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Abstract

Background: The usual kappa statistic requires that all observations be enumerated. However, in free-response
assessments, only positive (or abnormal) findings are notified, but negative (or normal) findings are not. This
situation occurs frequently in imaging or other diagnostic studies. We propose here a kappa statistic that is suitable

for free-response assessments.

Method: We derived the equivalent of Cohen’s kappa statistic for two raters under the assumption that the
number of possible findings for any given patient is very large, as well as a formula for sampling variance that is
applicable to independent observations (for clustered observations, a bootstrap procedure is proposed). The
proposed statistic was applied to a real-life dataset, and compared with the common practice of collapsing

observations within a finite number of regions of interest.

Results: The free-response kappa is computed from the total numbers of discordant (b and ¢) and concordant
positive (d) observations made in all patients, as 2d/(b + ¢ + 2d). In 84 full-body magnetic resonance imaging
procedures in children that were evaluated by 2 independent raters, the free-response kappa statistic was 0.820.
Aggregation of results within regions of interest resulted in overestimation of agreement beyond chance.

Conclusions: The free-response kappa provides an estimate of agreement beyond chance in situations where only

positive findings are reported by raters.

Keywords: Reproducibility of results, Reliability (Epidemiology), Methodological Study, Biostatistics

Background

Good agreement between raters is a desirable property
of any diagnostic method. Agreement is usually assessed
by the kappa statistic [1], which quantifies by how much
the observed agreement between raters exceeds agree-
ment due to chance alone. The assessment of the kappa
statistic requires the numbers of evaluations, both posi-
tive (or abnormal) and negative (or normal), to be
known for all raters. This is not the case when raters re-
port only positive findings and do not notify the number
of negative findings. This situation can be referred to as
the free-response paradigm [2]. It is a common situation
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in imaging procedures, where raters typically report
positive findings, but do not list all negative observations
for a given patient.

To date, the methods used to estimate the agreement
corrected for chance of free-response assessments have
all required a simplification of the data, so as to make
negative findings explicit. One possibility is to analyze
the data at the level of a patient, by rating a patient
“positive” if at least one lesion is detected, but this
causes an important loss of information. Another ap-
proach is to split the radiograph into regions of interest.
Each region of interest is then assessed by all raters.
Since negative ratings are explicitly notified, the number
of regions of interest rated as negative by all raters is
known and the standard kappa statistic can be com-
puted. This approach reduces the loss of information
compared with a single dichotomous rating per patient,
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but the regions of interest must be small and numerous
enough to preserve clinical relevance. For instance, in a
diagnostic study, Mohamed et al [3] defined 68 regions of
interest per patient. Generally, constraining a free-
response paradigm to a finite number of ratings (patient-
level or region-level) causes a loss of information and may
lead to overestimation of the agreement, because disagree-
ments below the selected level of granularity are ignored.

The objective of the present paper is to propose a
kappa statistic for free-response dichotomous ratings
that does not require the definition of regions of interest
or any other simplification of the observed data. This
kappa statistic also takes into account within-patient
clustering [4—6] of multiple observations made for the
same patient.

Methods

Derivation of the free-response kappa

For two raters, the usual kappa statistic is (P,-P.)/(1-P,)
where P, is the proportion of observed concordant rat-
ings and P, is the expected proportion of concordant
ratings due to chance alone. When the rating is dichot-
omous, data can be summarized in a 2 x 2 table. Let us
denote by a the number of findings that are rated as
negative by both raters, b and ¢ the numbers of findings
rated as positive by one rater but negative by the other,
and d the number of findings rated as positive by both
raters. There are therefore a + d concordant pairs of rat-
ings and b + ¢ discordant pairs among N pairs of obser-
vations. Assuming that observations are mutually
independent, P, is estimated by (a + d)/N and P, by [(a
+¢) (@a+b)+(c+d) (b+d)]/N% Then, the kappa statistic
(in this case, Cohen’s kappa) is given by:

2(ad-bc)

K= TN +2(ad=b0)

(1)

When patients can contribute more than one observa-
tion, data are clustered. Yang et al [7] proposed a kappa
statistic obtained from the usual formula (P,-P.)/(1-P.)
where P, is a weighted average of the proportions of
agreement over clusters (patients) and P, is obtained
from weighted averages of marginal proportions of rat-
ings of each rater. With this approach, the kappa for
clustered data has the same estimate as when clustering
is ignored. Therefore the basic 2 x 2 table is also appro-
priate for the estimation of agreement for clustered data.

For free-response assessments, each rater reports only
positive findings and the number a is unknown. It would
be wrong to replace a by 0, as if the raters had not
agreed on any negative observation; both the observed
agreement and kappa would be underestimated. It would
also be incorrect to simply replace a by the number of
patients without any positive finding, because several
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potential lesion sites exist in each patient. Typically, a
can be assumed to be high in imaging examinations,
because each output displays a large number of anatom-
ical or functional structures or substructures, each po-
tentially positive or negative. Therefore, the number of
positive findings in a given patient is usually small in
comparison with the potential number of abnormalities
that might occur.

We propose here a kappa statistic that describes
Cohen’s kappa as a approaches infinity. The partial
derivative of the kappa statistic defined in Eq. (1) with
respect to a is:

K 2(b+c)(b+d)(c+d)
3 [(a+b)b+d)+(atc)ctd)]

This partial derivative is positive, therefore the kappa stat-
istic increases monotonously with a. Moreover this deriva-
tive has a null limit as a approaches infinity, which implies
that the kappa statistic has a finite limit as a approaches in-
finity. We call this limit the free-response kappa (Kggr). Per
Eq. (1), Ky is the ratio of two functions of a, f (a) =2 (ad-
bc) and g (@)=b+c)a+b+c+d)+2 (ad-bc), both of
which approach infinity as a approaches infinity, so that
their ratio is indeterminate. By L’'Hopital rule, Kgr equals
the limit of the ratio of the partial derivatives of f () and g
(a) as a approaches infinity, which turns out to be

2d
Krpp=——— 2
R i crad )

Properties of free-response kappa

Krrhas several interesting properties. It does not depend
on a, but only on the positive observations b, ¢, and d.
Therefore the uncertainty about a does not preclude the
estimation of agreement beyond chance if the number of
negative findings can be considered very large.

When interpreting Kgg, it is helpful to consider the
numbers of ratings made by each rater individually. The
first rater made c + d positive observations, and the second
rater made b+d positive observations. Therefore the
denominator b + ¢ + 2d is the total number of positive in-
dividual observations made by the 2 raters, 2d is the num-
ber of positive observations made by either rater that were
confirmed by the other, and b + ¢ is the number of positive
observations made by either rater that were not confirmed
by the other. Ky is thus the proportion of confirmed posi-
tive individual observations among all positive individual
observations. A Kgy statistic of 0.5 means that half of the
positive findings were confirmed by the other rater, which
may be considered average, whereas 0.8 might be consid-
ered very good. This is in line with published interpret-
ation guidelines for Cohen’s kappa [8].
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When the data are clustered, Kpr can be obtained dir-
ectly by collapsing the 2 x 2 tables of all clusters into a
single 2 x 2 table and applying Eq. (2). The pooled Kgy is
a weighted average of individual free-response kappa sta-
tistics of patients with at least one positive observation
(each patient is indexed by k):

2dx
Krp = —_
r® Zk:vk by + cx + 2dx

where each weight v\ represents the proportion of posi-
tive ratings in patient k among all positive ratings:

y _bk+ck+2dk
T Tb+c+ad

It follows that patients without any detected lesions do
not contribute to the estimate of Kgg; their weight is
zero. Therefore patient-level clustering does not need to
be taken into account to compute Kpr, and patients
without positive finding can be ignored.

Of note, the equation for Kgy corresponds to the propor-
tion of specific (positive) agreement as described by Fleiss
[9]. While the equation is identical, the purpose and inter-
pretation are different. For Fleiss, specific positive agreement
(and also specific negative agreement) is a complementary
statistic that enhances the interpretation of overall agree-
ment. The omission of double negative observations is an a
priori decision. Importantly, Fleiss is interested in observed
agreement, not in agreement corrected for chance. Finally,
Fleiss does not address the free-response context.

Variance of the free-response kappa

Because Kpr is bound by 0 and 1, we first normalized
the estimator by taking the logit of Kgg, ie. In (Kgr/(1-
Kggr)). The variance of the estimated logit (Kggr), obtained
by the delta method (Appendix 1) is:

(b+c+d)

Var(logit(Kpr)) = (b+c)d

(3)

Thus a confidence interval can be obtained for logit
(Kggr), and the lower and upper confidence bounds back-
transformed to the original scale.

An alternative approach is to make use of the direct re-
lationship between Ky and the proportion of congruent
pairs of observations among all available observations, p =
d/(b+c+d). It is easily shown that Kgg=2p/(1+p).
Therefore a 95% confidence interval can be obtained for
p, using any available method for binomial proportions in-
cluding exact methods, and the confidence bounds can be
then back-transformed to the Kgy scale.

We have simulated the performance of three confi-
dence interval methods for independent observations at
Kgr values of 0.3, 0.5, 0.7, and 0.9, and for sample sizes
(N=b+c+d) of 20, 50, 100, and 200. For each
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condition we generated 50’000 random samples from a
binomial distribution with parameters N and p, where p
was defined by Kpgr/(2-Kggr), which is the inverse of the
equation Kgg = 2p/(1 + p). For each sample we computed
a 95% confidence interval using Eq. (3) for the logit of
Krr, and also using 2 methods for the binomial param-
eter p that are appropriate for small samples in which
asymptotic estimation methods may yield incorrect re-
sults: the Agresti-Coull method [10], and the Clopper-
Pearson method [11]. For each situation we report the
mean simulated value of Ky, the proportion of confi-
dence intervals that include the true value, and the mean
width of the confidence intervals.

All three methods performed well (Table 1). Confi-
dence intervals based on Eq. (3) had a lowered coverage
(0.932) when the sample size and Kgr were both small.
This is because in this case 2% of the samples were de-
generate (d=0 or d=N), and Eq. (3) could not be ap-
plied (if we had excluded these samples the coverage
would have been 0.951). The Clopper-Pearson method
produced the highest levels of coverage, but this was at
the expense of unnecessarily wide confidence intervals.
Confidence intervals were narrower for Eq. (3) and for
the Agresti-Coull method.

Of note, the mean values of observed Kgr were slightly
below the parameter values, especially at low sample
sizes. This is because we simulated with a fixed param-
eter p, and Kgg=2p/(1+p) is a concave function. By
Jensen’s inequality, the expectation of a concave function
of p (i.e., the mean observed Kgg) will be then less than
the function of the expectation of p (i.e., the Kgy that
corresponds to the parameter p).

To be valid, these estimation methods require observa-
tions to be mutually independent. This may apply in
some circumstances: e.g., if a paired screening test is ap-
plied to a large population, and only those with at least
one positive result are referred for further investigation.
But for most imaging procedures data are naturally clus-
tered within patients. Then the proposed asymptotic
variance of Krr would be biased. In presence of cluster-
ing, a bootstrap procedure can be used to obtain a confi-
dence interval (see Appendix 2).

Results: case study

A recent study [12] examined the inter-rater agreement for
a specific Magnetic Resonance Imaging (MRI) sequence
among 84 children who underwent a full body MRI for any
reason at a large public hospital. Two radiologists, blinded
to each other’s assessments, reported all lesions they identi-
fied in each patient. A third radiologist linked these inde-
pendent readings and identified all unique lesions, and
therefore concordant and discordant diagnoses. In total 249
distinct lesions were identified in 58 children (the other 26
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Table 1 Simulations of the coverage and mean width of 95% confidence intervals for the free-response kappa at selected sample
sizes (20, 50, 100, 200) and values of kappa (0.3, 0.5, 0.7, 0.9), using three methods: delta method (Eq. 3), Agresti-Coull confidence

limits, and Clopper-Pearson confidence limits

Simulation Mean Degenerate sample®  Coverage of 95% confidence interval Mean width of 95% confidence interval

parameters  observed Kgg  (d=0or d=N)

N Ker Logit delta  Agresti-Coull  Clopper-Pearson  Logit delta  Agresti-Coull  Clopper-Pearson

method method method method method method
(Equation 3) (equation 3)

20 03 0.291 0.020 0.932 0.952 0.966 0.446 0444 0473
05 0491 <0.001 0.944 0.944 0.969 0426 0419 0471
0.7 0.693 0 0.957 0.957 0976 0354 0345 0392
09 0.897 0.019 0.964 0.981 0.964 0.224 0218 0.235

50 03 0.297 <0.001 0.962 0.962 0.962 0.293 0.294 0314
05 0497 0 0.949 0.949 0.965 0284 0281 0305
0.7 0.697 0 0.953 0.936 0.968 0.230 0.227 0.246
09 0.899 <0.001 0.958 0.958 0.974 0.134 0.134 0.142

100 03 0.298 0 0.954 0.954 0.954 0211 0212 0.223
05 0498 0 0.945 0.945 0.968 0.204 0.203 0.215
0.7 0.698 0 0.946 0.946 0.966 0.164 0.163 0.172
09 0.899 0 0.948 0.948 0.963 0.093 0.093 0.098

200 03 0.299 0 0.947 0.947 0.959 0.151 0.151 0.157
05 0.499 0 0.948 0.948 0.957 0.146 0.145 0.151
0.7 0.699 0 0952 0952 0952 0.116 0.116 0.120
09 0.900 0 0.957 0.957 0.957 0.065 0.065 0.068

Each simulation based on 50'000 replicates

Logit delta method not applicable. These simulations were treated as cases of non-coverage, and were not used for computation of the width of the confidence

interval for this method

had a normal MRI); 76 were discordant and 173 concord-
ant (Table 2).

If we assumed that no double negative ratings existed
the kappa statistic would be—0.129 (95% confidence inter-
val (95% CI),—0.208,-0.058; all confidence intervals were
obtained using the bootstrap procedure described in Ap-
pendix 2); the observed agreement would be lower than
what would be expected from chance. What would be a
reasonable estimate for a? The highest number of de-
tected lesions was 17 for one patient, which indicates that
the potential number of lesion sites per patient was at
least 17. Therefore, a patient with no lesions should count
for at least 17 double negative ratings. In this case the total
number of sites evaluated would be 84x17 = 1428 and, by
subtraction, @ would be 1179 and the kappa statistic 0.789
(95% CI: 0.696-0.868), well above-0.129. However, 95

Table 2 Contingency table of matched ratings in the Magnetic
Resonance Imaging study

Second Rater

Negative Positive Total
First Rater Negative unspecified 19
Positive 57 173 230
Total 192 249

distinct lesion sites were identified in the sample. If the
potential number of lesion sites per patient was 95, the
total number of sites would be 7980, a would be 7731,
and the kappa statistic 0.815 (0.731, 0.884). But the uni-
verse of possible lesions can be assumed to be larger than
the few observed in this sample. Figure 1 (solid line)
shows the kappa statistics when a ranges from 17 to 200
per patient; the horizontal line corresponds to the free-
response kappa of 0.820 (0.737, 0.888). This example
shows that kappa is underestimated when potentially un-
limited negative ratings are ignored or undercounted.

The effect of aggregating the ratings over regions of
interest goes in the opposite direction (Fig. 1, circles). A
region of interest can be defined by a patient (in which
case the presence of any lesion renders the patient “posi-
tive”), but more often by an arbitrary division of space,
or by a specific anatomical structure. We consider here
3 levels of granularity: the patient level (1 region of
interest), an intermediate level where lesions are
grouped according to an anatomical typology (9 regions
of interest; for example: long bones, joints, soft tissues...)
and the original level of the ratings (95 regions of inter-
est; for example: left femoral bone, joint effusion of the
right knee, retroperitoneal mass...). Table 3 shows the
corresponding 2 x 2 tables.
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Fig. 1 Estimates of the kappa statistic in full-body Magnetic Resonance Imaging examinations of 84 children. The curve represents the kappa
statistic when the number of potential lesion sites per patient ranges from 17 to 200. The horizontal line represents the free-response kappa
(0.820). Circles show the kappa statistic computed for regions of interest at 3 levels of grouping (0.919 at the patient level, 0.835 for 9 regions of

interest per patient, and 0.819 for 95 regions of interest per patient)

J

At the patient level, of 84 mutually independent ratings,
81 are concordant (55 patients for whom each rater found
at least one abnormality, and 26 double negatives), and 3
discordant (patients for whom one rater found a lesion
and the other found none). In this case the kappa statistic
is 0.919 (0.816, 1.00). At the intermediate level (9 regions

Table 3 Contingency tables of matched ratings for three
different levels of regions of interest

Patient level Second Rater
Negative  Positive  Total
First Rater Negative 26 1 27
Positive 2 55 57
Total 28 56 84
Intermediate level (9 regions per ratient) Second Rater
Negative  Positive  Total
First Rater Negative 640 8 648
Positive 21 87 108
Total 661 95 84x9

Detailed level (95 regions per ratient) Second Rater

Negative  Positive  Total
First Rater Negative 7743 18 7761
Positive 53 166 219
Total 7796 184 84x95

of interest per patient), there are 29 discordant ratings,
727 concordant ratings, and the kappa statistic equals
0.835 (0.763, 0.901). Finally at the detailed level (95
regions of interest per patient), there are 71 discordant
findings, 7909 concordant findings, and the kappa statistic
is 0.819 (0.738, 0.889). This result is virtually indistin-
guishable from the free-response kappa of 0.820, which
assumed an infinite number of potential findings.

Discussion

Situations in which only positive findings are explicit are
frequent in imaging procedures. Images can cover large
areas or even the whole body, and identify multiple abnor-
malities, such as metastases, plaques in multiple sclerosis,
or stenoses along the coronary system. In many cases the
universe of possible findings (abnormalities or lesions) is
very large and cannot be enumerated. The lack of a spe-
cific number of double-negative observations precludes
the use of the classic formulation of the kappa statistic.

In this paper, we propose a variant of the kappa statistic
that relies on the properties of the classic kappa statistic
when the number of negative ratings can be considered
large. In that case, agreement does not depend on the un-
known data and can be estimated from positive findings
only. This free-response kappa corresponds to the propor-
tion of all confirmed individual positive ratings (2d)
among all positive individual ratings (b + ¢ + 2d).
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Unlike simplifications that circumvent the free-response
paradigm, the free-response kappa statistic only uses the
available data at the level at which ratings — and specific-
ally, the decisions about what constitutes agreement or
disagreement — were made. It requires neither an enumer-
ation of all possible lesion sites, nor a reduction of the data
by defining regions of interest. On the contrary, for the
free-response kappa, the more precise the ratings are, the
more they conform to the assumption a non-finite
universe of lesions.

The validity of the free-response kappa relies upon an
accurate definition of concordant and discordant find-
ings. This is true for any agreement study, but for
Cohen’s kappa, e.g. when regions of interest are defined,
pairing is straightforward because it follows the defin-
ition of the regions or objects of study. The free-
response paradigm requires that observations from 2
raters be classified as concordant or discordant. This
must be planned carefully when designing the study and
defining the rating procedures. Typically, such a study is
done in two steps: first, 2 independent raters assess the
images, and then a third independent rater identifies
concordant pairs. Therefore the concordance of the 2
descriptions is determined by a human observer, who
may be prone to error. For this reason the descriptive
system used by the raters should be as detailed as
required for clinical management, and fully standardized
to facilitate the decisions regarding agreement.

Assumption of infinity

The notion of an infinite number of potential lesions
may appear excessive or unrealistic. However, when one
considers the number of anatomical structures in the
human body, multiplied by the number of study partici-
pants, this is not far fetched. Furthermore, once the pos-
sible number of double negative observations in the
study (i.e., in all participants) exceeds a few thousand,
Krr has reached its asymptote and does not change
meaningfully if this number is further increased. Never-
theless Kgr can be considered as an upper bound on
agreement corrected for chance.

The requirement of a large number of potential lesions
is not fulfilled in all imaging studies. If one is interested in
measuring agreement on the chest X-ray performed to
rule out iatrogenic pneumothorax after a central venous
catheter insertion, there is one diagnosis and only a few
radiologic signs to consider. In this case, the number of
clinically relevant normal findings is limited and the free-
response kappa would not be appropriate. Then, and more
generally when it is reasonable to specify the number X of
potential abnormalities that can be identified, it is reason-
able to use X to infer the number of double negatives, as
a = X-b-c-d, and to obtain the standard kappa statistic.
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Clustering of observations
For most imaging procedures, each patient can contrib-
ute several positive findings, and data are naturally clus-
tered within patients. Clustering does not influence the
computation of the free-response kappa, but must be
taken into account for the computation of the standard
error. Importantly, the global free-response kappa is a
weighted average of within-cluster kappa statistics, with
weights proportional to by + ¢, + 2d;, the total number of
positive ratings in a cluster (ignoring pairing). This de-
composition holds for any partition of the data and
could be done for any covariate, e.g., to compare agree-
ment beyond chance in obese versus non-obese patients,
or for skeletal lesions versus lesions in soft tissues.
When observations are independent, confidence inter-
vals can be computed using several methods, compared
in Table 1. For clustered data, a common situation in
radiology, we propose a bootstrap-based approach. We
sampled patients (with replacement), and used all obser-
vations from any selected patient [13, 14]. We reasoned
that this represented best the role of sampling variability
in imaging studies: a patient is a “random” factor, but a
lesion within a patient is not. Nevertheless, alternative
methods for the estimation of K¢y should be explored in
future studies. Future developments should also address
the generalization of free-response kappa to multiple
raters, and to ordinal ratings.

Conclusions

We have proposed a kappa statistic that is appropriate
for free-response assessments, and discussed its proper-
ties. This statistic may be particularly useful for imaging
studies.

Appendix 1

Variance of the free-response kappa K¢ for independent
data

The logit of the free-response kappa statistic is function
of the number of discordant pairs of ratings, denoted by
x=b+c, and of the number of concordant pairs of
ratings, d:

logit(K pz) = In (%) =g(x,d)

The variance of a function of random variables can be
approximated using a first-order Taylor expansion [15]:

2 2
Vur(logit(l%m))z@—i) Var(X) + (%) Var(D) + 2%%@1/()(@)

where X is a binomial variable Bin (px, x +d) and D is a
binomial variable Bin (1-py, x + d) such that X + D is the
total number of pairs of ratings (b + ¢ + d). The derivatives
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and the estimated variances can be calculated from
observations:

og_ 1
o  x
og _1
od d
xd
Var(X)—x+d
xd
Var(D) =
ar(D) x+d
xd
X,D) = -
Cov(X, D) x+d

Finally, the variance of the logit of the free-response
kappa can be approximated by:
e (x+d)
Var(logit (K ~—
61}"( ogi ( FR)) xd
Lower and upper bounds of the 95% confidence interval
of the transformation are:

(x+4d)
xd

+d)

LB = logit (K z)-1.96 >

; UB = logit(Kgg) + 1.96

And the 95% confidence interval on the original scale
is obtained with the inverse transformation of the logit
function:

eLB

1+elB; eUB
1+eUB

Appendix 2

Standard error of the free-response kappa Krz and 95%
confidence interval for clustered data

A bootstrap procedure has been proposed by Kang et al.
to estimate the standard error of the kappa statistic
when data are clustered [13]. This procedure is applic-
able to the free-response kappa statistic:

1) Randomly sample R clusters (patients) with
replacement from the original data set; R should be
equal to the number of available patients, including
patients with no abnormal fir{dbing

2) Calculate the kappa statistic Kz collapsing data
from the selected clusters (patients) and using
Equation (1)

3) Repeat steps 1 and 2 B times to generate B bootstrap
samples and B free-response kappa statistics.

~ b
From the distribution of K, there are several ways to
obtain a 95% confidence interval. A standard normal con-
fidence interval could be computed using the standard
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error of I%iR, or preferably the standard error of the logit

of K Ib;R for the reasons discussed previously. The
percentile-based interval and the bias-corrected acceler-
ated interval are alternative approaches [16]. These meth-
odological considerations are beyond the scope of this
paper, and here we only report the percentile-based inter-
vals (percentiles 2.5 and 97.5).

Abbreviations
Cl: Confidence interval; Keg: Free-response kappa; Logit (x): Ln (x/(1-x));
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