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Abstract

Background: Bivariate random-effects models represent a widely accepted and recommended approach for
meta-analysis of test accuracy studies. Standard likelihood methods routinely used for inference are prone to several
drawbacks. Small sample size can give rise to unreliable inferential conclusions and convergence issues make the
approach unappealing. This paper suggests a different methodology to address such difficulties.

Methods: A SIMEX methodology is proposed. The method is a simulation-based technique originally developed as a
correction strategy within the measurement error literature. It suits the meta-analysis framework as the diagnostic
accuracy measures provided by each study are prone to measurement error. SIMEX can be straightforwardly adapted
to cover different measurement error structures and to deal with covariates. The effortless implementation with

standard software is an interesting feature of the method.

Results: Extensive simulation studies highlight the improvement provided by SIMEX over likelihood approach in
terms of empirical coverage probabilities of confidence intervals under different scenarios, independently of the
sample size and the values of the correlation between sensitivity and specificity. A remarkable amelioration is
obtained in case of deviations from the normality assumption for the random-effects distribution. From a
computational point of view, the application of SIMEX is shown to be neither involved nor subject to the convergence
issues affecting likelihood-based alternatives. Application of the method to a diagnostic review of the performance of
transesophageal echocardiography for assessing ascending aorta atherosclerosis enables overcoming limitations of

the likelihood procedure.

Conclusions: The SIMEX methodology represents an interesting alternative to likelihood-based procedures for
inference in meta-analysis of diagnostic accuracy studies. The approach can provide more accurate inferential
conclusions, while avoiding convergence failure and numerical instabilities. The application of the method in the R
programming language is possible through the code which is made available and illustrated using the real data

example.
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Background

Meta-analysis of diagnostic studies is a widely accepted
approach for the assessment of the accuracy of a diagnos-
tic test in distinguishing between diseased and nondis-
eased patients. A diagnostic study is commonly evaluated
in terms of sensitivity, i.e., the conditional probability of
testing positive in diseased subjects, and specificity, i.e.,

Correspondence: annamaria.guolo@unipd.it
Department of Statistical Sciences, Via Cesare Battisti 241/243, Padova, Italy

( ) BiolVled Central

the conditional probability of testing negative in nondis-
eased subjects. Alternatively, the information about a
diagnostic test is available as a two-by-two table of agree-
ment between the test results and the reference standard
test results [1].

The interest in meta-analysis of diagnostic accuracy
studies has increased over recent years. Preliminary
approaches based on separate univariate meta-analyses
for sensitivity and specificity of diagnostic tests, although
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still diffuse in medical investigations, have been success-
fully improved by more sophisticated solutions account-
ing for the correlation between the diagnostic test
measures [2—4]. The literature, initially based on least
squares regressions [5, 6], now spans hierarchical models
[4, 7-9], bivariate copula distributions [10-12], bivariate
mixture models [13, 14], nonparametric solutions [15].
In this paper we focus on the bivariate random-effects
model [7, 8], as it is currently a well-established and rec-
ommended method for meta-analysis of diagnostic accu-
racy studies. The bivariate random-effects approach has
a hierarchical structure accounting for the within-study
sampling variability and for the between-study variabil-
ity arising from differences derived, for example, from
patients’ characteristics. Moreover, it considers the pres-
ence of measurement error affecting the sample estima-
tion of sensitivity and specificity. These characteristics
represent a substantial step ahead with respect to the orig-
inal approach of Littenberg and Moses [5, 6] to construct a
summary receiver operating characteristic (SROC) curve
based on the regression of the difference between sen-
sitivity and specificity on their sum, a solution criticised
has a source of unreliable inferential conclusions [8]. Like-
lihood inference has to deal with issues of considerable
interest [16—19]: small sample size is known to affect
the accuracy of the inferential results; non-convergence
of the optimisation algorithms can occur, with non-
positive definite variance/covariance matrix or unreliable
parameter estimates typically on the boundary of the
parameter space; computational issues, such as numer-
ical integration, may represent further complications to
deal with.

This paper investigates the applicability of SIMEX (sim-
ulation extrapolation) as an alternative way for meta-
analysis of diagnostic accuracy studies. SIMEX is a
simulation-based technique developed within the mea-
surement error literature [20, 21] that found a wide appli-
cability in many areas of research, given the simplicity of
the idea underlying the approach and the straightforward
implementation with standard software. The performance
of SIMEX for inference on the bivariate random-effects
model components as well as on the diagnostic accu-
racy measures is compared to the likelihood approach
through an extensive simulation study covering different
scenarios, with varying sample size and between-study
correlation. Attention is paid to the robustness of the
competing methods against model misspecification, in
particular deviations from the typical assumption of joint
normal distribution for the random effects [9], as well as to
non-convergence problems and numerical instabilities. In
addition, SIMEX is applied to the meta-analysis of trans-
esophageal echocardiography recently used in literature
[15] to highlight the limitations of the likelihood-based
inference.
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Methods

Bivariate random-effects formulation for meta-analysis
Consider a meta-analysis of n diagnostic accuracy stud-
ies, each of them providing information as a two-by-two
table reporting the number of true positives, true neg-
atives, false positives and false negatives, denoted by
n11i, M00i> M10; and ngy;, respectively. Let #3; be the num-
ber of total positives and rno; the number of total negatives.
Consider the sensitivity (SE;) and the specificity (SP;) as
diagnostic accuracy measures of study i,i = 1,...,m.
Keeping with much of the literature, the accuracy can be
expressed using the logit transformation, n; = logit(SE;)
and &; = logit(1 — SP;). Given the two-by-two table infor-
mation, the estimates of SE; and SP; in study i are n;1;/n1;
and noo;/no;i, respectively. Hereafter, the estimates of 7;
and &; will be denoted by #; and éi, respectively.

Models

In this paper, we will focus on the bivariate random-effects
model for meta-analysis of diagnostic accuracy studies,
following Reitsma et al. [7] and Arends et al. [8], among
others. The model has a hierarchical structure, including
a within-study level and a between-study level account-
ing for the correlation between sensitivity and specificity
[2—-4]. The between-study model considers the joint distri-
bution of the random effects n; and &;,

— 2
ni 1 oy POROE
(8) =Nt ((3)- (oo "22°)) 0

where 77 and & are the means over the studies, 0,72 and
052 denote the between-study variances and p is the cor-
relation coefficient. As sensitivity SE; and specificity SP;
tend to be negatively correlated, then 7; and &; tend to be
positively correlated, so that p > 0.

The within-study variability is accounted for at the sec-
ond stage to describe the relationship between (ﬁi,éi)T
and (9;,&)". The literature distinguishes between the
approximate and the exact within-study model specifica-
tion. The approximate model considers (7};, éi)T following
a bivariate normal specification,

(gi) ~ Normal ((gl‘) ,
-1 -1
(”u + (m1; — m111) 0

0 1yt + (no; — noor) ™! )) ’
(2)

where the within-study variance/covariance matrix is
diagonal with non-zero entries estimated in each study.
We refer to (1) and (2) as the Normal-Normal approach
[16]. Since, marginally,
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the likelihood function for 8 = (7,£, 0,72,0%.2,,0)—'— has
a closed-form expression and a straightforward imple-
mentation using standard softwares. The model has an
interesting interpretation in terms of the model suggested
by Rutter and Gatsonis [22] within a Bayesian framework,
with a different parameterization [23]. From a practi-
cal point of view, the implementation of the bivariate
Normal-Normal model is, however, more convenient [8].

The exact within-study model specification considers
the observed true positives and false positives as realisa-
tions of binomial variables,

n11; ~ Binomial (1115, (1 4+~ ")7!) and @)
n10; ~ Binomial (n0i, 1+ 675")71) .
We refer to (1) and (3) as the Binomial-Normal
approach [16]. The resulting model is a generalised lin-
ear model, with no closed-form expression for the asso-
ciated likelihood function. More computational effort
is required with respect to the approximate model, as
numerical integration is needed. Convergence problems
represent a further drawback of the approach, with the
risk of non-positive definite variance/covariance matrix
and unreliable estimates of the parameters of the vari-
ance/covariance matrix truncated on the boundary of the
parameter space [9, 16, 19]. Both the practical issues are
more severe as the number of studies decreases. The
Normal-Normal approach is prone to some criticism as
well, despite its feasible application. Inferential conclu-
sions can be biased as a consequence of small sample
size or values of sensitivity and specificity close to 1
[4, 24]. When the sample size is large, instead, there are no
substantial differences between the two approaches.
Parameter estimation is typically performed via max-
imum likelihood or restricted maximum likelihood [8].
The estimates of sensitivity and specificity are obtained
by back-transforming the estimates of 7 and &, with stan-
dard errors derived using the delta method. Alternative
measures of test accuracy are the positive likelihood ratio
LR+ = SE/(1 — SP), the negative likelihood ratio LR— =
(1—S8E)/SP and the diagnostic odds ratio dOR = {SE/(1—
SE)} x {SP/(1 — SP)}. A description of the diagnostic
test can be also provided by the SROC curve, through
i) the characterisation of the bivariate normal model via
an appropriate line and ii) the transformation of the line
to the SROC space. See Arends et al. [8] for alternative
specifications for the SROC curves. Discussion about the
interpretation of the resulting SROC curve can be found
in Hamza et al. [4] and references therein.
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The measurement error problem

The hierarchical model defined for meta-analysis of diag-
nostic accuracy studies is an instance of the more general
bivariate meta-analysis investigated by van Houwelingen
et al. [25], among others. Control rate regression [26, 27],
defined as the relationship between the treatment effect
and the baseline risk in meta-analysis of clinical trials, per-
fectly fits the scenario we focus on in this paper. In control
rate regression, attention is paid to the risk of inaccurate
inferential conclusions due to the presence of measure-
ment error [28, 29] affecting the treatment effect and the
baseline risk measures. Different proposals have been sug-
gested to face the measurement error problem [30-32].
Similarly, in meta-analysis of diagnostic accuracy studies
the observed 7; and éi are estimates of the true unknown
n; and &; and thus they are prone to some kind of mismea-
sure. Not accounting for measurement error can result
in misleading inference, the most frequent being a biased
estimate of the slope of the regression line used to define
the SROC curve, an effect known as attenuation. See, for
example, the discussion in Arends et al. [8]. The likelihood
approach based of the hierarchical model given by (1)-
(2) or (1)—(3) properly accounts for measurement errors
[8, 26]. The within-study model (2) or (3), in fact, defines
a relationship between the observed error-prone 7; and
éi and the unobserved corresponding #; and &;, in this
way including the uncertainty related to the measurement
process.

Despite the above mentioned analogies, control rate
regression and diagnostic accuracy studies differ with
respect to the role played by the variables in the regression
model. In control rate regression, the baseline risk infor-
mation is the covariate for the regression model using the
treatment effect as response variable. In diagnostic accu-
racy studies, the roles of n; and &; in terms of response
variable and covariate are not undoubtedly defined, as
specificity and sensitivity can act as response or covariate
according to the regression model chosen to define a par-
ticular SROC curve. Only when a specific regression line
used for drawing the SROC curve is defined [8], then the
role of response or covariate is clearly stated.

Double SIMEX approach

SIMEX is a simulation-based technique for measure-
ment error correction [20, 21, 33]. The method, originally
developed to deal with classical additive errors affect-
ing continuous variables, can be easily extended to all
the scenarios where measurement error structures can be
simulated. This requires the measurement error variance
to be known or at least accurately approximated. SIMEX
consists of a simulation step followed by an extrapolation
step. In the first step, a resampling-like strategy simulates
B datasets of additional errors with increasing variance,
each of them used to estimate the parameters of interest.
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In the second step, the relationship between the estimates
and the amount of the added measurement error is deter-
mined and used to extrapolate the corrected estimate back
to the no measurement error case. The simulation step
typically requires the generation of independent random
variables, while the estimation can be carried out using
standard simple procedures, as the least squares estima-
tion or the method of moments. The extrapolation step
is a straightforward procedure. The feasibility of SIMEX
application with standard software is the most attrac-
tive feature explaining its wide diffusion in many areas
of research. Although the approach typically considers
one or more mismeasured covariates, SIMEX can easily
handle situations with measurement errors on both the
response and covariates, see Holcomb [34], who termed
the resulting method double SIMEX. This case perfectly
fits the bivariate meta-analysis problem we focus on in this
paper, as 7; and &; are both affected by measurement error.
In this way, SIMEX for diagnostic test accuracy can be
thought of as an extension of Guolo [32], who investigated
the methodology in control rate regression.

Let W; = (7;, éi)T denote the vector of the mismea-
sured quantities in study i and let X; = (1;,&;) | denote the
corresponding error-free vector. In the rest of the paper,
we will focus on the approximate within-study model
(2) to relate W; and X;. The implications of using the
exact model (3) in SIMEX are illustrated in the Discussion
section. The simulation step generates B datasets with
additional errors starting from W,

Wi (0) = Wi+ Al Uy, b=1,...,B,

for fixed . > 0 and I'; denoting the variance/covariance
matrix of W;. The additional pseudo-errors U} ; are mutu-
ally independent and normally distributed, with zero
mean and identity variance/covariance matrix. These
properties are not guaranteed in finite sample as the val-
ues are computer generated. A possible solution is to
simulate the errors from the Gram-Schmid process [34]:
the resulting pseudo-errors have the required indepen-
dence properties and they are normalized to guarantee
zero mean and unit variance. Moreover, their use reduces
the Monte Carlo variance of the SIMEX estimates, see
Section 5.3.4.1 in Carroll et al. [28]. Vector W} ;(}) is
a remeasurement of W; with increasing error, such that
Wpi(A) = W, for A = 0. The remeasurement is such that
E(Wp;) = X; and Var(W,;) = (1 + M)TI'; and the mean
squared error E[ {W},;(A) — X;}?|X;] equals zero for A =
—1, the key property of the simulated data. For each simu-
lated b-th data set, let 9, (1) be the estimate of 6 obtained
using a standard approach, as if the measurement error
was absent. The simulation step concludes with the aver-
age of the B estimates for fixed A, O(») = B~1 Zle éh(k).
Usually A assumes values on a grid A, for example A =
{0.0,0.5,1.0,1.5,2.0}. The value of B is commonly fixed
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up to 100 [20, 33]. In the extrapolation step, a relation-
ship between 6(1) and A is established and extrapolated
back to the case of no measurement error corresponding
to A = —1. The resulting estimate is the SIMEX esti-
mate éSIMEX. The most diffuse extrapolation function is
the quadratic function, given its numerical stability, see
Section 5.3.2 in Carroll et al. [28].

Let si (1) be the estimated variance/covariance matrix
of #(A) and let s*(A) = B! Z]gzl sﬁ(k). Given the
sample variance/covariance matrix SZA (M) of 9,()), the
variance/covariance matrix of the SIMEX estimator is
obtained by extrapolating back the relationship between
2 — s2A (1) and X to the case A = —1, see Stefanski and
Cook [21] and Appendix B.4 in Carroll et al. [28].

Simulation studies
Several simulation studies have been conducted to inves-
tigate the performance of SIMEX and compare it to
the Normal-Normal and the Binomial-Normal likelihood
approaches. Data simulation follows a two-stage proce-
dure. In the first stage, values for n; and &; are generated
according relationship (1) or substituting the normal dis-
tribution with a ¢ distribution with four degrees of free-
dom, e.g. [9], or a skew-normal [35] distribution. In the
last two cases, the robustness of the results is investigated
with respect to departures from the common normality
assumption for the random effects, which may some-
times not be appropriate [9]. The chosen skew-normal
distribution is such that the mean and the variance cor-
respond to those for the normal case, but the skewness
parameter for (1;, &) is increased from (0,0) " (the nor-
mal case) to (=1.0,0.5)" and to (—2,2)". In the second
stage, the set-up is inspired by the studies in Hamza
et al. [16] and Diaz [18]. The within-study numbers of
true positives and false positives are simulated using rela-
tionship (3). The numbers of diseased subjects n;; and
nondiseased subjects ng; are generated from a uniform
variable on [40,200]. The number of studies »n varies
in {10;25} in order to evaluate the methods in case of
small to moderate sample sizes. Scenarios with decreas-
ing accuracy are considered, namely, high accuracy
@67 = (2.94,—2.20)T, medium accuracy (7, &l =
(1.39, —1.50) " and low accuracy (77,€) " = (0.62, —0.85) .
Accordingly, (SE;,SP;)T = (0.95,0.90)", (SE;,SP)" =
(0.80,0.82) " and (SE;, SP)T = (0.65,0.70)T,i =1,...,n.
Increasing correlation between n; and &; is considered,
p € {0.2;0.6;0.8}. Between-study variances crnz and crgz
are fixed equal to 1.2 and 0.5, respectively. One thousand
datasets are generated for each combination of sample
size, correlation and values of (7, E)T.

The integrals in the Binomial-Normal approach are
approximated via a Gauss-Hermite procedure with 100
quadrature points. Inference in the Normal-Normal
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model is carried out using the restricted maximum
likelihood, while inference in the Binomial-Normal model
uses the maximum likelihood estimation. Likelihood
maximisation, based on the Nelder and Mead algo-
rithm [36], employs the method of moments estimates
as starting values. SIMEX considers B = 100 remea-
sured data generated using the Gram-Schmid process,
A assuming values in A = {0.0,0.5,1.0,1.5,2.0} and
the quadratic extrapolation function. Parameter estima-
tion within the simulation step is based on model (2).
All the methods are implemented in the R programming
language [37].

Methods are compared with respect to bias and esti-
mate of standard error of the estimators of the parameters
mE, a,%, ag, o and in terms of the 95% confidence interval
for the estimators of the measures of diagnostic accuracy
given by the diagnostic odds ratio dOR, the positive like-
lihood ratio LR+ and the negative likelihood ratio LR—.
The performance of the methods in terms of convergence
problems is investigated as well. Successful convergence is
intended as meeting the criterion convergence (e.g., dif-
ference between current and updated estimates less than
0.0001) and positive definite variance/covariance matrix.
The results under non-convergence are excluded when
summarising the simulation results.

Results

Simulation results

Tables 1 and 2 report the simulation results for n = 10
under the normal, the ¢ and the skew-normal specification
for (n;,€) ", by distinguishing the high accuracy scenario
and the low accuracy scenario. Results for n = 25 and
results for the medium accuracy scenario are included in
the Additional file 1. In all the tables, the non-convergence
rate is reported in bold when larger than 5%.

Results for the high accuracy scenario (Table 1) show
that, for meta-analysis with small sample size and under
the random-effects normal specification, the Binomial-
Normal approach appears to be preferable in terms of
bias of the estimators with respect to alternative solu-
tions, although at the price of a sligthly larger stan-
dard error. Such a behaviour, however, deteriorates when
moving to t and skewed distributions, with the bias
tending to increase as the value of the correlation p
becomes smaller. Under a ¢ random-effects distribution,
the Binomial-Normal approach and SIMEX show an
increased bias of the estimators of the variance compo-
nents 0772 and 052, together with an increased standard
error. The effects for the Normal-Normal approach are
less marked. When considering a skew-normal distribu-
tion for (1;,&)" with a high value of skewness, SIMEX
appears to be the preferable solution in terms of bias, in
particular when referring to the estimates of the variance
components.
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The impact of misspecification of the random-effects
distribution on inferential conclusions becomes more evi-
dent when computing the empirical coverage of confi-
dence intervals at 95% nominal level for dOR (Fig. 1) and
LR+ and LR— (Fig. 2). For dOR (Fig. 1), the Normal-
Normal approach and the Binomial-Normal approach
provide the less satisfactory results, with empirical cover-
age probabilities far from the target 95% level, in particular
when p is small and under a skew-normal specification
for the random-effects distribution. See, for example, the
extreme case p = 0.2 for the high-skewness scenario,
with a coverage equal to 10% only for the Normal-Normal
approach. Under the normal and ¢ scenarios, the perfor-
mance of the methods is comparable to that of SIMEX,
with a slight underestimation of the coverage level for
the Normal-Normal method. For skewed scenarios, the
advantages of SIMEX over both the likelihood-based solu-
tions are more marked. The empirical coverages of the
confidence intervals are substantially closer to the nom-
inal level, especially for large p. Figure 2 substantiates
the results for LR+ and LR—. Under a normal or ¢
specification for (;, £) T, methods are still comparable,
although using the Normal-Normal likelihood method
produces coverages for LR— lower than alternatives. For
skewed distributions, SIMEX exhibits a more satisfactory
behaviour than likelihood solutions in most of the cases
when considering LR+: for high values of p and a low
skewness, the behaviour is comparable to the other meth-
ods. For LR—, instead, SIMEX outperforms alternatives,
with empirical coverages of confidence intervals closer to
the target level as p increases.

Substantial differences between the competing methods
occur in terms of failure rate of the estimation process, see
the last column of Table 1. Convergence problems affect
the likelihood approach, under the Binomial-Normal for-
mulation in particular, in this way confirming previous
findings in the literature [9, 16, 19]. The failure rate is
notable when n = 10, increases with p and deteriorates
under a skew-normal random-effects specification with
high values of skewness, thus making the use of the like-
lihood solution questionable. For the high skewness case
and p = 0.8, for example, the Binomial-Normal approach
reaches 25.6% of failures. More extreme experiments with
o = 0.9, not reported here, substantiate the results, with a
further growth of non-convergence rate higher than 31%.
Conversely from the likelihood approach, the application
of SIMEX does not fail in any of the examined situations,
irrespectively of the sample size n, the correlation p and
the random-effects distribution, with a non-convergence
rate constantly equal to zero.

When moving to the low accuracy scenario, results
are similar to those observed for the high accuracy case.
Consider, for example, results reported in Table 2, where
bias and estimated standard error of the estimators are



Guolo BMC Medical Research Methodology (2017) 17:6 Page 6 of 12
Table 1 Simulation results for the high accuracy scenario
Random-effects P 7 £ a,f a&.z P Failure
distribution bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.) rate %
Normal-Normal
Normal 0.2 -0.19(0.33) 0.06 (0.23) -0.47 (0.46) -0.13(0.23) -0.04(0.27) 25
0.6 -0.16 (0.33) 0.03 (0.23) -042 (047) -0.12(0.23) -0.15(0.22) 1.8
0.8 -0.17 (0.34) 0.02 (0.23) -0.38 (0.48) -0.10 (0.24) -0.19(0.18) 1.8
Binomial-Normal
0.2 0.02 (0.37) -0.01 (0.24) -0.10 (0.67) -0.03 (0.28) 0.02 (0.36) 6.2
0.6 0.02 (0.38) -0.01 (0.24) -0.03 (0.71) -0.02 (0.28) -0.01 (0.28) 11.1
0.8 0.01(0.37) -0.00 (0.24) -0.03 (0.69) -0.01(0.29) -0.02 (0.20) 19.5
SIMEX
0.2 0.08 (0.35) -0.07 (0.25) 0.05(0.59) 0.14 (0.30) -0.03 (0.28) 0.0
0.6 0.08 (0.35) -0.07 (0.25) 0.08 (0.59) 0.13(0.29) -0.13(0.23) 0.0
0.8 0.05 (0.35) -0.06 (0.25) 0.07 (0.59) 0.14 (0.30) -0.18 (0.19) 0.0
Normal-Normal
t 0.2 -0.22 (0.39) 0.09 (0.28) 0.07 (0.72) 0.16 (0.38) -0.06 (0.26) 1.6
0.6 -0.23 (0.41) 0.04 (0.28) 0.23(0.80) 0.18 (0.38) -0.13 (0.22) 0.7
0.8 -0.20 (0.41) 0.03 (0.29) 0.21(0.78) 0.22 (0.47) -0.17 (0.17) 0.8
Binomial-Normal
0.2 0.02 (0.46) 0.01(0.30) 0.74(1.13) 0.34(047) -0.01(0.33) 36
0.6 -0.02 (0.48) -0.01 (0.30) 0.89(1.20) 0.36 (0.48) -0.01(0.24) 7.9
0.8 0.00 (0.47) 0.00 (0.31) 0.82(1.20) 040 (0.53) -0.03(0.18) 14.0
SIMEX
0.2 0.05(0.42) -0.05(0.31) 0.64 (0.85) 0.52(0.47) -0.05(0.28) 0.0
0.6 -0.01(0.43) -0.07 (0.31) 0.77 (0.90) 0.51(047) -0.10(0.22) 0.0
0.8 0.00(042) -0.05(0.31) 0.66 (0.86) 0.52(0.47) -0.15(0.17) 0.0
Normal-Normal
Skew-normal 0.2 -0.64 (0.29) 0.17 (0.22) -0.54 (0.38) -0.13(0.22) 0.03 (0.26) 14
(low skewness) 0.6 -0.57 (0.30) 0.00(0.23) -0.49 (0.40) -0.13(0.23) -0.11 (0.21) 1.8
0.8 -0.52(0.31) -0.10(0.23) -044 (0.43) -0.13(0.22) -0.17(0.17) 2.1
Binomial-Normal
0.2 -0.54 (0.32) 0.12(0.23) -0.35 (0.48) -0.05 (0.26) 0.10(0.33) 5.4
0.6 -049(0.32) -0.05 (0.24) -0.28 (0.53) -0.03 (0.28) 0.03(0.26) 10.6
0.8 -0.44 (0.34) -0.16 (0.24) -0.18 (0.59) -0.02 (0.29) 0.00 (0.19) 20.0
SIMEX
0.2 -048 (0.32) 0.06 (0.24) -0.16 (0.48) 0.11(0.28) 0.05 (0.27) 0.0
0.6 -042 (0.33) -0.11 (0.25) -0.10 (0.51) 0.13(0.29) -0.09 (0.22) 0.0
0.8 -0.38 (0.33) -0.22 (0.25) -0.04 (0.54) 0.13 (0.30) -0.16 (0.18) 0.0
Normal-Normal
Skew-normal 0.2 -0.59 (0.30) 0.37(0.20) -0.52 (0.40) -0.19(0.18) 0.20(0.23) 1.2
(high skewness) 0.6 -044(0.31) 0.24 (0.22) -044 (043) -0.15(0.21) 0.01(0.18) 1.8
0.8 -0.32(0.32) 0.15(0.22) -043 (0.44) -0.13(0.21) -0.11 (0.15) 1.2
Binomial-Normal
0.2 -0.49 (0.32) 0.35(0.21) -0.30(0.51) -0.13(0.21) 0.30(0.29) 7.6
0.6 -0.33(0.35) 0.22 (0.23) -0.14 (0.62) -0.06 (0.26) 0.16 (0.20) 15.1
0.8 -0.19(0.37) 0.13(0.24) -0.08 (0.66) -0.04 (0.27) 0.05 (0.16) 25.6
SIMEX
0.2 -043(0.32) 0.31(0.21) -0.13 (0.50) -0.02 (0.22) 0.22 (0.24) 0.0
0.6 -0.26 (0.34) 0.17 (0.23) 0.00 (0.55) 0.06 (0.26) 0.03(0.19) 0.0
0.8 -0.14 (0.35) 0.08 (0.24) 0.02(0.57) 0.09(0.27) -0.10(0.16) 0.0

Bias and average of the estimated standard errors (s.e.) for the estimators of 77, &, a,f, aEZ, p, on the basis of 1,000 replicates with n = 10. Failure rates larger than 5% in bold
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Table 2 Simulation results for the low accuracy scenario
Random-effects o 7 £ o} o? P Failure
distribution bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.) rate %
Normal-Normal
Normal 02 0.00(0.32) 0.01(0.22) -0.16 (0.51) -0.07 (0.22) -0.02(0.27) 0.5
0.6 0.00 (0.32) 0.01 (0.21) -0.19 (0.49) -0.09 (0.21) -0.07 (0.20) 0.0
0.8 0.01(0.33) 0.01(0.21) -0.15 (0.51) -0.08 (0.21) -0.08 (0.14) 03
Binomial-Normal
0.2 0.02(0.33) 0.00(0.22) -0.09 (0.54) -0.04 (0.23) 0.00 (0.30) 1.0
06 0.00(0.33) 0.00 (0.22) -0.11 (0.53) -0.05 (0.23) -0.01(0.22) 14
0.8 0.01 (0.34) 0.00 (0.22) -0.05 (0.56) -0.04 (0.23) -0.01(0.14) 4.0
SIMEX
0.2 0.03 (0.34) -0.01 (0.22) 0.00 (0.54) 0.02 (0.24) -0.02 (0.28) 0.0
06 0.01(0.33) -0.01(0.22) -0.02 (0.53) 0.01(0.23) -0.06 (0.21) 0.0
08 0.02(0.34) -0.01(0.22) 0.03 (0.55) 0.01(0.23) -0.07 (0.14) 0.0
Normal-Normal
t 0.2 -0.04 (0.40) 0.01 (0.27) 0.44 (0.83) 0.21(0.37) -0.02(0.25) 0.5
0.6 -0.01(0.39) 0.03 (0.27) 0.35(0.78) 0.20 (0.36) -0.09 (0.20) 0.2
0.8 -0.01 (0.39) 0.02 (0.27) 0.39 (0.80) 0.21(0.36) -0.08 (0.14) 0.2
Binomial-Normal
0.2 -0.01 (0.44) -0.01(0.28) 0.80 (1.01) 0.32(042) 0.00 (0.28) 13
06 0.01(042) 0.01(0.28) 0.70 (0.95) 0.32(042) -0.03(0.21) 1.2
0.8 -0.01(043) 0.00 (0.29) 0.81(1.01) 0.36 (0.43) -0.01(0.13) 27
SIMEX
0.2 -0.01 (0.44) -0.03 (0.29) 0.92 (0.96) 043 (042) -0.02 (0.26) 0.0
06 0.02 (043) 0.00(0.29) 0.81(0.97) 042 (042) -0.08 (0.20) 0.0
08 0.00(0.43) -0.01(0.29) 0.87(0.94) 047 (0.44) -0.07 (0.13) 0.0
Normal-Normal
Skew-normal 0.2 -0.55(0.27) 0.13(0.21) -045 (0.37) -0.09 (0.21) 0.09 (0.26) 1.0
(low skewness) 0.6 -0.44 (0.29) -0.02 (0.21) -0.38 (0.40) -0.09 (0.21) -0.05 (0.20) 04
0.8 -0.41(0.29) -0.11(0.21) -0.34(042) -0.10(0.21) -0.09 (0.14) 0.2
Binomial-Normal
0.2 -0.55(0.28) 0.12(0.21) -041(0.38) -0.07 (0.22) 0.12(0.28) 1.8
06 -045 (0.30) -0.03(0.22) -0.32(042) -0.06 (0.23) 0.02(0.21) 1.8
0.8 -042 (0.31) -0.12(0.22) -0.27 (0.45) -0.06 (0.23) -0.01 (0.15) 5.9
SIMEX
0.2 -0.55(0.28) 0.11(0.22) -0.35(0.38) -0.01(0.22) 0.09 (0.26) 0.0
0.6 -0.45(0.30) -0.04 (0.22) -0.26 (0.42) 0.01(0.23) -0.04 (0.20) 0.0
0.8 -042 (0.31) -0.14 (0.22) -0.21 (0.45) 0.01(0.23) -0.08 (0.14) 0.0
Normal-Normal
Skew-normal 0.2 -0.51(0.28) 0.34(0.19) -0.41(0.39) -0.16 (0.17) 0.26 (0.22) 1.0
(high skewness) 06 -0.32(0.31) 0.23(0.20) -0.27 (0.45) -0.11 (0.20) 0.09 (0.15) 0.1
08 -0.20 (0.31) 0.15(0.21) -0.21 (0.48) -0.09 (0.21) -0.01(0.11) 0.2
Binomial-Normal
0.2 -0.51(0.29) 0.33(0.19) -0.36 (041) -0.15(0.18) 0.31(0.20) 29
06 -0.32(0.31) 0.23(0.21) -0.21 (0.48) -0.08 (0.21) 0.17 (0.16) 4.1
08 -0.20 (0.33) 0.15(0.22) -0.11 (0.53) -0.05 (0.23) 0.07 (0.10) 8.5
SIMEX
0.2 -0.51(0.29) 0.32(0.20) -0.30 (0.40) -0.10 (0.18) 0.27 (0.22) 0.0
0.6 -0.32(0.32) 0.22 (0.21) -0.13(0.48) -0.03(0.21) 0.11(0.15) 0.0
0.8 -0.20(0.33) 0.14 (0.22) -0.05(0.52) -0.01(0.22) 0.00(0.11) 0.0

Bias and average of the estimated standard errors (s.e.) for the estimators of 7, €, (r,f, zr;, p, on the basis of 1,000 replicates with n = 10. Failure rates larger than 5% in bold
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Fig. 1 Diagnostic odds ratio results. Empirical coverages of confidence intervals for diagnostic odds ratio under increasing values of p, on the basis

of 1,000 replicates for the high accuracy scenario, with n = 10

only slightly reduced with respect to Table 1. The most
interesting result is the reduction of the failure rate with
respect to the high accuracy scenario. With regards to
the likelihood analysis, the most substantial reduction of
non-convergences is observed for the Binomial-Normal
formulation, whose failure rate does not exceed the 5%
level under the normal or ¢ random-effects formulation
and reaches 8.5% under the skew-normal distribution.
Similarly to the high accuracy context, the failure rate
tends to increase with p. SIMEX maintains a failure rate
equal to zero.

Results for the medium accuracy scenario are reported
in Additional file 1. Conclusions are coherent wth those

from the low and high accuracy scenario. From a compu-
tational point of view, non-convergence problems mainly
affect the Binomial-Normal approach, with failure rates
reaching 22.3% under the skew-normal specification when
the sample size is small.

Results for n = 25 are reported in Additional file 1.
Inferential conclusions about the bias of the estimators
under all the accuracy scenarios remain globally similar to
those for n = 10, with the advantage of a reduced estimate
of the standard error of the estimators. The most interest-
ing result related to the increased sample size is the reduc-
tion of the failure rate, under all the examined situations.
The Normal-Normal approach is almost convergent in all
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Fig. 2 Positive and negative likelihood ratio results. Empirical coverages of confidence intervals for positive and negative likelihood ratio under
increasing values of p, on the basis of 1, 000 replicates for the high accuracy scenario, with n = 10

the simulation settings. The Binomial-Normal approach
substantially reduces the number of failures, with just two
cases exceeding the 5% threshold, corresponding to the
skew-normal case with high skewness and p = 0.8 in the
high accuracy and medium accuracy scenarios. SIMEX
maintains a failure rate equal to zero.

Data example

Van Zaane et al. [38] perform a meta-analysis of six diag-
nostic accuracy studies for the assessment of atheroscle-
rosis in the ascending aorta in patients undergoing
cardiac surgery through transesophageal echocardiogra-
phy in place of the reference-standard method given by

epiaortic ultrasound scanning. The available information
is reported in Table 3. Data have been recently re-analysed
in Zapf et al. [15] through a nonparametric approach.
The likelihood analysis with the Normal-Normal spec-
ification results in estimated variances 0772 and o§
almost zero. This affects the evaluation of the vari-
ance/covariance matrix for the whole parameter vector.
Under the constraint of variances equal to zero, the esti-
mation of the sensitivity and the specificity are concordant
with the results obtained in van Zaane et al. [38], using the
bivariate random-effects model of Reitsma et al. [7]. The
corresponding results are reported in Table 4, together
with the associated 95% confidence interval. As shown in
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Table 3 Transesophageal echocardiography data [38]

Study TP FP TN FN
1 3 0 72 25
2 3 0 66 19
3 4 0 56 10
4 0 0 8 6

5 4 1 66 10
6 5 1 49 11

Data includes true positives (TP), false positives (FP), true negatives (TN), false
negatives (FN)

Zapf et al. [15], the likelihood analysis using the Binomial-
Normal specification does not converge and the likelihood
estimation of the correlation p is on the boundary of the
parameter space, equal to 1. These results coincide with
those available from our implementation of the likelihood
approach. Changing the optimization algorithm and the
starting values does not solve the non-convergence prob-
lem. The application of SIMEX, conversely, does not pose
any convergence issue. The estimates of 77 and & result-
ing in —1.525 (standard error 0.292) and —4.266 (standard
error 0.325), respectively, give rise to the estimates of
sensitivity and specificity as reported in Table 4. SIMEX-
based confidence intervals for sensitivity and specificity
are narrower than those available from the Normal-
Normal approach. The results from the nonparametric
approach of Zapf et al. [15], close to those from SIMEX,
are reported for completeness.

Discussion

Results from the simulation studies indicate that SIMEX
leads to satisfactory inferential results in a wide range
of scenarios. When the normality assumption for the
random-effects distribution holds, the method is compa-
rable to the likelihood solutions in terms of bias and esti-
mated standard error of the estimators of the parameters
of interest and slightly superior to the Binomial-Normal
formulation in terms of empirical coverages of confi-
dence intervals for different diagnostic accuracy mea-
sures. When departures from the normality assumptions
hold in terms of low or high skewness, then advantages

Table 4 Data analysis

Method Sensitivity Specificity
Normal-Normal model 21(13,32) 99 (96, 99)
Binomial-Normal model - -
SIMEX approach 17.9(10.9,27.8) 986 (974,99.3)
Nonparametric model (Zapfetal.[15]) 19.0(11.9,289) 994 (97.9,99.8)

Estimates and 95% confidence intervals (in parentheses) for sensitivity and
specificity obtained from different methods for the analysis of transesophageal
echocardiography data [38]. Results are multiplied by 100
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of using SIMEX are much more evident. In particular,
empirical coverages of confidence intervals for the diag-
nostic accuracy measures are closer to the 95% target
level than alternatives. The likelihood approach under the
Binomial-Normal formulation shows a less satisfactory
performance.

A substantial difference between SIMEX and the like-
lihood approach is in terms of failure rate of conver-
gence. SIMEX has not convergence problems whichever
the examined scenario. Conversely, likelihood solutions
suffer for convergence difficulties, especially in case of
skewed random-effects distribution. The highest levels
of failure rate are reached using the Binomial-Normal
formulation and they are much more frequent as the
sample size is small and the value of the correlation p
increases. Simulation results are in accordance with pre-
vious findings in the literature about convergence issues
and numerical instabilities of the likelihood approach.
Possible solutions evaluated in the simulation studies,
including the change of the optimisation algorithm and
the change of the starting values [16, 19], only slightly
reduce the number of failures. When adopting the SIMEX
strategy, several solutions are available in case of con-
vergence failure, although we did not experience such
a problem in our study. Possible solutions include the
choice of a different estimation method within each b-th
replication of the simulation step or varying the number
of simulated datasets B. An additional practical strat-
egy is the visual inspection of the SIMEX components
and the direct extrapolation of the points of interest.
This strategy is suggested in Section B.4.1 of Carroll
et al. [28] when the SIMEX estimated variance/covariance
matrix is non-positive definite. Although possible, this is
an infrequent case and we did not encounter it in our
simulations.

From a strictly practical point of view, the implementa-
tion of SIMEX, despite its simulation-based nature, is not
involved neither time-consuming and can proceed by tak-
ing advantage of simple estimation methods, such as the
method of moments. The R [37] code for SIMEX imple-
mentation is made available in the Additional file 2 and
illustrated in the Additional file 3.

Although the scenarios investigated in the paper do
not consider the presence of additional level covariates in
model (1), SIMEX can be extended to account for them. In
this case, the number of remeasured datasets B is recom-
mended to be increased in order to guarantee the results
having an acceptable precision, see Section 5.3 in Carroll
et al. [28].

In this paper, the model structure used for the simu-
lation step in SIMEX is given by the approximate model
(2) in place of the exact model (3). The choice implies
that, when necessary, the correction that adds 0.5 to the
two-by-two table cells equal to zero is applied. Additional
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empirical investigations with different correction values
show that the 0.5 correction does not impact the results.
Such a behaviour is related to the SIMEX procedure, as
the correction can affect only the original data, while the
remeasured data of the simulation step are not influenced.
Simulating the discrete components of the two-by-two
table in place of their continuous logit transformations
fi; and & is theoretically possible. In this case, the mea-
surement error problem affects the classification of the
positive/negative results in the two-by-two table, thus
being called misclassification problem, see Kichenhoff
et al. [39]. However, moving from the new generated dis-
crete data to the logit transformations would still be an
obligatory step, as the data are necessary for inference
in the main model (1). In this case, the 0.5 correction
would still apply, not only on the original data but in
every case the problem arises within the simulation step.
How to circumvent these limitations when simulating
from the exact model (3) represents a topic of future
research.

Conclusions

This paper focused on bivariate random-effects models
for meta-analysis of diagnostic test accuracy. Attention
is paid to the presence of errors affecting the measures
of diagnostic accuracy. Standard likelihood-based proce-
dures are shown to be prone to several drawbacks, despite
their wide diffusion. The inaccuracy of inferential conclu-
sions for small sample size and in case of misspecifica-
tion of the random-effects distribution is accompanied by
computational issues which seriously affect the applicabil-
ity of the approach. The SIMEX methodology represents
an interesting and promising alternative. Reliable infer-
ence properly accounting for the presence of measure-
ment errors is obtained with neither computational effort
not numerical instabilities. The satisfactory performance
of SIMEX illustrated through extensive simulation exper-
iments is not affected by study characteristics, such as
sample size or measurement error correlation. Robustness
to departures from normal random-effects distributions is
a substantial improvement over standard likelihood solu-
tions. The availability of the R code for a user-friendly
implementation of SIMEX is aimed at encouraging
its use.

Additional files

Additional file 1: The file includes a portion of the simulation results
comparing the performance of SIMEX and likelihood-based approaches in
the medium accuracy scenario and in the low and high accuracy scenarios
for sample size n = 25. (PDF 91 kb)

Additional file 2: R code for applying the SIMEX approach. (R 10.2 kb)

Additional file 3: The file illustrates how to apply SIMEX for data analysis
using the R code available in Additional file 2. (PDF 64.4 kb)
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