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Abstract

Background: Many questions in statistical genomics can be formulated in terms of variable selection of candidate
biological factors for modeling a trait or quantity of interest. Often, in these applications, additional covariates
describing clinical, demographical or experimental effects must be included a priori as mandatory covariates while
allowing the selection of a large number of candidate or optional variables. As genomic studies routinely require
mandatory covariates, it is of interest to propose principled methods of variable selection that can incorporate
mandatory covariates.

Methods: In this article, we propose the ridge-lasso hybrid estimator (ridle), a new penalized regression method that
simultaneously estimates coefficients of mandatory covariates while allowing selection for others. The ridle provides a
principled approach to mitigate effects of multicollinearity among themandatory covariates and possible dependency
between mandatory and optional variables. We provide detailed empirical and theoretical studies to evaluate our
method. In addition, we develop an efficient algorithm for the ridle. Software, based on efficient Fortran code with
R-language wrappers, is publicly and freely available at https://sites.google.com/site/zhongyindaye/software.

Results: The ridle is useful when mandatory predictors are known to be significant due to prior knowledge or must
be kept for additional analysis. Both theoretical and comprehensive simulation studies have shown that the ridle to be
advantageous when mandatory covariates are correlated with the irrelevant optional predictors or are highly
correlated among themselves. A microarray gene expression analysis of the histologic grades of breast cancer has
identified 24 genes, in which 2 genes are selected only by the ridle among current methods and found to be
associated with tumor grade.

Conclusions: In this article, we proposed the ridle as a principled sparse regression method for the selection of
optional variables while incorporating mandatory ones. Results suggest that the ridle is advantageous when
mandatory covariates are correlated with the irrelevant optional predictors or are highly correlated among themselves.
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Background
Many essential problems in statistical genomics may be
formulated in terms of variable selection of candidate
biological factors for modeling of some trait or quantity
of interest [1–3]. Often, additional covariates describ-
ing clinical, demographical, or other experimental fac-
tors must be included a priori as mandatory covariates
while allowing the selection of possibly a large number of
candidate or optional variables. Substantial progress has
been made recently in the analysis of high-dimensional
data with sparse regression methods. The lasso was pro-
posed that induces sparsity using an L1-norm penalty
on all coefficients [4]. With the introduction of com-
putationally efficient algorithms [5, 6], the lasso has
since become a widely-applied variable selection method.
Other methods for sparse regression include the smoothly
clipped absolute deviation (SCAD) [7], adaptive lasso [8],
Dantzig selector [9], etc. However, these methods were
not designed for applications with mandatory covariates.
An ad hoc approach is often employed where the response
is regressed on mandatory covariates without penaliza-
tion, as if in an ordinary least squares (OLS), while penal-
ized regression is applied upon the optional variables,
independently of the mandatory ones, to achieve variable
selection. However, standard statistical principle advo-
cates the consideration of all covariates simultaneously in
order to account for complex dependencies among covari-
ates. By penalizing coefficients disparately on some of
the variables while not on others, this approach can yield
both poor prediction accuracy and unreliable selection of
optional variables. As mandatory covariates are routinely
encountered in genomic-data analysis, it is of interest to
develop a principled approach towards sparse regression
with mandatory covariates. In this article, we consider the
problem of efficient estimation of coefficients of manda-
tory covariates and simultaneous variable selection of
optional variables.
Cancer arises as a disorder of the cell life cycle that

leads to excessive cell proliferation and poor differentia-
tion. Pathologists often use grading systems to measure
the degree of cell differentiation in tumors [10, 11]. Tumor
grade is one of the most important indicators for clini-
cians to guide treatment options and make prognosis for
patients [12]. Histologic grade of breast cancer is rep-
resentative of its aggressive potential [13]. Cancer cells
with higher grades tend to be more aggressive and require
quite different treatment strategies than those with lower
grades. Due to the importance of tumor grade as an essen-
tial measure in clinical prognosis, treatment and of the
survival of breast cancer patients, understanding genetic
factors that may be predictive of tumor grade has become
a desideratum of current research in breast cancers. In
this article, we will propose a principled method to iden-
tify genes which may affect tumor grade while accounting

for their clinical phenotypes such as age at diagnosis, p53
sequence mutation status, etc. by incorporating them as
mandatory covariates.
We propose the ridge-lasso hybrid estimator (ridle),

a novel penalized regression procedure that can simul-
taneously estimate coefficients of mandatory covariates
while allowing selection for others. The ridle employs
the L2-norm penalty to estimate mandatory coefficients
and the L1-norm penalty to perform variable selection on
the optional set. The L2-norm penalty has been success-
fully employed in ridge regression to efficiently estimate
coefficients under a spectrum of dependency structures
[14–16]. In this article, we provide theoretical, simula-
tion, and real-data analysis to suggest the ridle as an
efficient method for sparse regression with mandatory
covariates. In particular, we will show that the ridle can
achieve improved prediction accuracy and variable selec-
tion under commonly encountered scenarios when (1) the
mandatory covariates are highly correlated among them-
selves or (2) the mandatory variables are correlated with
the optional ones.
The rest of the article is presented as follows:

“Methods” section introduces the ridle procedure, where
an efficient algorithm is introduced and theoretical results
are provided to suggest the efficacy of the ridle for sparse
regression under mandatory predictors. “Results” section
evaluates our method on simulated data. Further, we
apply our method to a gene selection analysis of microar-
ray data, where we identified more genes in breast-
cancer related pathways with the ridle. Additionally,
the ridle is the only method that identified two genes
AREG and TRPM4 from the ErbB signaling pathway
and ion-channel family, respectively, which are known
to be related to cancer. Further discussions are provi-
ded in “Discussion” section, and we conclude with
“Conclusions” section.

Methods
The Ridle
Consider the linear regression model,

y = Xβ0 + ε,

where y is an n-dimensional vector of random
responses, X = (x1, x2, . . . , xd) is the n × d design
matrix, β0 = (β0

1 ,β0
2 , . . . ,β0

d) is a vector of regression
parameters, and ε is an n-dimensional vector of inde-
pendent and identically distributed (i.i.d.) random
variables with mean 0 and variance σ 2. We further
assume that the response is centered and each pre-
dictor xj = (x1j, x2j, . . . , xnj) is standardized to have
variance 1.
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We define the ridle as,

β̂(λ1, λ2) = argmin
β

{
||y−Xβ||2+λ1

∑
j∈O

|βj|+λ2
∑
j∈M

β2
j

}
,

(1)

where O and M are non-intersecting subsets of the
indices I = {1, 2, . . . , d} such that O ∪ M = I . Sub-
sets O and M comprise, respectively, indices of optional
and mandatory variables. The ridle penalizes coefficients
in O by the L1-norm penalty and coefficients in M by
the L2-norm penalty. It allows variable selection, as in the
lasso, for predictors in O and estimation without selec-
tion, as in the ridge, for predictors in M. If λ2 is equal to
0, the ridle is equivalent to thresholding the coefficients of
some predictors for variable selection and estimating the
rest without penalization. As the lasso penalty is applied
to optional variables while no penalization is imposed on
coefficients inM, we call the special case of the ridle when
λ2 = 0 as theM-unpenalized lasso.
For further insight, we examine the ridle estimator

under two special situations.

Ridle estimator in two special cases
Orthogonal design case.
For XTX/n equal to the identity matrix I, we can eas-
ily obtain the ridle solution in terms of the ordinary least
squares estimates β̂j(ols),

β̂j =
{
sign(β̂j(ols))(|β̂j(ols)| − λ1

2n )+, j ∈ O
(1 + λ2

n )−1β̂j(ols), j ∈ M (2)

where (·)+ denotes the positive part of the value, such that
the expression is set to 0 for negative quantities. The ridle
estimates equate to those of the lasso for j ∈ O and the
ridge for j ∈ M. When λ2 = 0, the M-unpenalized lasso
estimates equate to those of the lasso for j ∈ O and the
OLS for j ∈ M. It is clear that, when the design matrix
is orthogonal, the L1-norm and L2-norm penalties work
independently to penalize coefficients with indices in O
andM, respectively. The situation is more involved when
predictors are correlated.

Two-predictor case
Consider the case when d = 2. LetO = {1} andM = {2}
for the ridle estimates. Figure 1 presents the penalty con-
tours of the lasso, ridle, and ridge estimators. The ellipses
centered at the OLS solutions are the contours of the
quadratic loss function,

(β − β̂(ols))TXTX(β − β̂(ols)),

plus a constant. With standardized predictors, these ellip-
tical contours are at a ± 45°angle to the horizontal axes.
Solutions occur when the ellipses first contact the penalty
contours.
In Fig. 1a, we obtain the lasso solution as an ellipse hits

a corner of the lasso penalty contour, setting β1 to 0. In
Fig. 1c, we see that the ridge penalty contour is circular,
and an ellipse hitting the penalty contour gives nonzero
estimates. The ridle penalty is described in Fig. 1b. It has
both the characteristics of the lasso and ridge with an oval
shape along the horizontal and sharp corners on the verti-
cal axis. The ridle solution occurs when an ellipse centered
on the OLS estimates hits a sharp corner on the vertical
axis, yielding β1 = 0 and a nonzero β2. Thus, we see that
the ridle may provide sparse solutions for coefficients in
O while preserving non-sparsity for coefficients inM.
When d = 2, we have the design matrix,

XTX = n
(
1 ρ

ρ 1

)
(3)

with pairwise correlation ρ. We can show that the ridle
estimates are

β̂1 = s1
(
|β̂1(ols)| + ρλ2

n − nρ2 θ2s1β̂2(ols) − θ1
)+

,

β̂2 =

⎧
⎪⎨
⎪⎩

θ2β̂2(ols) + nρ
n+λ2

s1θ1,
if θ1 < |β̂1(ols)| + ρλ2

n−nρ2 θ2s1β̂2(ols),
n+λ2−nρ2

(n+λ2)(1−ρ2)
θ2β̂2(ols) + nρ

n+λ2
β̂1(ols), otherwise,

where s1 = sign(β̂1(ols)), θ1 = λ1(n + λ2)/(2n(n +
λ2 − nρ2)), and θ2 = n(1 − ρ2)/(n + λ2 − nρ2). We
see that the coefficient β̂1 can be thresholded to 0 with
increasing θ1(λ1, λ2, ρ) and θ2(λ2, ρ) functions to increase
(temper) the thresholding of β̂1 when ρs1β̂2(ols) is neg-
ative (positive). On the other hand, β̂2 converges to a

(a) (b) (c)

Fig. 1 Penalty contour when d = 2 for (a) lasso, (b) ridle, and (c) ridge regressions
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weighted average of β̂1(ols) and β̂2(ols) without neces-
sarily thesholding it to 0 as θ1 increases to |β̂1(ols)| +
ρλ2θ2s1β̂2(ols)/(n − nρ2).
In the special case when λ2 = 0, the ridle is

reduced to the M-unpenalized lasso, with estimates
β̂1(M-unpenalized lasso) = s1(|β̂1(ols)| − θ1)+, β̂2
(M-unpenalized lasso) = β̂2(ols)+s1ρθ1 if θ1 < |β̂1(ols)|,
and β̂2(M-unpenalized lasso) = β̂2(ols) + ρβ̂1(ols) oth-
erwise. Under multicollinearity when ρ is large, the OLS
estimates are known to have large variability. In this case,
the ridge is often employed to improve prediction accu-
racy by regulating variances. Compared with the ridle,
theM-unpenalized lasso that imposes no penalization on
mandatory coefficients can be less effective in tempering
the effects of multicollinearity. For example, when ρ = 1
and θ1 is large, theM-unpenalized lasso estimate for β2 is
β̂2(ols) + β̂1(ols), such that theM-unpenalized lasso can
have larger prediction error than the OLS.
The lasso has the solution β̂j(lasso) = sj(|β̂j(ols)| −

γ )+ for j = 1, 2 and does not involve the correlation
ρ when d = 2 [4]. In contrast, ridge coefficients tend
to be averaged with increasing correlation. This prop-
erty helps ridge to reduce variances of its estimates and
improve prediction accuracy when data is multicollinear
[16]. The ridle estimates (β̂1, β̂2) are also defined in terms
of weighted averages of β̂1(ols) and β̂2(ols) according to
correlation ρ. In the following, we will show via theoretical
studies how this property can improve variable selection
for ridle.

Theoretical properties
In this section, we provide theoretical properties of the
ridle estimator. These results are useful in providing a
window to understanding the proposed method and a
guide as to how the methods might perform in practice.
Here, we use the sign-consistency approach [17] for the-
oretical derivations, which can provide results that are
easy to interpret and relate to applications. More involved
theoretical approaches, such as the asymptotic and non-
asympotic oracle properties [7, 18], often rely on complex
conditions that are difficult to interpret. Proofs for the-
oretical results in this section are provided in Additional
file 1.
Without loss of generality, we assume that the true coef-

ficients β0 = ((β0
(1))

T , (β0
(2))

T , (β0
(3))

T )T are partitioned
such that β0

(1) = {β0
j : β0

j �= 0 and j ∈ O}, β0
(2) = {β0

j :
β0
j = 0 and j ∈ O}, and β0

(3) = {β0
j : j ∈ M}. Let

Cn = XT
nXn/n and C̃n = C + (λ2/n)I. With the columns

of Xn partitioned as β0, Cn has the expression

Cn =
⎛
⎝

Cn
11 Cn

12 Cn
13

Cn
21 Cn

22 Cn
23

Cn
31 Cn

32 Cn
33

⎞
⎠ . (4)

We assume that

Cn → C, (5)

where C is a positive definite matrix,
1
n

max
1≤i≤n

((xni )Txni ) → 0, (6)

and

C̃n
33 and (Cn

11 − Cn
13(C̃

n
33)

−1Cn
31) are invertible. (7)

Asymptotic normality of the Ridle
Theorem 1 With (5) and (6), β̂(λ1, λ2) satisfies the fol-

lowing for λ1, λ2 > 0 such that λ1/
√
n → c1 < ∞ and

λ2/
√
n → c2.

√
n(β̂ − β0) →d argminV (u) (8)

where

V (u) = uTCu − 2uTW
+c1

∑
j∈O

(ujsign(β0
j )I(β

0
j �= 0) + |uj|I(β0

j = 0))

+2c2uT(3)β
0
(3)

andW ∼ N(0, σ 2C).

Theorem 1 shows that the coefficients of mandatory
covariates can contribute to the biasness of the ridle esti-
mates. If the coefficients of variables in M are relatively
large, then a small c2 is required to keep the bias low.
On the other hand, when coefficients of variables in M
are small, a wider spectrum of values of c2 can be cho-
sen to improve prediction accuracy. Hence, we expect the
ridle to perform the best when coefficients of mandatory
variables tend to be small.

Variable selection consistency of the Ridle.
In this section, we provide sign consistency results for the
ridle. We define the ridle estimates β̂(λ1, λ2) to be sign
consistent if there exist λ1 = λ1(n) and λ2 = λ2(n) such
that

lim
n→∞P(sign(β̂O(λ1, λ2)) = sign(β0

O)) = 1. (9)

Sign consistency, as a stronger condition, directly implies
variable selection consistency.
With (5)-(7), we give the following conditions for sign

consistency of the ridle estimator.
Sufficient condition: There exists η > 0 such that

|Dnsign(β0
(1))−

2λ2
λ1

(DnCn
13−Cn

23)(C̃
n
33)

−1β0
(3)| ≤ 1−η,

(10)

where Dn = (Cn
21 − Cn

23(C̃
n
33)

−1Cn
31)(C

n
11 −

Cn
13(C̃

n
33)

−1Cn
31)

−1.
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Necessary condition:

|Dnsign(β0
(1)) − 2λ2

λ1
(DnCn

13 − Cn
23)(C̃n

33)
−1β0

(3)| < 1.

(11)

Theorem 2 Under (5)-(7), β̂(λ1, λ2) is sign consistent if
condition (10) holds for λ1, λ2 > 0 such that λ1/n → 0,
λ1/

√
n → ∞, and λ2/λ1 → c < ∞.

Theorem 3 Under (5)-(7), β̂(λ1, λ2) is sign consistent
only if condition (11) holds for λ1, λ2 > 0 such that
λ2/n → 0.

Remark 1 Let Cn
12 = Cn

23 = 0. Then conditions (10)
and (11) are satisfied with left-hand sides equal to 0. Thus,
the ridle estimator is sign consistent when predictors with
nonzero coefficients are unrelated with predictors with zero
coefficients.

Remark 2 Suppose Cn
13 = Cn

23 = 0. Then, conditions
(10) and (11) become

|Cn
21(C

n
11)

−1sign(β0
(1))| < 1 − η and

|Cn
21(C

n
11)

−1sign(β0
(1))| < 1,

respectively. This is equivalent to the Irrepresentable con-
ditions of [17] for lasso sign consistency. Thus, when
variables inM are uncorrelated with those inO, sign con-
sistency for the ridle is equivalent to that of the lasso for
predictors inO.

Remark 3 Consider performing the lasso on predictors
in bothO andM. The following Irrepresentable conditions
are derived in Zhao and Yu (2006) for the lasso [17],

(sufficient) |Dn
1sign(β0

(1)) + Dn
2sign(β0

(3))| < 1 − η (12)

(necessary) |Dn
1sign(β0

(1)) + Dn
2sign(β0

(3))| < 1 (13)

where Dn
1 = Cn

21 − Cn
23(C

n
33)

−1Cn
31)(C

n
11 − Cn

13(C
n
33)

−1

Cn
31)

−1 and Dn
2 = (Cn

23 − Cn
21(C

n
11)

−1Cn
13)(C

n
33 −

Cn
31(C

n
11)

−1Cn
13)

−1. Compared with the lasso, the ridle con-
ditions in (10) and (11) involve the parameter λ2 that can
allow it to more easily satisfy sign consistency conditions
with suitable choices of λ2. Consider a toy example to better
understand the general results through a simple scenario.
If Cn

23 �= 0 and Cn
12 = Cn

13 = 0, then the left-hand sides of
conditions (10) and (11) for the ridle become

|2(λ2/λ1)Cn
23(C̃n

33)
−1β0

(3)|,
whereas the left-hand sides of conditions (12) and (13) for
the lasso are

|Cn
23(C

n
33)

−1sign(β0
(3))|.

Here, the ridle is sign consistent for λ2/λ1 sufficiently small,
but the lasso is not if the elements of Cn

23 are large or C
n
33 is

nearly singular. Thus, we expect that the ridle may perform
better than lasso using predictors from both O and M in
terms of model selection if predictors in M are correlated
with the irrelevant predictors in O or the predictors in M
are highly correlated among themselves.

Remark 4 When λ2 = 0, the ridle is reduced to the
M-unpenalized lasso. In this case, as no penalization is
involved on mandatory coefficients, sign consistency condi-
tions can be trivially obtained as
∣∣∣Dn

1sign
(
β0

(1)

)∣∣∣ < 1− η and
∣∣∣Dn

1sign
(
β0

(1)

)∣∣∣ < 1,

(14)

where Dn
1 is as defined following conditions (12) and

(13) for the lasso. Compared with the M-unpenalized
lasso, the ridle composes of an additional offsetting factor
(2λ2/λ1)(DnCn

13 −Cn
23)(C̃

n
33)

−1β0
(3) in conditions (10) and

(11) that allows sign consistency inequalities to be more
easily satisfied. For example, if Cn

23 = 0, Cn
12 �= 0, and

Cn
13 �= 0, then the left-hand sides of conditions (10) and

(11) for the ridle become
∣∣∣∣Dnsign

(
β0

(1)

)
− 2 (λ2/λ1)DnCn

13

(
C̃n
33

)−1
β0

(3)

∣∣∣∣ .

In this case, if |Dn
1sign(β0

(1))| ≥ 1, sign consistency con-
ditions for the M-unpenalized lasso in (14) are violated,
whereas sign consistency conditions for the ridle may still
be satisfied with suitably chosen λ2.

Remark 5 When the mandatory covariates are irrele-
vant, β0

(3) = 0, the offsetting terms in (10) and (11) for ridle
sign consistency would vanish. Indeed, with λ2/n → 0,
ridle sign consistency conditions are equivalent to those
of both the lasso and M-unpenalized lasso. However, this
does not mean that the methods will perform similarly
under finite samples. We will examine their finite-sample
performances in the Analysis of Simulated Data in the
“Results” section.

Efficient algorithm
We provide an efficient algorithm for computing the
ridle. Programming code, written in Fortran, and its R-
language wrapper for the algorithm described in this
section are freely available online at http://sites.google.
com/site/zhongyindaye/software.
The ridle (1) minimizes over an objective function with

convex and separable penalties. This allows us to employ
the coordinate descent strategy [19–21] to compute for
the ridle. In the coordinate descent, we update first for
all coefficients of mandatory variables βM and, then, each
optional coefficient βj ∈ O, one at a time. This is iterated
till practical convergence is reached. The algorithm is fur-
ther sped up by iterating only through the mandatory and

http://sites.google.com/site/zhongyindaye/software
http://sites.google.com/site/zhongyindaye/software


Zhai et al. BMCMedical ResearchMethodology  (2017) 17:12 Page 6 of 13

active set till convergence before updating all variables.
We provide the coordinate descent updating equations as
the following,

βM ←
(
XT

MXM + λ2I
)−1

XT
M (y − XOβO) (15)

βj ← sj
‖xj‖2

⎛
⎝

∣∣∣∣∣∣
xTj

⎛
⎝y−

∑
k �=j

xkβk

⎞
⎠
∣∣∣∣∣∣
− λ1

2

⎞
⎠

+
for j ∈ O, (16)

where sj = sign(xTj (y − ∑
k �=j xkβk)). Maximum value for

λ1 is λmax
1 = 2maxj∈O |y − XMβ̂M,0|, where β̂M,0 =

(XT
MXM + λ2I)−1XT

My are initial estimates for coeffi-
cients of mandatory covariates. The matrix inverse in (15)
can be computed efficiently by taking the inverse of indi-
vidual eigenvalues added to λ2 after an initial singular
value decomposition of XT

MXM.

Results
Analysis of simulated data
We evaluate the performances of the ridle via simula-
tion studies. We examine effects of having different mag-
nitudes of coefficients, correlations between mandatory
and irrelevant predictors, and degrees of multicollinearity
amongmandatory covariates. We compare the ridle to the
ridge, lasso, elastic net, and the lasso and elastic net with-
out penalization on the mandatory covariates. We use the
R package glmnet 2.0 to compute for the lasso and elas-
tic net, where the penalization on mandatory covariates is
specified using the penalty.factor option.
In each example, we simulate 200 times from the true

model, y = Xβ + σε, where ε ∼ N(0, I). We use
n = 50 number of observations and p = 250 pre-
dictors. Tuning parameters are estimated using 5-fold
cross-validation. We measure prediction accuracy using
the relative prediction error, rpe = (β̂ − β)T�(β̂ − β)/

σ 2, where � is the population covariance matrix. Fur-
ther, we examine variable selection performances using
sensitivity, specificity, and g-measure. Sensitivity and
specificity are, respectively, the marginal proportions of
selecting relevant variables and discarding irrelevant vari-
ables correctly. In other words, sensitivity is the propor-
tion of true positives among all relevant variables, whereas
specificity is the proportion of true negatives among all
irrelevant variables. The false positive rate is equal to
1 - specificity. As proportions, sensitivity and specificity
allow intuitive comparisons across simulation settings
with varying numbers of relevant and irrelevant variables
in high-dimensional variable selection. We examine over-
all variable selection performances using the g-measure,√
sensitivity ∗ specificity. A g-measure close to 1 indicates

accurate variable selection, whereas a g-measure close to
0 implies that few relevant variables or too many irrele-
vant variables are selected, or both. In Tables 1, 2, 3 and 4,

we report medians and bootstrapped standard deviations
of medians out of 500 re-samplings, in parentheses. Fur-
ther, we boldface, as top measurements, the smallest rpe
and two largest g-measures in each case.

Example 1 (Effect of signal strengths)
This example has βj = β0 for j ∈ {1, . . . , 10, 21, . . . , 30}
and βj = 0 otherwise. Predictors are generated from
X ∼ N(0,	) where 	ij = 0.5|i−j|. σ = 3. We assume
the mandatory covariates to be comprised of the relevant
variables so thatM = {1, . . . , 10, 21, . . . , 30}.
Table 1 displays prediction accuracy and variable selec-

tion performances for this example. First of all, by uti-
lizing a priori information on mandatory covariates, the
ridle has significantly smaller rpe’s than those of the
ridge, lasso and elastic net with or without penaliza-
tion on mandantory covariates. Additionally, the ridle has
larger g-measure than those of the lasso and elastic net
and similar g-measure with the mandantory-unpenalized
lasso and elastic-net method. Sensitivity for the lasso and
elastic net decreases dramatically as the signal strength
weakens or β0 becomes smaller. On the other hand,
specificity for the lasso decreases while increasing for
elastic net when β0 becomes larger. Furthermore, the
lasso and elastic net without penalization on mandan-
tory variables outperforms the lasso and elastic net with
penaliztion on the mandantory variables in terms of both
prediction accuracy and variable selection. These suggest
that, even though the elastic net does a better job than
the lasso in terms of prediction accuracy, both methods
may not be able to distinguish well between manda-
tory and irrelevant variables, and incorporating a priori
knowledge on mandatory covariates can yield significant
improvements.

Example 2 (Effect of correlation betweenmandatory and
irrelevant predictors)
In this example, we have βj = 2 for j ∈ {2k : k =
1, . . . , 10}, βj = 1.5 for j ∈ {2k : k = 11, . . . , 20}, and βj =
0 otherwise. Predictors are generated from X ∼ N(0,	)

where each element	ij = ρ
|i−j|
0 . Thus, relevant predictors

are interspersed with irrelevant ones, to which they are
correlated. Further, we assumeM = {2k : k = 11, . . . , 20}
and σ = 6. 	ij = ρ

|i−j|
0 presents an autocorrelated depen-

dence structure, such that a variable xj has a correlation of
ρ0 with its immediate neighbors xj−1 and xj+1 for 1 < j <

p. When ρ0 is large, each variable is highly correlated with
its immediate neighbors, resulting in multicollinearity.
Table 2 presents prediction accuracy and variable selec-

tion performances for this example. The ridle performs
the best in terms of rpe’s. When ρ0 is large at 0.75,
mandatory covariates are strongly correlated with some
of the optional variables, and the M-unpenalized lasso
performs the worst in terms of prediction accuracy,
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Table 1 Simulation example 1: effect of signal strengths

Method rpe g-measure Sensitivity Specificity

β0 = 0.5 Ridge 1.008 (0.009)

Lasso 1.004 (0.018) 0.582 (0.009) 0.350 (0.018) 0.957 (0.006)

Elastic net 0.923 (0.020) 0.676 (0.007) 0.600 (0.041) 0.848 (0.023)

M-unpenalized lasso 0.675 (0.028) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

M-unpenalized elastic net 0.697 (0.026) 1.000 (0.001) 1.000 (0.000) 1.000 (0.002)

Ridle 0.281 (0.016) 0.998 (0.001) 1.000 (0.000) 0.996 (0.002)

β0 = 1.5 Ridge 6.549 (0.056)

Lasso 3.300 (0.083) 0.839 (0.005) 0.750 (0.017) 0.926 (0.003)

elastic net 3.230 (0.118) 0.853 (0.004) 0.900 (0.008) 0.850 (0.005)

M-unpenalized lasso 0.691 (0.023) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

M-unpenalized elastic net 0.701(0.028) 1.000 (0.001) 1.000 (0.000) 1.000 (0.001)

Ridle 0.473 (0.014) 0.998 (0.001) 1.000 (0.000) 0.996 (0.002)

β0 = 3 Ridge 24.559 (0.317)

Lasso 8.074 (0.433) 0.908 (0.005) 0.900 (0.013) 0.935 (0.002)

Elastic net 6.735 (0.339) 0.903 (0.002) 0.950 (0.013) 0.852 (0.003)

M-unpenalized lasso 0.676 (0.032) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

M-unpenalized elastic net 0.725 (0.030) 1.000 (0.000) 1.000 (0.000) 1.000 (0.001)

Ridle 0.605 (0.025) 0.998 (0.001) 1.000 (0.000) 0.996 (0.002)

TheM-unpenalized lasso andM-unpenalized elastic net were performed without penalization on the mandatory covariates
n = 50, p = 250, |M| = 20. The smallest rpe and largest two g-measures are boldfaced

Table 2 Simulation example 2: effect of correlation between mandatory and irrelevant predictors

Method rpe g-measure Sensitivity (M) Sensitivity (O) Specificity (O)

ρ0 = 0.25 Ridge 1.671 (0.012)

Lasso 1.911 (0.022) 0.383 (0.034) 0.100 (0.032) 0.200 (0.028) 0.975 (0.008)

Elastic net 1.744 (0.019) 0.585 (0.015) 0.400 (0.054) 0.600 (0.050) 0.835 (0.036)

M-unpenalized lasso 1.741 (0.028) 0.742 (0.012) 1.000 (0.000) 0.200 (0.037) 0.938 (0.003)

M-unpenalized elastic net 1.657 (0.017) 0.757 (0.008) 1.000 (0.000) 0.500 (0.064) 0.833 (0.022)

Ridle 1.492 (0.031) 0.773 (0.006) 1.000 (0.000) 0.200 (0.048) 0.931 (0.006)

ρ0 = 0.5 Ridge 1.807 (0.014)

Lasso 2.045 (0.035) 0.571 (0.013) 0.300 (0.046) 0.400 (0.039) 0.925 (0.007)

Elastic net 1.773 (0.034) 0.667 (0.008) 0.600 (0.014) 0.800 (0.048) 0.756 (0.020)

M-unpenalized lasso 1.922 (0.044) 0.794 (0.003) 1.000 (0.000) 0.400 (0.047) 0.929 (0.004)

M-unpenalized elastic net 1.729 (0.040) 0.796 (0.007) 1.000 (0.000) 0.700 (0.048) 0.785 (0.022)

Ridle 1.438 (0.057) 0.852 (0.006) 1.000 (0.000) 0.600 (0.049) 0.900 (0.004)

ρ0 = 0.75 Ridge 1.564 (0.022)

Lasso 1.365 (0.029) 0.684 (0.008) 0.400 (0.032) 0.600 (0.012) 0.900 (0.003)

Elastic net 1.237 (0.030) 0.745 (0.005) 0.700 (0.048) 0.900 (0.011) 0.775 (0.014)

M-unpenalized lasso 1.423 (0.037) 0.839 (0.005) 1.000 (0.000) 0.700 (0.026) 0.904 (0.006)

M-unpenalized elastic net 1.310 (0.041) 0.847 (0.005) 1.000 (0.000) 0.800 (0.012) 0.840 (0.008)

Ridle 0.886 (0.029) 0.875 (0.003) 1.000 (0.000) 0.700 (0.038) 0.908 (0.003)

TheM-unpenalized lasso andM-unpenalized elastic net were performed without penalization on the mandatory covariates. g-measure is estimated from all predictors.
Sensitivity (M) is computed in terms of the mandatory variables only, whereas sensitivity (O) and specificity (O) are computed in terms of the optional variables only
n = 50, p = 250, |M| = 10. The smallest rpe and largest two g-measures are boldfaced
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Table 3 Simulation example 3: effect of multicollinearity among mandatory covariates

Method rpe g-measure Sensitivity (M) Sensitivity (O) Specificity (O)

ρ = 0.75 Ridge 6.353 (0.022)

Lasso 4.649 (0.167) 0.802 (0.011) 0.800 (0.000) 0.700 (0.048) 0.908 (0.004)

Elastic net 4.410 (0.128) 0.804 (0.005) 1.000 (0.009) 0.700 (0.006) 0.858 (0.006)

M-unpenalized lasso 4.776 (0.260) 0.829 (0.005) 1.000 (0.000) 0.700 (0.031) 0.902 (0.007)

M-unpenalized elastic net 5.402 (0.190) 0.823 (0.006) 1.000 (0.000) 0.700 (0.013) 0.871 (0.009)

Ridle 2.699 (0.152) 0.893 (0.007) 1.000 (0.000) 0.900 (0.048) 0.904 (0.004)

ρ = 0.9 Ridge 6.270 (0.026)

Lasso 4.914 (0.148) 0.784 (0.010) 0.600 (0.089) 0.700 (0.036) 0.908 (0.004)

Elastic net 4.336 (0.135) 0.816 (0.005) 0.800 (0.092) 0.700 (0.018) 0.867 (0.008)

M-unpenalized lasso 6.992 (0.337) 0.828 (0.008) 1.000 (0.000) 0.700 (0.031) 0.902 (0.006)

M-unpenalized elastic net 7.245 (0.237) 0.827 (0.005) 1.000 (0.000) 0.700 (0.045) 0.860 (0.011)

Ridle 3.000 (0.214) 0.890 (0.006) 1.000 (0.000) 0.800 (0.045) 0.900 (0.004)

ρ = 0.99 Ridge 6.231 (0.031)

Lasso 7.322 (0.200) 0.745 (0.005) 0.400 (0.000) 0.700 (0.000) 0.913 (0.003)

Elastic net 5.003 (0.155) 0.804 (0.006) 0.800 (0.049) 0.700 (0.019) 0.883 (0.006)

M-unpenalized lasso 36.214 (2.064) 0.824 (0.006) 1.000 (0.000) 0.700 (0.046) 0.904 (0.005)

M-unpenalized elastic net 33.583 (2.197) 0.830 (0.004) 1.000 (0.010) 0.700 (0.045) 0.867 (0.010)

Ridle 4.193 (0.343) 0.890 (0.005) 1.000 (0.000) 0.800 (0.029) 0.904 (0.004)

TheM-unpenalized lasso andM-unpenalized elastic net were performed without penalization on the mandatory covariates. g-measure is estimated from all predictors.
Sensitivity (M) is computed in terms of the mandatory variables only, whereas sensitivity (O) and specificity (O) are computed in terms of the optional variables only
n = 50, p = 250, |M| = 5. The smallest rpe and largest two g-measures are boldfaced

except that of the ridge. This corroborates comments in
Two-Predictor Case of “Methods” section that suggest the
M-unpenalized lasso can have large prediction errors
under multicollinearity. Further, the ridle performs the
best in terms of g-measures for overall variable selection
in all scenarios.

Example 3 (Effect of multicollinearity amongmandatory
covariates)
Here, we have βj = 3 for j ∈ {1, . . . , 5}, βj = 1.5 for
j ∈ {6, . . . , 10}, βj = 2 for j ∈ {16, . . . , 20}, and βj = 0 oth-
erwise. We set σ = 3 and assume M = {16, . . . , 20}. Let
Z ∼ N(0, 1) and εx ∼ N(0, 1). We generate predictors as
xj = Z+ √

(1 − ρ)/ρ ε for j ∈ M and xj ∼ N(0, 1) other-
wise. This creates correlations of ρ among the mandatory
covariates.
In Table 3, we see that sensitivity (M) decreases for

the lasso and elastic net as ρ increases. Additionally,
the lasso and elastic net without penalization on man-
dantory variables have identical sensitivity (M) with
the ridle. Furthermore, prediction error for the lasso
without penalization on mandatory covariates increases
dramatically as ρ increases, whereas the ridle has the
lowest rpe’s. This corroborates Remark 3 of Variable
Selection Consistency of the Ridle in “Methods” section,

which suggests that the ridle may outperform the lasso
when mandatory variables are highly correlated among
themselves.

Example 4 (Mandatory covariates are irrelevant)
We repeat the simulation setting from example 2, but with
the mandatory covariates defined as M = {2k − 1 :
k = 1, . . . , 10}. In this case, the mandatory covariates are
irrelevant.
Table 4 presents prediction accuracy and variable

selection performances for this scenario. The ridle under-
performs the elastic net but outperforms all other vari-
able selection methods in terms of prediction accuracy.
Indeed, the ridle has significantly smaller rpe’s compared
with the M-unpenalized lasso and M-unpenalized elas-
tic net. Moreover, the ridle underperforms both the lasso
and elastic net in terms of g-measures for overall variable
selection. However, ridle outperforms theM-unpenalized
lasso and M-unpenalized elastic net at ρ0 = 0.5 and
ρ0 = 0.75, when the irrelevant mandatory covariates are
moderately and highly correlated, respectively, with some
of the relevant optional variables. These suggest that the
ridle, although not designed to exclude mandatory covari-
ates when they are irrelevant, can be more advantageous
than related methods that include mandatory covariates,
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Table 4 Simulation example 4: mandatory covariates are irrelevant

Method rpe g-measure Specificity (M) Sensitivity (O) Specificity (O)

ρ0 = 0.25 Ridge 1.671 (0.012)

Lasso 1.911 (0.022) 0.383 (0.034) 1.000 (0.000) 0.200 (0.028) 0.975 (0.008)

Elastic net 1.744 (0.019) 0.585 (0.015) 0.600 (0.053) 0.600 (0.050) 0.835 (0.036)

M-unpenalized lasso 2.357 (0.032) 0.215 (0.103) 0.000 (0.000) 0.050 (0.024) 0.995 (0.003)

M-unpenalized elastic net 2.210 (0.034) 0.308 (0.054) 0.000 (0.000) 0.525 (0.065) 0.732 (0.057)

Ridle 1.854 (0.012) 0.309 (0.029) 0.000 (0.000) 0.100 (0.024) 0.982 (0.005)

ρ0 = 0.5 Ridge 1.807 (0.014)

Lasso 2.045 (0.035) 0.571 (0.013) 0.800 (0.006) 0.400 (0.039) 0.925 (0.007)

Elastic net 1.773 (0.034) 0.667 (0.008) 0.500 (0.048) 0.800 (0.048) 0.756 (0.020)

M-unpenalized lasso 2.242 (0.023) 0.299 (0.035) 0.000 (0.000) 0.100 (0.021) 0.982 (0.004)

M-unpenalized elastic net 2.080 (0.028) 0.305 (0.094) 0.000 (0.000) 0.550 (0.072) 0.700 (0.079)

Ridle 1.801 (0.039) 0.528 (0.032) 0.000 (0.000) 0.300 (0.038) 0.943 (0.005)

ρ0 = 0.75 Ridge 1.564 (0.022)

Lasso 1.365 (0.029) 0.684 (0.008) 0.700 (0.041) 0.600 (0.012) 0.900 (0.003)

Elastic net 1.237 (0.030) 0.745 (0.005) 0.300 (0.046) 0.900 (0.011) 0.775 (0.014)

M-unpenalized lasso 1.747 (0.043) 0.428 (0.003) 0.000 (0.000) 0.200 (0.000) 0.964 (0.003)

M-unpenalized elastic net 1.662 (0.043) 0.514 (0.016) 0.000 (0.000) 0.350 (0.023) 0.900 (0.015)

Ridle 1.253 (0.042) 0.596 (0.017) 0.000 (0.000) 0.400 (0.026) 0.945 (0.003)

TheM-unpenalized lasso andM-unpenalized elastic net were performed without penalization on the mandatory covariates. g-measure is estimated from all predictors.
specificity (M) is computed in terms of the mandatory variables only, whereas sensitivity (O) and specificity (O) are computed in terms of the optional variables only
n = 50, p = 250, |M| = 10. The smallest rpe and largest two g-measures are boldfaced

as the ridle penalizes coefficients of irrelevant mandatory
covariates towards, although not equal to, 0 with the ridge
penalty.

Gene expression analysis on histologic grades of breast
cancer
Histologic grades are an important determinant of the
aggressive potential of breast cancers and are of practi-
cal importance in the assessment and choice of treatment
options. In this section, we apply our proposed method
on a microarray gene expression dataset to determine
genes that may be predictive of breast tumor histologic
grade [22]. In this experiment, 251 frozen tumor tis-
sure were collected from primary breast cancer patients
and more than 12,000 genes were assayed on 251 sub-
jects. We removed 2 subjects with missing outcomes and
performed our analysis with the remaining 249 obser-
vations. Clinicopathological variables, such as ER status,
PgR status, age and tumor size, measured at diagnosis,
were obtained from patient records. Histologic grades are
based on the widely used Nottingham Histologic Score
system for prognosis of breast cancer [23]. There are three
factors that pathologists consider in this scoring system:

cell differentiation, nuclear features and mitotic activity
[24]. Considerations of these factors allow the Notting-
ham Prognostic Index (NPI) to provide comprehensive
prognosis of breast cancers. The three factors are each
assigned a score from 1–3 based on clinical observations.
A tumor is assigned a score of 1, 2, or 3 for cell dif-
ferentiation if >75%, 10%-75%, or <10% of tumor area
form glandular structures, respectively. A tumor has a
score of 1, 2, or 3 for nuclear features if nuclei have little
increase in size, larger than normal breast epithelial cells,
or prominent nucleoli with occasionally very large sizes,
respectively. Further, breast tumors have scores of 1, 2,
or 3 for mitotic activity if ≤7, 8–14, or ≥15 mitoses per
10 high power microscopic fields are observed, respec-
tively. Overall tumor grades are obtained by summing
the scores for the three factors. Breast tumors with total
scores of 3–5, 6–7, and 8–9 are assigned with tumor
grades 1 (low), 2 (intermediate), and 3 (high), respectively,
that represent the aggressive potential of breast tumors.
The higher the grade is, the more likely it will spread or
become aggressive. This dataset is available at the NCBI
Gene Expression Omnibus (GEO) repository with GEO
accession: gse3294. We focused our analysis on 430 genes
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from several well-known cancer-related pathways: PI3K
[25, 26], p53 signaling [27–29], VEGF [30, 31], Hedgehog
signaling [32, 33], ErbB signaling [34, 35], Ras signaling
[36, 37] and Ion-channel family [38, 39].
Significant genes are selected as predictors of breast

tumor grade along the 7 pathways by utilizing a sparse
regression approach [40, 41]. In this strategy, tumor grade
is regressed upon both the 4 clinicopathological covariates
(ER status, PgR status, age and tumor size) and 430 gene
expression levels, and significant predictor to tumor grade
based on clinical covariates and genes are identified if
they are retained in sparse regression analysis. We applied
the ridle to perform variable selection on gene expres-
sion levels while conditioning on the 4 clinicopathological
variables that we incorporated as mandatory covariates.
We further compared our results with those from the
ridge, lasso, elastic net, and lasso and elastic net without
penalization on the 4 mandatory covariates.
Table 5 presents the numbers of genes and clinical

covariates selected and the mean-squared error (MSE)
using the strategies of ridge, lasso, and elastic net on both
the 4 clinicopathological variables and 430 gene expres-
sion levels. Moreover, we present results from the lasso
and elastic net without penalization on the 4 manda-
tory covariates, in addition to the ridle. The ridge has
the largest MSE, suggesting the need for sparse regres-
sion. The lasso and elastic net performed similarly with
the lasso and elastic net without penalization on manda-
tory covariates, respectively, in terms of the MSE. On the
other hand, the ridle performed the best with the smallest
MSE among all methods. This suggests that the ridle may
be advantageous in predicting histologic grades of breast
cancer.
Figure 2 depicts the genes selected via sparse regression

methods. The ridle encompasses all of the genes selected
by the lasso and elastic net with penalization on manda-
tory covariates, and nearly all of the genes selected by

Table 5 Gene expression analysis on histologic grades of breast
cancer

No. selectedM No. selectedO MSE

Ridge 4 430 0.487

Lasso 2 19 0.260

Elastic net 2 14 0.286

M-unpenalized lasso 4 21 0.257

M-unpenalized elastic net 4 7 0.296

Ridle 4 24 0.239

TheM-unpenalized lasso andM-unpenalized elastic net were performed
without penalization on the mandatory covariates. The elastic net and
M-unpenalized elastic net are built with alpha=0.2575 and alpha=0.8462,
respectively, selected by cross-validation. Numbers of selected mandatory
covariatesM and optional variablesO, and mean-squared error (MSE) are shown.
SmallestMSE is boldfaced

the elastic net (except 1 gene) and lasso without penal-
ization on mandatory covariates (except 2 genes). Two
genes are selected only by the ridle: the AREG and TRPM4
genes, which belong to the ErbB signaling pathway and
ion-channel family, respectively.
Cells are continuously exposed to stimuli from

paracrine and endocrine factors. It is essential that the
extracellular signals are interpreted by cell correctly in
order to facilitate proper proliferative response. The ErbB
family belongs to receptors of the tyrosine kinase family
and plays pivotal roles in this process [34]. Members
of the ErbB signaling pathway have been suggested as
potential therapeutic targets [42]. Initial studies have also
suggested that expression levels of AREG (amphiregulin)
are associated with larger and more aggressive tumors
through cell proliferation [43, 44]. Only the ridle iden-
tified AREG as predictive of histologic grades of breast
cancers.
The other gene selected only by the ridle is TRPM4

from the ion-channel family. Researches over the past few
years have shown that ion channels are involved in the
progression and pathology of a myriad of human cancers
[39, 45, 46]. In addition, ion channels are known to play
critical roles in gene expression, hormone secretion, cell
volume regulation, and cell proliferation [47, 48]. The
expression levels of ion-channel genes, including TRPM4,
have been found to be predictive of and significantly
associated with tumor progression [38].
Breast cancer is known to be highly correlated with hor-

mone secretion. Breast tumors that are ER or PgR-positive
are much more likely to respond to hormone therapy than
tumors that are negative.Many of thesemay not be related
to histologic grades of breast cancer. For example, in a pre-
vious study, twenty-four ion-channel genes were found to
be differentially expressed between ER-negative and ER-
positive tumors [38]. However, in our analysis, we only
identified 1 gene, AREG, from the ion-channel family to
be predictive of histologic grades of cancer. Thus, many
of the 430 breast-cancer related genes may not be pre-
dictive of histologic grades but are expected to be highly
correlated with the mandatory covariates, i.e. ER and PgR
statuses. As suggested by both theoretical and simulation
studies, the ridle can be advantageous when mandatory
variables are correlated with the irrelevant optional ones.
Results from the gene expression analysis further validate
and demonstrate the performances of the ridle under this
commonly seen scenario.

Discussion
In this article, we proposed the ridle for sparse regression
with mandatory covariates. We provided both theoretical
and simulation studies that demonstrated the efficacy of
ourmethod. In particular, our results suggest that the ridle
may outperform the lasso and elastic net whenmandatory
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Fig. 2 Selection of genes and clinicopathological variables. PgR, ER, p53Status, and AgeDiagnosis are clinicopathological covariates, whereas all
others are genes. TheM-unpenalized lasso andM-unpenalized elastic net were performed without penalization on the clinicopathological
variables as mandatory covariates

covariates are correlated with the irrelevant optional pre-
dictors or are highly correlated among themselves. The
ridle can also improve upon performances of the lasso
and elastic net when mandatory covariates have small or
moderate effects.
We employed the L1-norm penalty to induce sparsity on

the optional set. This is chosen for its simplicity, computa-
tional ease, and successes in a myriad of applications; for
example, L1-norm penalized regressions have been suc-
cessfully applied in large-scale genome-wide association
[3] and eQTL data studies [49]. However, other sparse reg-
ularization methods, such as the SCAD [7], adaptive lasso
[8], Dantzig selector [9], etc. can also be utilized in place
of the L1-norm penalty in (1).
The ridle is related to the elastic net [41] that also

employs both the L1-norm and L2-norm penalties.
However, the elastic net applies both penalties upon all
coefficients of the optional set, whereas the ridle applies
the L1-norm to coefficients of the optional set and the
L2-norm to coefficients of the mandatory set for simulta-
neous estimation of mandatory covariates while allowing
selection for others.
In this article, we applied our method in an interesting

application to gene expression analysis where we identi-
fied more genes related to tumor grade while incorporat-
ing clinicopathological variables as mandatory covariates.
In addition, the ridle can be applied in a myriad of other
genomic studies where mandatory covariates are rou-
tinely required, such as when clinical, demographical, or

experimental effects have to be incorporated in regression
analysis of genomic data sets.

Conclusions
In this article, we proposed the ridle as a principled
sparse regression method for the selection of optional
variables while incorporating mandatory ones. Manda-
tory covariates are routinely encountered in the analysis of
genetic-biomedical data. For example, additional covari-
ates describing clinical, demographical or experimental
effects need to be included a priori without subject-
ing them to variable selection. Results suggest that the
ridle may outperform current methods when mandatory
covariates are correlated with the irrelevant optional pre-
dictors or are highly correlated among themselves.

Additional file

Additional file 1: Proof of theoretical results. This file includes the proofs
of Theorems 1–3 in “Methods” section. (210 KB PDF)
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