted CSP bias of 0.002. For lower event rates
(10 %) the bias was attenuated. The unadjusted PLR
showed a bias of 0.091 and the time adjusted PLR had a
bias of 0.027. The unadjusted CSP also showed a bias of
0.067 compared to the time adjusted CSP bias of 0.003.

Table 3 Type I error for longitudinal effect on survival

N = 1000, γ = 0a

Event rate CSP_UN CSP_AD & TDCM PLR_UN PLR_AD

90 % 0.048 0.047 0.048 0.048

50 % 0.054 0.055 0.053 0.054

10 % 0.048 0.048 0.048 0.048
aType I Error rate based on 10,000 simulations
Abbreviations: CSP_UN Unadjusted Cross Sectional Pooling, CSP_AD Adjusted
Cross Sectional Pooling, PLR_UN Unadjusted Pooled Logistic Regression,
PLR_AD Adjusted Pooled Logistic Regression, TDCM Time Dependent Cox
Regression Modeling

Table 2 Summary of methods

Characteristics CSP_UN CSP_AD TDCM PLR_UN PLR_AD

Rows per subject Multiple Multiple Single Multiple Multiple

Regression model Cox Stratified Cox Cox Logistic Time adjusted logistic

Outcome Time-to-event Time-to-event Time-to-event Binary Binary

Censoring in interval permitted Yes Yes Yes No No

Time adjusted No Yes Yes No Yes

Age covariate Time varying Time varying Fixed Time varying Time varying

Sex covariate Fixed Fixed Fixed Fixed Fixed

Estimate (ratio) Hazard Hazard Hazard Odds Odds

Abbreviations: CSP_UN Unadjusted Cross Sectional Pooling, CSP_AD Adjusted Cross Sectional Pooling, PLR_UN Unadjusted Pooled Logistic Regression, PLR_AD
Adjusted Pooled Logistic Regression, TDCM Time Dependent Cox Regression Modeling
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The PLR method also had larger standard errors compared
to the Cox model in all simulation scenarios. In models with
low event rates the standard errors for all methods were
larger, as expected. The results suggest the time adjusted
time dependent Cox regression methods performed best at
estimating the association parameter compared to the
unadjusted methods. The estimates were similar among the
methods in instances when the longitudinal effect is
weaker. In the supplement we also present the results for
the comparison of the longitudinal effect on survival on sur-
vival with a sample size of 100 (Additional file 1: Figure S1).
We assessed the performance of these methods in

estimating the effects of Age (α1 = 0.050) and Sex
(α2 = − 0.500). The standard errors were smaller in the un-
adjusted models compared to the time adjusted models.
The results showed that the time adjusted PLR had a posi-
tive bias in the Age effect with reduced bias when the event
rate is low. The PLR methods showed a negative bias in the
Sex effect compared to the other methods. The Cox models
yielded reliable estimates for the Sex effect in all scenarios
considered. The PLR had higher estimates for the Sex effect
compared to the other methods. When the event rate was
50 %, the Age effect was similar in both the time adjusted
and the unadjusted models, but with extreme event rates
(10 % or 90 %) there was significant bias in the unadjusted.

These results suggest that the time adjusted Cox models
provide more reliable estimates compared to the un-
adjusted Cox and logistic models. In the supplement we
present results for the comparison of the longitudinal effect
on survival and the Age effect on survival with a sample
size of 100 (Additional file 1: Table S1). We saw similar pat-
terns in the results compared to a sample size of 1000
(Additional file 1: Table S2).

Application to Framingham Heart Study (FHS)
We illustrate these methods by applying them to FHS data
in which lipid measurements and myocardial infarction
(MI) data were collected over a period of 26 years. Since
1948 three generations of participants have been followed
over the years: the Original cohort (recruited in 1948),
their Offspring (recruited in 1971) and a Third Generation
(recruited in 2002). Among the Offspring participants,
triglycerides (TG) were measured at fairly similar time
intervals of ~4 year each over a period of 26 years. The
time to myocardial infarction was recorded for each
participant, although some subjects were censored by the
end of the study period in 2005. We log transformed the
TG measures in our analysis to reduce skewness. A total
of 2262 subjects with complete data were followed from
1979–2005 and data were collected at the start of each

Table 4 Comparison of longitudinal effect on survival (N = 1000)

Scenarios CSP_UNADJUSTED CSP_ADJUSTED & TDCM

Event rate γ Estimate SE CP Bias MSE Estimate SE CP Bias MSE

90 % 0.000 0.003 0.054 0.957 0.003 0.006 0.003 0.055 0.954 0.003 0.006

0.500 0.498 0.055 0.954 −0.002 0.006 0.498 0.056 0.952 −0.002 0.006

1.000 1.083 0.058 0.720 0.082 0.014 1.002 0.059 0.958 0.002 0.007

50 % 0.000 −0.001 0.075 0.953 −0.001 0.011 −0.002 0.076 0.944 −0.002 0.012

0.500 0.499 0.070 0.947 −0.001 0.010 0.499 0.071 0.944 −0.001 0.010

1.000 1.001 0.073 0.946 0.001 0.011 1.002 0.074 0.948 0.002 0.011

10 % 0.000 0.007 0.168 0.944 0.007 0.058 0.007 0.171 0.938 0.007 0.060

0.500 0.501 0.158 0.947 0.001 0.051 0.501 0.161 0.946 0.001 0.053

1.000 1.067 0.145 0.906 0.067 0.048 1.003 0.147 0.937 0.003 0.045

PLR_UNADJUSTED PLR_ADJUSTED

Event rate γ Estimate SE CP Bias MSE Estimate SE CP Bias MSE

90 % 0.000 0.003 0.066 0.957 0.003 0.008 0.003 0.067 0.957 0.003 0.009

0.500 0.599 0.069 0.709 0.099 0.019 0.601 0.070 0.711 0.101 0.020

1.000 1.342 0.080 0.005 0.342 0.130 1.255 0.082 0.111 0.255 0.078

50 % 0.000 −0.001 0.080 0.950 −0.001 0.013 −0.002 0.081 0.945 −0.002 0.013

0.500 0.545 0.077 0.909 0.045 0.014 0.545 0.079 0.912 0.045 0.014

1.000 1.109 0.084 0.746 0.109 0.026 1.109 0.086 0.744 0.109 0.027

10 % 0.000 0.007 0.170 0.945 0.007 0.059 0.007 0.173 0.937 0.007 0.061

0.500 0.510 0.161 0.947 0.010 0.053 0.509 0.164 0.941 0.009 0.055

1.000 1.091 0.150 0.888 0.091 0.055 1.027 0.152 0.926 0.027 0.049

Abbreviations: SE Standard Error, CP 95 % Coverage Probability, MSE Mean Square Error, CSP_UN Unadjusted Cross Sectional Pooling, CSP_AD Adjusted Cross
Sectional Pooling; PLR_UN Unadjusted Pooled Logistic Regression, PLR_AD Adjusted Pooled Logistic Regression, TDCM Time Dependent Cox Regression Modeling
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exam (Table 5). The FHS data showed a low cumulative
event rate (3.71 %) for the 26-year period. In the FHS data
we did see a steady increase in the TG measures from
Exam 1 through Exam 6 as shown in Table 5. The mean
change in TG between exams was ~ 11 mg/dL (2.40 on
Natural Log Scale) with a standard deviation of ~90 mg/

dL (4.50 on Natural Log Scale). So we do not expect large
fluctuations in change in the Log TG measures between
the exams. A total of 177 deaths were reported (7.82 %) in
FHS data. Among these deaths 35 (1.55 %) were recorded
prior to cardiovascular disease. Future work considering
death as competing risk or event-free composite

Fig. 1 Estimates and Confidence Intervals for Association Parameter (N = 1000). Values are presented as estimates and 95 % confidence intervals
for the link parameter. Varying link parameter (0.00, 0.50, and 1.00); varying event rates (10 %, 50 %, and 90 %). Abbreviations: CSP_UN:
Unadjusted Cross Sectional Pooling; CSP_AD: Adjusted Cross Sectional Pooling; PLR_UN: Unadjusted Pooled Logistic Regression; PLR_AD:
Adjusted Pooled Logistic Regression; TDCM: Time Dependent Cox Regression Modeling

Table 5 Framingham heart study data (N = 2262)

Characteristics Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6

Sample size (N*) 2262 2211 2173 2118 2056 1995

Years of measurement 1979–1983 1983–1987 1987–1991 1991–1995 1995–1998 1998–2001

Age 43.32 (9.58) 47.69 (9.60) 51.15 (9.60) 54.80 (9.60) 58.87 (9.54) 61.78 (9.45)

Triglycerides 100.49 (88.77) 118.80 (123.59) 124.15 (110.18) 154.47 (133.08) 153.08 (114.92) 158.70 (112.49)

Survival time (years) 4.33 (0.60) 3.43 (0.46) 3.61 (0.46) 4.01 (0.60) 2.87 (0.86) 6.00 (1.62)

Cumulative event rate (%) 0.44 % 0.88 % 1.46 % 2.08 % 2.39 % 3.71 %

Overall event rate (%) 3.71 %

Sex (% female) 51.19 %
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endpoints is essential in this area. In our data generation
scheme and FHS data analysis we assumed missing at ran-
dom (MAR) for participants who dropped out of the study
with missing triglycerides at a particular exam and were
censored. Additional work taking into consideration the
missing data mechanism is worthy of further research.
Using the methods described in section 2 we characterize

the association between the longitudinal measures and
time-to-event response. We use log TG at each exam for
the longitudinal part of the model assuming a linear trend
over time and survival time measured from exam 1 to MI
or loss to follow up. We adjust for Sex and Age in all the
models. The survival distribution among subjects with the
events was fairly uniform and the distribution of censored
subjects was skewed with most censoring occurring at the
right tail end of the distribution. In Table 6 we present the
estimates for Age, Sex and the association parameters.
Using a 0.05 level of significance, Age, Sex and the Log of
the triglyceride measures were significantly associated with
the time-to-myocardial infarction in the FHS Cohort. The
association parameter describes the strength of the rela-
tionship between triglycerides and MI survival; γ is the log
hazard ratio for a one unit increase in the longitudinal
component in the survival model. The association esti-
mates were similar across the different methods. The Age
effect estimates and standard errors were similar among
the methods. The estimates ranged from 0.048–0.056 with
the unadjusted analyses yielding lower estimates compared
to the time adjusted analysis. The Sex effect was also con-
sistent among the different methods.
These FHS results are comparable to the simulation

results with low event rate (10 %) and moderate associ-
ation of the longitudinal measures to survival (γ = 0.500),
as shown in Fig. 1. In this scenario, the association esti-
mates were similar among the different methods.

Discussion
In this paper we explored time dependent Cox regres-
sion methods that link longitudinal and survival data in
order to quantify the association between a longitudinal
process and a survival outcome, and have shown that
statistical performance may be improved in models that
explicitly include time as a covariate. We considered

models that adjust and do not adjust for time in the
Pooled Logistic Regression and the Cross Sectional Pooling
methods. We conducted a series of simulations to compare
these methods in their ability to estimate the link param-
eter. The performance was assessed through bias, coverage
probabilities and Type I error rates. We analyzed data from
FHS in which triglyceride measurements and Myocardial
Infarction (MI) data were collected over a period of
26 years (1979–2005). To our knowledge this is the first
paper that compares time adjusted and unadjusted models
for modeling time dependent covariate data.
From the simulations we see that time adjusted, time

dependent Cox regression methods performed best at
estimating the association parameter compared to the
unadjusted Cox and logistic models. Our results indicate
that in some instances the PLR provides higher biased
estimates and standard errors compared to the Cox
models. The PLR and the time dependent Cox regres-
sion methods provide similar results when the event is
rare, consistent with the results presented by Green and
Symons [10]. In the unadjusted models the Age effect
was attenuated depending on the association of the lon-
gitudinal measures on survival. D’Agostino et al. [6] indi-
cated that the analyst must consider the nature of
variables such as Age, which may be highly correlated
with the follow-up time. There are a number of recent
epidemiologic studies that implement the PLR model.
Some recent work include Miguel-Yanes et al. [19];
Meigs et al. [20]; Fox et al. [21]; Ficociello et al. [22].,
Marshall et al. [23]., Solomon et al. [24]. Recent studies
that have also implemented the CSP approach include
Schnabel et al. [25]., Magnani et al. [26]., Rienstra et al.
[27]., D'Agostino [28]. The TDCM and stratified Cox
model are more routine in statistical analysis. The imple-
mentation of time adjustment in PLR models is essential
to obtain reliable estimates.
The FHS sample provided results that were consistent

with the simulation results for a low event rate and
moderate association. Thus, we did not find large differ-
ences in the estimates from the different approaches.
Had the event rates been high and there were a strong
association between the longitudinal measures and the
survival time, we would have expected to see greater

Table 6 Modeling longitudinal and survival data (framingham heart study)

AGE (α1) SEX (α2) LogTG (γ)

Methods Estimate SE P Estimate SE P Estimate SE P

CSP Unadjusted 0.0528 0.0103 <.0001 −1.0305 0.2434 <.0001 0.6068 0.1732 0.0005

CSP Adjusted & TDCM 0.0561 0.0119 <.0001 −1.0254 0.2435 <.0001 0.6182 0.1741 0.0004

PLR Unadjusted 0.0480 0.0101 <.0001 −1.0179 0.2444 <.0001 0.6023 0.1754 0.0006

PLR Adjusted 0.0520 0.0119 <.0001 −1.0154 0.2444 <.0001 0.6107 0.1755 0.0005

Abbreviations: CSP_UN Unadjusted Cross Sectional Pooling, CSP_AD Adjusted Cross Sectional Pooling, PLR_UN Unadjusted Pooled Logistic Regression, PLR_AD
Adjusted Pooled Logistic Regression, TDCM Time Dependent Cox Regression Modeling
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differences in the estimates from the unadjusted models,
with the time-unadjusted PLR and CSP approaches hav-
ing higher estimates.
There is extensive literature on comparison of the lo-

gistic regression model and the proportional hazard
model. Efron [15] discusses the use of the logistic model for
survival data and shows that the odds ratio estimates are
approximately the same as hazard ratios. Green and Sy-
mons [10] conducted research on the conditions under
which results from the Logistic regression and proportional
hazards model in prospective epidemiologic studies ap-
proximate one another. They concluded that in instances
where the follow-up period is short and the disease is gen-
erally rare, the regression coefficients of the logistic model
approximate those of the proportional hazards model with
a constant underlying hazard rate. They also stated that
under the same conditions the regression coefficients have
similar estimated standard errors. They provided a math-
ematical relationship between the Cox and the logistic
models. D‘Agostino et al. [6] showed that the pooled logistic
regression (PLR) is close to the time dependent covariate
model. They also provided numerical examples showing
the closeness of this relationship using the Framingham
Heart Study. The goal of our paper was to compare these
methods using simulation studies considering models that
adjust and do not adjust for time in PLR and CSP and also
illustrate instances where these methods differ.
In time dependent covariate models attention has to be

placed on the type of covariates (internal vs. external) be-
ing considered. Kalbfleisch & Prentice [12] distinguish be-
tween external and internal covariates, where an external
covariate does not require direct observation of the indi-
vidual. Examples are the age of an individual and level of
air pollution as a risk factor for asthma attacks. Internal
covariates are generated within the individuals under
study and are known only when the individual remains in
the study as event-free and is uncensored. As noted by
Kalbfleisch and Prentice, internal covariate processes can
be affected by treatment assignment in clinical trials, or by
baseline factors in observational studies such as the Fra-
mingham Heart Study. In such instances care must be
exercised in the interpretation, as treatment or baseline
covariate effects may be reflected predominantly in the
time-varying covariate process [12]. We acknowledge the
potential limitations of predicting survival with internal
time-varying covariates given the conceptualization of the
conditional survival function; however, we used internal
time-dependent covariates in our Framingham Heart
Study example given the clinical interest in the relation-
ship between TG values and risk of myocardial infarction.
Thus care needs to be taken in the interpretation of the
results given the use of an internal time-varying factor that
may also be an intermediate variable between the baseline
factors and the outcome.

One limitation to our study is that we did not consider
measurement errors or missing data issues that may
arise from longitudinal covariate data that are potentially
missing at failure times. In many longitudinal studies
participants may drop out early from the study which
may lead to missing data in both the failure times as well
as the time dependent covariates. Such issues can be
addressed in a mixed effects model in which a random
effect can be used to capture the individual specific lon-
gitudinal trajectories with missing data. Complete-case
methods, which discard incomplete observations in sur-
vival regression models, may potentially lead to ineffi-
cient or biased estimates. In the presence of missing
data, there are a number of likelihood and imputation
methods for addressing missing data given the observed
data. In our study we did not address these issues as our
simulations and examples are based on no missing data at
each time point. Models that consider measurement error
may be more representative of the underlying process. In
our study, using Framingham Heart Data, individuals were
censored at time of death. A drawback to this approach is
that death without prior myocardial infarction may be
considered a competing event to our outcome. The main
objective of our study was to present an overview of these
methods for modeling time dependent covariates in the
context of longitudinal and survival data. Exploring
methods that consider death as competing risk or event-
free composite endpoints are worthy of further research.
A limitation to every simulation study is that the results
are dependent on the scenarios examined. In this paper,
we evaluated a range of models to provide broader insight,
but our conclusions must be limited to the scenarios that
we examined. In the simulation models the assumption of
proportional hazards was considered in all scenarios. Fur-
ther work is needed to better understand the circum-
stances when the PLR may differ from Cox models in
non-proportional hazard models.

Conclusions
In this study we compare three methods for quantifying
the association between a longitudinal process and a sur-
vival outcome. We characterize the relation between the
longitudinal measures and time-to-event in models that
account for the time at which the longitudinal measures
are recorded. In general, we recommend the use of a
stratified Cox model with time intervals or a TDCM
when the time-to-event is available, both of which ac-
count for time. When the time of the response is not
available, a PLR approach may be applied adjusting for the
Time interval at which the time dependent covariate mea-
sures were taken. If event rates are high and the associ-
ation between longitudinal measures and survival are
strong, the PLR approach without adjustment for time is
not recommended. The Cox model provides greater use
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of the available data compared to the PLR by including
time. Thus, when time is available, we recommend using
the TDCM or equivalently the stratified CSP approaches
with time intervals. Survival analyses that explicitly ac-
count for the times at which time dependent covariates
are measured appear to provide more reliable estimates
compared to unadjusted analyses.
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Additional file 1: Figure S1. Estimates and Confidence Intervals for
Association Parameter (N = 100). Values are presented as estimates and
95 % confidence intervals for the link parameter. Varying link parameter
(0.00, 0.50, and 1.00); varying event rates (10 %, 50 %, and 90 %).
Abbreviations: CSP_UN: Unadjusted Cross Sectional Pooling; CSP_AD:
Adjusted Cross Sectional Pooling; PLR_UN: Unadjusted Pooled Logistic
Regression; PLR_AD: Adjusted Pooled Logistic Regression; TDCM: Time
Dependent Cox Regression Modeling. (DOCX 84 kb)
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