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Impact of communities, health, and
emotional-related factors on smoking use:
comparison of joint modeling of mean and
dispersion and Bayes’ hierarchical models
on add health survey
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Abstract

Background: The analysis of correlated binary data is commonly addressed through the use of conditional models
with random effects included in the systematic component as opposed to generalized estimating equations (GEE)
models that addressed the random component. Since the joint distribution of the observations is usually unknown,
the conditional distribution is a natural approach. Our objective was to compare the fit of different binary models
for correlated data in Tabaco use. We advocate that the joint modeling of the mean and dispersion may be at
times just as adequate. We assessed the ability of these models to account for the intraclass correlation. In so
doing, we concentrated on fitting logistic regression models to address smoking behaviors.

Methods: Frequentist and Bayes’ hierarchical models were used to predict conditional probabilities, and the joint
modeling (GLM and GAM) models were used to predict marginal probabilities. These models were fitted to
National Longitudinal Study of Adolescent to Adult Health (Add Health) data for Tabaco use.

Results: We found that people were less likely to smoke if they had higher income, high school or higher education
and religious. Individuals were more likely to smoke if they had abused drug or alcohol, spent more time on TV and
video games, and been arrested. Moreover, individuals who drank alcohol early in life were more likely to be a regular
smoker. Children who experienced mistreatment from their parents were more likely to use Tabaco regularly.

Conclusions: The joint modeling of the mean and dispersion models offered a flexible and meaningful method of
addressing the intraclass correlation. They do not require one to identify random effects nor distinguish from one level
of the hierarchy to the other. Moreover, once one can identify the significant random effects, one can obtain similar
results to the random coefficient models. We found that the set of marginal models accounting for extravariation
through the additional dispersion submodel produced similar results with regards to inferences and predictions.
Moreover, both marginal and conditional models demonstrated similar predictive power.
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Background
The standard logistic regression model is commonly
used in the analysis of uncorrelated binary response
observations with several covariates [1]. It is a member
of the generalized linear models (GLM) where the
canonical link is the logit, and the random component is
binomial. Its ability to appeal to the odds of occurrence
of an event has gained great interest and popularity in
fitting binary data. However, when correlated observa-
tions are modeled with a standard logistic regression,
the results are not necessarily efficient or reliable. In
such cases, we can use the generalized estimating equa-
tion (GEE) model or a generalized linear mixed model
(GLMM), or as emphasized in this paper, resort to the
joint modeling of the mean and the dispersion. This
additional modeling of the dispersion (beyond the gener-
alized linear model for the mean) allows us to correct
for the inflated standard errors due to the intraclass cor-
relation and thereby provides more reliable and efficient
estimates. The additional submodel has other benefits,
as there are cases when one may be only interested in
modeling the dispersion. Smyth and Verbyla [2] among
others proposed joint modeling of the mean and disper-
sion parameters for certain distributions. Taylor and
Verbyla [3], Wu, Zhang and Xu [4] proposed a unified
procedure for selecting significant covariates in the
mean and the dispersion sub models.
In survey research, one often encounters correlated

data due to the designed nature of the study, longitu-
dinal data or clustered data. Such data usually referred
to collectively as repeated measures, often emanates in
healthcare, education, psychology, sociology, and other
related areas. As an example, in an obesity study among
adolescents, students were sampled from within schools,
and schools were sampled from within school districts.
In such a situation, the observations were correlated due
to the hierarchical structure of the design. Thus, to fit
standard logistic regression models to such data will
require one to violate of the usual assumption of
independence. As such one may declare covariates as
significant when in fact, they are not. In fact, it is not ap-
propriate to model correlated data with any generalized
linear model, as such models assume that the dispersion
parameter is fixed [5]. In other words, the generalized
linear model addresses location as a centering of the
data, but the spread is not assumed to vary. However, in
most of these cases when the distribution of response
distribution belongs to the exponential family the spread
is often related to the mean. On the other hand, it is well
known that in most cases in the analysis of correlated
data, that fixed dispersion or dispersion tied directly to
the mean is less common than one assumes when con-
fronted with survey data. However, the joint modeling of
the mean and the dispersion is an approach where

covariates are used to model both the mean and the
dispersion simultaneously. In fact, the estimators of
the regression parameters in the mean submodel is
more efficient when the dispersion is correctly ad-
dressed [6].
In this paper, we modeled smoking based on a set of

covariates. We compared different approaches to model-
ing these correlated data. These methods included mar-
ginal models based on the joint modeling of the mean
and the dispersion and conditional models based on the
hierarchical structure of the data with the use of random
effects. The basis for the joint modeling is to directly ad-
dress the correlation in the data [6]. In this paper, the
joint modeling of the mean and the dispersion includes
the generalized linear model (GLM) and generalized
additive model (GAM). These are marginal models.
We fitted, compared, and validated several logistic re-

gression models as we modeled smoking, as defined by
having at least one cigarette every day for 30 days.
Smoking is detrimental as it can cause lung cancer,
COPD (chronic obstructive pulmonary disease), heart
disease, stomach cancer, as well as sudden infant death
syndrome for women. Studies related to smoking have
found that race and gender accounted for a differential
role in the regular smoking habit of adults, while other
studies have found an interactional effect between
smoking, drinking, and income [7]. One study found
that advertisements through social media such as movies
and television have been linked with adolescent smoking
initiation [8]. Yet another study found that patients with
mental illness have a higher incidence of smoking than
the general population [9].

Data
We obtained 4,484 observations from the fourth wave of
Add Health survey [10], which was initially designed based
on a two-level clustered design with an in-home question-
naire survey. Respondents were selected randomly from
132 different communities and were followed from 1995
to 2009. We selected variables based on social demo-
graphics, health status, and psychological status. A de-
scription of chosen predictors is presented in Table 1.
This sample consisted of respondents aged between 25

and 34 years, with 46.01% being male, and 32.4% being
non-Caucasians. Approximately 45.2% of the respon-
dents smoked cigarettes regularly (that is, at least one
cigarette every day for 30 days), whereas 75% drank so-
cially. 81% had both smoked and drunk at least once.
Among those individuals who had both used alcohol or
smoked, 20.9% had experienced smoking first, 23.1% had
experienced alcohol first and 12.5% first experienced
smoking and drink alcohol at the same time. On the
health aspect, 37.5% of the sample had their last routine
checks more than one year ago, 21.4% had no health
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insurance, and 30.6% had routine sports time. Regarding
emotional satatus, 10.3% had psychological consulting
experience, 13.5% had childhood mistreatment experi-
ence from their parents, 29.1% had negative or neutral
attitude towards their future, and 28.8% felt isolated
from the social life. Job satistfaction was average d at
27.7%.

Methods
We started with an unconditional hierarchical logistic
regression model to obtain the intraclass correlation co-
efficient (ICC)1. The ICC measures the closeness of the
individuals within a cluster as it pertains to smoking
[11]. We found that ICC to be sufficiently large to war-
rant a correlated model [12]. We then conducted an
analysis of smoking based on four (two marginal and
two conditional) models appropriate for correlated bin-
ary data. We identified and addressed similarities and

differences with these models as they addressed and
accounted for the intraclass correlation. The two hier-
archical models, one frequentist and one Bayes, and the
two joint mean and dispersion models, one generalized
linear model (GLM) and the other generalized additive
model (GAM), were utilized. We compared the fit of
these models as they pertained to their predictive ability
on smoking. We stayed clear of addressing their
mathematical or computational differences [13]. Our
comparisons were made based on withholding a portion
of the data for validation. We randomly selected 75% for
the training dataset and 25% for validation dataset. We
did this four different times, choosing a different 25%
each time.

Hierarchical logistic regression models
We presented two conditional logistic regression or
hierarchical logistic regression models for analysis. The
dependency among observations was accounted for
through adjustment to the systematic component with
the addition of random intercepts and random slopes.
This method of adjustment to the systematic component
requires additional distributional assumptions as it now
consists of random effects in addition to the fixed
effects. This approach results in modeling the condi-
tional mean rather than the marginal mean, thus, are re-
ferred to as subject-specific models [14]. Essentially, the
subject-specific model consists of a product of a set of
distributions, one set based on the conditional mean
given the random effects and the other for the assumed
distribution of the random effects. In our example, a
subject -specific model tells us about the probability that
the individual smoked given the community (random
effect) [13].
Consider modeling smoking as the outcome as a

Bernoulli random variable Yij, which takes on the value
of one (if smoking) with probability Pij and covariates
Xijk for the ith individual in jth community for the kth co-
variate, i = 1,2,....I; j = 1,2,....J; k = 1,2,.....K. Let the overall
differential cluster random effects be denoted as γ0j(-
random intercept in the model) and assumed to be
distributed as a normal random variable with mean
zero and variance δ0

2. This addresses the unmeasured
impact of the communities on the individual. The
random intercept γ0j represents the combined effect
of all omitted covariates that causes individuals to be
more prone to smoking. Our initial exploration of the
data and some complimentary research suggested a
differential effect across communities with regard to
arrest. Thus, let the coefficient for arrest show a dif-
ferential rate from community to community (random
slope in the model). Random slope is denoted by γ1j
and assumed to be distributed normally with mean
zero and variance δ1

2. Finally, the hierarchical logistic

Table 1 Description of variables in our study

Explanation

Demographic Do you have degree above high school?

What was the total household income before taxes and
deductions?

How many of these children are still living?

Have you ever been Arrested?

Gender

Are you white?

Health Do you have health insurance?

How long ago did you last have a routine check-up?

Do you have more than 5 drinks or drink alcohol more
than 3 days a week during the past 12 months?

Do you have prescription drug misuse?

On the average, do you use a physical fitness or
recreation center in your neighborhood per week?

In the past seven days, how many hours did you watch
television or videos, including VHS, DVDs or music
videos?

How old were you when you first had an Alcoholic
drink?

Emotional How important (if at all) is your religious faith to you?

Before your 18th birthday, did a parent or other adult
caregiver say things that really hurt your feelings or
made you feel like you were not wanted or loved or
hit you with a fist, kick you, or throw you down on the
floor, into a wall, or down stairs more than 10 times?

In the past 12 months, did you spend on volunteer or
community service work?

Are you optimistic about your future?

Do you feel isolated from others?

Do you satisfy with your current job?
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regression model with 19 covariates and random
intercept and random slope is:

logit pij j Xijk γ0j; γ1j

� �
¼ β0 þ β1 Xij1

þ β2 Xij2 þ⋯
þ βK XijK þ γ0j
þ γ1j Zij1 ð1Þ

where Xijk represents the kth covariate measure for the ith

person in the jth cluster (community) βi are the regression
coefficients associated with covariate Xijk β0 is the overall
fixed effects and Zij1 is the covariate arrest in this case as-
sociated with the random slope coefficient of arrest, with
conditional distribution Yij| Xijk γ0j, γ1j ~ Bin (ni, pij) where
Bin denotes the binomial distribution, the random
intercept for communities γ0j ~N(0, δ0

2) and random slope
γ1j ~N(0, δ1

2) where N denotes the normal distribution
and the correlation of the random effects intercept and
slope parameters is σγ0j,γ1j. The correlation is due to the
fact that observations in the same cluster share similar ef-
fects. The random slope γ1j represents that there are dif-
ferential rates of change with subjects in each cluster
(community) as it relates to the covariate arrest Zijk. We
referred to this as frequentist hierarchical logistic regres-
sion model as opposed to the Bayes’ hierarchical logistic
regression model with its additional set of prior distribu-
tions on the parameters. We fitted the frequentist hier-
archical model with PROC GLIMMIX in SAS, which is
presented in Additional file 1: Appendix.

Bayes’ hierarchical logistic regression model
Bayesian hierarchical logistic regression model is pre-
sented as:

logit pij j Xijk γ0j; γ1j

� �
¼ β0 þ β1 Xi1 þ β2 Xi2

þ⋯þ βK XiK þ γ0j
þ γ1j Zij1 ð2Þ

differs from the frequentist hierarchical model [1]
merely in the set of prior distributional assumptions at-
tached to the parameters in the Bayes’ logistic regression
model. The Bayes’ logistic regression model requires that
there are distributional assumptions specified for the un-
known βi parameters, as well as the covariance parame-
ters δ0

2 δ1
2 and σγ0j,γ1j associated with the distribution for

the random effects γ0j, γ0j ~N(0, δ0
2) and γ1j the random

slope γ1j ~N(0, δ1
2) respectfully. The β’s are assumed to

be normally distributed. The Bayes’ model requires that
we incorporate any prior information on the unknown
parameters, β = β0, β1,…, βK; δ0

2 , δ1
2 and σγ0j,γ1j together

with the information we obtained from the observed
data. Thus we concentrate on the resulting posterior dis-
tribution from which we seek posterior modes. In fact,

the prior knowledge is represented through the distribu-
tional assumptions. It allows updating the knowledge
regarding the unknown parameter distribution as if its
prior information is known. We used the prior informa-
tion through the distribution Pr(β) which is based on
initial beliefs to estimate and make inferences. It is cus-
tomary to assume that the normal distribution is the
most appropriate prior. Thus, we obtained the posterior
distribution, as proportional (∝) to the product of the
likelihood function and the prior distribution on, which
we concentrate. So that the probability is followed
through the posterior,

Pr β γ0j; γ1j; δ
2
0; δ

2
1jY

h i
∝ Pr Yjβ; γ0j; γ1j; δ20; δ21

h i
� Pr β; γ0j; γ1j; δ

2
0; δ

2
1

� �h i
ð3Þ

Since the data Y have distribution, Pr(Y) as constant
relative to β. If the prior distributions were chosen to be
uniform instead of normal, then the estimates for
equations [1] and [2] are equivalently both maximum like-
lihood estimates. We obtained estimates from the poster-
ior distribution, [2.3]. Such posterior inference typically
requires simulation techniques such as Gibbs sampling
and the Metropolis Hasting sampling as a MCMC method
to obtain estimates. In fact, it generates new values from a
proposed distribution that determines how to select new
parameter values based on the current values. The Bayes-
ian procedure produces consistent and efficient estimates.
It has also been shown that if we were to choose conjugate
priors, it guarantees that a posterior distribution possesses
the same property as the prior distribution [15]. We used
MLWin to fit these Add Health data with Bayes’ hierarch-
ical logistic regression model. MLwiN is a powerful pro-
gram designed for fitting multilevel models. It provides
features such as variance function window to calculate the
residual variance at any level.

Joint modeling of the mean and dispersion
The subject-specific models concentrated modeling the
conditional mean through the use of random effects to
address the correlation. However, there is added value to
address the correlation through jointly modeling of the
mean and the dispersion [7]. This joint modeling con-
sists of two interlinked models, one for the mean and
one for the dispersion [16]. This differs from the random
coefficient models and its approach to addressing correl-
ation. It is a reflection of the double exponential family
that allows us to model the mean parameter while
making use of a second parameter that addresses the
variance but independently of the mean [17]. Each sub-
model is considered to be a generalized linear model
with three components: random component, systematic
component, and link component [18]. The joint model-
ing of the mean and dispersion consists of starting
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initially with the mean submodel. Then, the residuals
from the mean submodel or a function of them are used
as the response (random component) in the dispersion
submodel. The systematic component in the dispersion
submodel is allowed if needed, to have the same or a
subset of covariates as in the mean submodel or a totally
different set of covariates not yet used. The link function
in the dispersion submodel follows similar procedure
though not necessarily the same function as the mean
submodel. We used the same model checking tech-
niques for both the mean and the dispersion submodel
[19]. We considered two different joint modeling of both
the mean and the dispersion submodel (Double Joint
Modeling Mean and Dispersion), one based on GLM
and the other based on GAM.

Double GLM Joint Modeling mean and dispersion
The joint modeling of the mean and the dispersion, also
referred to as double generalized linear models (DGLM)
consists of three parts: a function for the variance, a
GLM submodel for the mean, and a GLM submodel for
the dispersion [2]. Thus, we need to obtain an estima-
tion of the mean function and estimation of the variance
function [20].
In particular, let us assume that the binary random

variable Yi is Bernoulli with probability pi , which de-
pends on a set of covariates X = (X1,X2, … XK). The
mean submodel is first fitted with logit link. The devi-
ances from the mean submodel di have mean ϕi with
variance Vdi (ϕi) representing the random component.
The systematic component of the dispersion submodel
consists of the vector of covariates Z = (Z1, Z2, … Zt)
with link component as log. In our model we have one
covariate in the dispersion submodel as arrest. In sum-
mary, we have two interlinked generalized linear models
consisting of the mean submodel, measuring smoking
use Yi ~ Ber(pi), where pi represents probability of smok-
ing with logit link,

ηi ¼ logit pið Þ ¼ log
pi
1‐pi

� �
¼ β0 þ β1X1 þ⋯þ βKXK ð4Þ

and the dispersion submodel based on di such that
di ~ Dd (ϕi,Vdi(ϕi)) and log link

ndi ¼ log ϕið Þ ¼ γ0 þ γ1Z1:

We used PROC QLIM and Macro HPGLIM in SAS to
fit these models, as presented in Additional file 1:
Appendix.

Double GAM Joint Modeling mean and dispersion
In the joint modeling of the mean and dispersion one
can replace those GLM with GAM. As such we still

present two submodels, one for mean and one for the dis-
persion, but in each we have a generalized additive model
instead of GLM. A general additive model is similar to
generalized linear model as it relates the mean of the ran-
dom response variable Y and a set of covariates Xi, …, Xp,
[21]. The generalized additive model (GAM) distinguishes
itself from the generalized linear model in that

E Y½ � ¼ γ0 þ γ1 X1ð Þ þ…þ γK XKð Þ ð5Þ

where γi (Xi), i = 1, …,K; are smooth functions. These
smooth functions γi, are not given a parametric form but
instead are estimated in a nonparametric or semi-
parametric form. The GAM consists of a random com-
ponent with response Yi, a systematic component that is
additive in the function of covariates, and a link function
relating the response in terms of the mean with a com-
bination of the covariates. Whereas GLM has as its sys-
tematic component the linear predictor of the form
ΣβiXi the GAM instead, uses the additive component, as
a sum of smooth functions Σγi(Xi). The function γi is
determined or estimated based on a nonparametric
technique usually influenced by the examination of
actual plots. The GAM requires one to determine the
smoothing parameter through the generalized cross val-
idation (GCV) function in nonparametric regression
methods [22]. The functions γ (⋅) and f (⋅) are additive
smooth functions, unspecified linear functions or non-
parametric methods, for both mean and dispersion
submodels.
The GAM is known to be more flexible than the para-

metric methods as an exploratory analysis in identifying
the relationship between the response and the covari-
ates. Also it is more flexible as opposed to other models
when detecting quadratic or higher order power in a
piecemeal fashion [21]. In addition, the GAM can also
be used more efficiently to uncover nonlinear effects
among the covariates. While the generalized linear
model is used for estimation and inferences for the re-
gression parameters, the GAM is seen as an exploratory
method based on a nonparametric approach while mak-
ing use of an apparent response-covariate relationship.
In summary, we have the systematic component for the
mean additive submodel logit (pi) = ∑i = 1

p γi(Xi) and the
systematic component for dispersion additive submodel
log(deviancei) = ∑i = 1

k fi(Xi). The log (deviance) is assumed
to be distributed as a normal distribution in the disper-
sion with identity link function [23]. We used PROC
GAM in SAS to fit these models, as presented in
Additional file 1: Appendix.

Results
We fitted two logistic regression models with random
effects, frequentist hierarchical logistic regression model
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and Bayes’ hierarchical logistic regression model. We
also fitted two joint modeling of the mean and disper-
sion models, one based on the generalized linear model,
and the other on generalized additive modeling. Results
of all models are presented in Table 2.
In general, we concluded that individuals who had

higher income level were less likely to have smoked.
People who had kids were about 1.23 times more likely
to have smoked regularly. If one had alcohol or drug
misuse, they were about 3.26 times more likely to
smoke. Individuals who had been arrested or had spent
more time watching TV or playing video games were
about 1.96 times more likely to smoke than those with
no such habits. Non-Caucasian were about 1.58 more
likely to smoke than Caucasian. People not practicing
religion were about 1.34 times more likely to smoke
than those who were religious. People with lower educa-
tion level were about more than 1.32 times likely to
smoke. Individuals who drank alcohol early in life were
more than 1.52 times more likely to be a regular
smoker. People who experienced mistreatment from

their parents during childhood were more than 1.70
times more likely to smoke regularly. Job satisfaction
had no significant impact on smoking use. Finally,
people who felt isolated from social activities had no
impact.

Results of standard logistic regression
As a point of reference regarding the extra variation or
overdispersion present in the data due to its hierarchical
nature, we fitted a standard logistic regression with 19
covariates. The goodness- of- fit test for overdispersion
(Hosmer-Lemeshow, X2 = 19.97,p-value = 0.011) sug-
gested that the model is not a good fit and overdisper-
sion is clearly present. This may be in part due to
ignoring the hierarchical structure of the design. Initially,
we fitted an unconditional logistic regression model with
random effects (community) and no covariates and ob-
tained an ICC value of 0.146. Thus, the intraclass correl-
ation is large enough to suggest using a correlated
model to address the hierarchical structure [12].

Table 2 Parameter estimates and standard errors in hierarchical logistic regression

Estimates Hierarchical logistic Bayes’ Hierarchical logistic Joint GLM Joint GAM

Estimates p-value Estimates p-value Estimates p-value Estimates p-value

Intercept 0.451 0.057 0.25 0.055 0.3853 0.0003*** 0.597 0.009**

Arrested 0.677 <.001*** 0.709 <.001*** 0.677 <.001*** 0.606 <.001***

Race 0.461 <.001*** 0.584 <.001*** 0.63 <.001*** 0.523 <.001***

Drug 1.221 <.001*** 1.183 <.001*** 1.235 <.001*** 1.066 <.0001***

TV time 0.007 0.027* 0.007 0.005** 0.008 <.001*** 0.008 0.008**

Mistreatment 0.309 0.011** 0.293 0.003** 0.33 <.001*** 0.214 0.07

Religion -0.299 0.007*** -0.293 <.001*** -0.31 <.001*** -0.281 0.001***

Alcohol 0.541 <.001*** 0.544 <.001*** 0.577 <.001*** 0.420 <.001***

Kid 0.208 0.017*** 0.208 0.002** 0.245 <.001*** 0.231 0.006**

Public work -0.27 0.002** -0.28 <.001*** -0.302 <.001*** -0.268 0.002**

Starting age -0.006 <.001*** -0.006 <.001*** -0.007 <.001*** -0.007 <.001***

Education -0.473 <.001*** -0.509 <.001*** -0.497 <.001*** -0.484 <.001***

Income -0.074 <.001*** -0.234 <.001*** -0.073 <.001*** -0.087 <.001***

Gender -0.144 0.1149 -0.17 0.031 -0.18 <.001*** -0.166 0.063

Sports -0.486 <.001*** -0.493 <.001*** -0.436 <.001*** -0.47 <.001***

Insurance -0.15 0.177 -0.189 0.029* -0.158 0.002** -0.144 0.186

Routine check -0.111 0.207 -0.103 0.113 -0.11 0.006** -0.078 0.369

Attitude future -0.152 0.095 -0.16 0.046* -0.152 0.001*** -0.143 0.112

Social relation 0.065 0.482 0.102 0.062 0.096 0.024** 0.058 0.526

Job 0.102 0.274 0.082 0.098 0.078 0.070 0.12 0.195

Covariance Parameters

var[Intercept] 0.099 0.023 0.009 <.001*** N/A N/A

var[Arrested] 0.116 0.025 0.118 <.001*** N/A N/A

cov[int & Slope] 0.028 0.027 0.03 <.001*** N/A N/A

*p<0.05, **p<0.05, ***p<0.05
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Results of frequentist hierarchical and bayes’ hierarchical
logistic regression model
A frequentist hierarchical logistic regression model with
random intercept and random slope based on the differ-
ential rate due to the covariate arrested, resulted in the es-
timate of the variance for the intercept as 0.099 and
random slope of 0.116 with its standard errors of 0.062
and 0.071 respectively. The covariance estimate between
intercept and slope is 0.028. Thus, resulting in a standard-
ized value of 0.099/0.062 for p-value of 0.023 for intercept
and 0.116/0.071 for p-value of 0.025 and suggesting that
the rate of change as it pertains to arrest varied across
communities. Covariates, alcohol, kid, arrested, race, drug,
TV time, mistreatment and religion showed significant
positive effects on the probability of smoking, while covar-
iates religion, public work, starting age, education, income,
gender, sports showed significant negative effects on the
probability of smoking. Thus, one expected that the prob-
ability that an individual who smoked was impacted by
factors, although unidentifiable, but were related to the
communities and history with the law as it depended on
community. Mistreatment, gender, attitude towards the
future, social relation and whether or not they had a job
had no impact on the smoking behavior.
We fitted a Bayes’ hierarchical logistic regression model

with random effects to measure in community random
slope in arrested. A Bayes’ hierarchical logistic regression
model fitted with MLWin gave random effects in commu-
nity and arrested as significant with σ2dintercept ¼ 0:009 and

σ2darrested ¼ 0:118 and σ dint=arr ¼ 0:030 with standard
errors 0.002, 0.035, and 0.009, respectively. This suggested
that our random effects due to community and due to
arrest across communities differed significantly.

Comparison of hierarchical models
The hierarchical models which tell about the conditional
means (probabilities) gave similar results though for
social relation, routine check, insurance, and attitude
towards the future they differed. In particular, the models
agreed with the set of covariates we categorized under
demographics or health. When difference appeared they
occurred mainly with Bayes’ and double GLM joint
modeling model. In those cases, the Bayes’ hierarchical
showed some marginal significance while the frequentist
did not identify any trace of significance with these co-
variates. Bayes’ results have a tendency to have smaller
p-values. This may be due to the fact that the Bayes’
method uses a prior distribution on the parameters.

Results of joint modeling of mean and dispersion
A joint modeling of the mean and the dispersion with a
generalized linear model for each submodel with covari-
ate arrest in the dispersion sub-model provided a good

fit to the data. The mean sub-model consisted of covari-
ates, alcohol, kid, arrested, race, drug, TV time, mistreat-
ment, social relation and job showing significant positive
effects on the probability of smoking. The covariates
religion, public work, starting age, education, income, in-
surance, sports, routine check, attitude future showed
significant negative effects on the probability of smoking,
Table 2.
The joint modeling of the mean and the dispersion

with generalized additive submodels was fitted to the
data. The smoothing effects were significant (p = 0.0001)
with smallest GCV value of 3.96, based on estimating
the additive predictors by using a B-spline smoother
with 3 degrees of freedom including a strong quadratic
pattern.

Comparative dispersion submodel
In both the mean and the dispersion submodel for both
the GLM and GAM, covariate arrest had a significant
impact (p < 0.001) on the dispersion (see Table 3).
In the next section, we examined the predictive prob-

ability for each of these models based on the validation
set and the training set in four different datasets. We
used this in our comparisons as we took a closer look at
the predictive ability of the models.

Accuracy comparison of four models
We used the area under the Receiver Operating
Characteristic (ROC) curves for both the training dataset
and the validation dataset as a measure of fit for our
four logistic regression models. We compared the four
models based on their predicted probabilities in the
training dataset and the validation dataset (see Table 4).
We repeated the process four times, with a different 25%
of the data omitted for validation each time. The joint
modeling of the mean and the dispersion with GAMs
had the best predicted probabilities among validation
dataset. However, the four models did not show marked
differences in their predicted probabilities.

Discussion
We fitted four binary logistic regression models, fre-
quentist hierarchical, Bayes’ hierarchical model, GLM
joint modeling of mean and dispersion, and GAM joint
modeling mean and dispersion to model smoking. Two
of these models (the joint mean and dispersion submo-
del) addressed the marginal probabilities while the other

Table 3 Estimates of coefficients in dispersion submodel

Joint GLMs Joint GAMs

Parameter Estimate p-value Estimate p-value

Intercept -2.016 <.001 -0.519 <.001

Arrested 0.551 <.001 1.051 <.001
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two hierarchical models (Frequentist and Bayes’) ad-
dressed the conditional probabilities. The conditional
probability models found arrest as a covariate with dif-
ferential rates across communities while the marginal
model also found that arrest is a key variable in explain-
ing the dispersion. Overall, the models did not perform
markedly different and gave similar results based on the
training dataset and the validation dataset. The marginal
models were similar with their predictability in the valid-
ation datasets and the training datasets.
We acknowledge the limitation of using a single data-

set and encourage future research to conduct similar
studies on a variety of correlated data. In the meantime,
we are confident about the applicability of our conclu-
sion to other research domains. Even though we did not
perform a simulation study, we found similar patterns
with hierarchical models with the UCLA dataset and re-
cent research [12]. Similar results were also seen in the
fit of the conditional models. The consistency of the
models and the fit with validation and training datasets
led us to believe in the generalizability of this paper to
broader receivers.

Conclusion
We fitted both conditional and marginal models to study
smoking behavior for adolescents who had eventually
become adults. While these models are addressing two
different questions, we did not detect significant differ-
ences in both model performances based on training or
validation. Further investigation showed that most com-
munities were alike with a few showing that different
random effect. By wave 4 these adolescents were moved
away from their original communities so over time the
community impact was negligent or independent of the
smoking behavior.

Endnote
1We define the ICC as the ratio of the variance

component due to clusters to the total variance for

individuals, such that ICC ¼ δ2cluster
δindividual

2þδ2cluster
:
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