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Abstract

Background: The area under the ROC curve (AUC) of risk models is known to be influenced by differences in
case-mix and effect size of predictors. The impact of heterogeneity in correlation among predictors has however
been under investigated. We sought to evaluate how correlation among predictors affects the AUC in development

and external populations.

Methods: We simulated hypothetical populations using two different methods based on means, standard deviations,
and correlation of two continuous predictors. In the first approach, the distribution and correlation of predictors were
assumed for the total population. In the second approach, these parameters were modeled conditional on disease
status. In both approaches, multivariable logistic regression models were fitted to predict disease risk in individuals.
Each risk model developed in a population was validated in the remaining populations to investigate external validity.

Results: For both approaches, we observed that the magnitude of the AUC in the development and external
populations depends on the correlation among predictors. Lower AUCs were estimated in scenarios of both strong
positive and negative correlation, depending on the direction of predictor effects and the simulation method.
However, when adjusted effect sizes of predictors were specified in the opposite directions, increasingly negative
correlation consistently improved the AUC. AUCs in external validation populations were higher or lower than in the
derivation cohort, even in the presence of similar predictor effects.

Conclusions: Discrimination of risk prediction models should be assessed in various external populations with different
correlation structures to make better inferences about model generalizability.

Keywords: AUC, Correlation, External validation, Risk prediction, Simulation study

Background

Prediction models to estimate disease risk and identify
individuals at high risk are widely advocated for optimiz-
ing prevention and management of multifactorial diseases.
For several common complex diseases, including different
forms of cancer, diabetes, and cardiovascular disease,
many prediction models have been developed in various
source populations [1-7]. The predictive performance of
these risk models is typically assessed by evaluating dis-
crimination. Discrimination is the ability of the model to
separate those with and without events. After developing
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a risk model, it is essential to also investigate the model’s
discriminative performance in external populations to
judge the generalizability of the risk model. Because pre-
diction models are developed to be used in new individ-
uals, a risk model without appreciable predictive ability in
an external population may have limited value for imple-
mentation in practice. Clinical practice guideline devel-
opers often systematically assess evidence on external
validity before recommending prediction models. For ex-
ample, performance of the Pooled Cohort Equations was
evaluated first in two external cohorts and in more con-
temporary available data from the derivation cohorts, and
then included in the 2013 ACC/AHA Guideline on the
Assessment of Cardiovascular Risk [8].
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It is often assumed that when a prediction model is
validated within an external population, discriminative
ability expressed by the area under the receiver operat-
ing characteristic curve (AUC) decreases [9]. However,
sometimes the AUC increases, as observed in earlier val-
idation studies [9-14]. Previous simulation studies have
shown how the AUC is impacted by a different distribu-
tion of subject characteristics, including disease severity
or occurrence (i.e., differences in “case-mix”) and hetero-
geneity in the effect sizes of risk factors among develop-
ment and validation samples [15, 16]. These studies
concluded that both differences in case-mix and predictor
effects between derivation and validation populations
must be assessed to fully appreciate the external validation
results. When derivation and validation populations are
similar regarding case-mix, external validation evaluates
reproducibility of the prediction model. With an external
validation procedure, one can determine whether the
model suffered from ‘optimization bias’ by comparing its
performance in the derivation and validation dataset.
When case-mix differences are pronounced, external
validation studies examine generalizability [17]. Dem-
onstration of generalizability is more valuable, because
it increases the likelihood that the prediction model will
also perform well in new subjects. However, besides de-
scriptive measures of predictors such as mean and
standard deviation, correlation among the predictors
may differ across populations. Thus, correlation of risk
factors can be viewed as another dimension of case-
mix, because it refers to the joint distribution of subject
characteristics. Yet, it is not clear how different degrees
of correlation might impact the AUC and how correl-
ation should be interpreted along with other parame-
ters that may change the AUC.

In this study, we first investigated the impact of correl-
ation among predictors on the AUC in the development
sample. Then we estimated the AUC when the developed
risk models were applied in external populations with dif-
ferent correlation structures among the predictors. To put
our findings into a more comprehensive context, we fur-
ther explored how the distributions of predictors among
cases and controls, and different strengths of predictive ef-
fects, can explain the variability of the AUC in external
populations.

Methods

We simulated several hypothetical populations with
varying effect sizes and distribution of the predictors, as
well as correlation among the predictors. We included
correlation coefficients below 0.4 for the simulations,
since these are typically observed for non-genetic predic-
tors in biomedical research [18]. For each simulated
population, we considered a binary disease outcome that
can be predicted by two continuous predictors that
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follow Gaussian distributions. We used two approaches
to construct the hypothetical populations of 100,000 in-
dividuals with a disease prevalence of 20%. This sample
size was chosen to reduce uncertainty around the AUC
estimates. We did not consider parameter uncertainty of
predictor values and disease prevalence; thus, we did not
report confidence intervals of AUCs. In both approaches,
multivariable logistic regression models were fitted to pre-
dict disease risk in individuals. Each risk model developed
in a population was validated in the remaining popula-
tions to investigate external validity.

Approach |

In this approach, we drew random sets of predictor
values from two normal distributions with predefined
means and standard deviations, while using a correlation
coefficient for the two predictors as defined for the total
population [15, 19]. By fixing predefined independent
beta coefficients for each predictor, we estimated the
intercept term in the linear predictor (LP) of various fit-
ted logistic regression models so that the average disease
prevalence in the simulated data was 20%. Individual
disease risks were subsequently estimated by transform-
ing the linear predictors into predicted risks using the
logit link function. Finally, we estimated binary disease
status for each individual using the Bernoulli distribu-
tion. The different parameters used for each hypothetical
population in this approach are presented as input pa-
rameters in Table 1.

Approach I

In Approach IJ, instead of using common input parame-
ters for the whole population, we used correlation coeffi-
cients, means, and standard deviations for the predictors
stratified by cases and controls [20]. We then drew ran-
dom sets of predictor values separately for cases and con-
trols, and then combined them to construct the dataset of
a hypothetical population. Unlike in Approach I, the inde-
pendent or adjusted beta coefficient of the predictors was
estimated by fitting a logistic model including both predic-
tors. Thus, in Approach II, it is not possible to fix these
beta coefficients in order to estimate the linear predictor.
Again, in each population the proportion of cases was set
to 20% of the total population size. The parameters used
in Approach II are presented in Table 2.

Analyses

In both approaches, we assumed no measurement error
and missing values of the predictors. We also assumed
that there were no sources of bias and residual con-
founding, apart from the potential confounding effect
between the two normally distributed predictors. We did
not vary disease prevalence. Because the AUC statistic is
calculated conditional on disease status, its value is
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Table 1 Input and estimated parameters in Approach |
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Population Input parameters Estimated parameters
0 Normal (i, 0) Adjusted OR  Cases Controls SDof Bo+3BX;  AUC
P W 0) P (1 0)
A 02 w: (0, 0); (1.5, 1.5) 0.17 w:(0.37, 0.35); 0.17 : (-0.09, -0.09); 061 0.663
o (1,1 0. (0.97,097) 0: (0.98, 0.98)
B -0.1 B B -0.12 w: (027, 0.28); -0.12 u: (-0.07, -0.07); 0.54 0.645
0:(0.98, 0.98) 0:(0.99, 0.99)
C -02 § § -0.22 u: (0.26, 0.24); -0.22 u: (-0.06, -0.06) 0.51 0.639
0:(0.99, 0.99) 0: (0.99, 0.99)
D 0.1 § " 0.07 u: (033, 0.33) 0.07 u: (-0.08, -0.08) 0.59 0.660
0: (099, 0.99) 0: (0.99, 0.99)
E 04 § M 037 u: (042, 042) 0.37 w: (-0.10, -0.10) 0.67 0.676
0:(0.97,097) 0: (0.98, 0.98)
F 02 B (1.5,1.2) 0.18 w: (0.34, 0.20) 0.19 : (-0.08, -0.05) 047 0.629
0: (0.98, 0.98) 0: (099, 0.99)
G . B (1.2,1.2) 0.19 w:(0.16,0.17) 0.19 u: (-0.04, -0.04) 0.27 0.575
o:(1,1) o (1,1
H B B (15,3) 0.10 w: (041, 0.76) 0.14 u: (-0.10, -0.19) 1.25 0.789
0:(0.97,097) 0: (0.98, 0.98)
" " (0.8, 0.8) 020 w: (-0.20, -0.20) 0.19 u: (0.05, 0.05) 033 0.593
o:(1,1) 0: (0.99, 0.99)
J -0.1 § (1.5,08) -0.09 u: (0.37,-0.20); -0.08 : (-0.08, 0.05); 049 0.632
0:(0.99, 0.99) 0: (0.98, 0.98)
K 0.2 # " 0.21 u:(0.28,-0.11) 0.21 w: (-0.07, 0.03) 042 0616
0:(0.99, 0.99) 0: (0.99, 0.99)
L 04 # " 040 u: (0.24, -0.05); 041 u: (-0.06, 0.01); 037 0.603
0: (0.99, 0.99) 0: (0.99, 0.99)
M B Mean: (0, 0); SD: (1, 3) (1.5, 15) 0.10 w: (041, 247) 0.14 u: (-0.10, -0.62) 1.37 0.804
0:(0.97,097) 0: (0.98, 0.98)
N -02 B " -0.25 w: (0. 11 2.25) -0.24 u: (-0.03, -0.56) 1.21 0.781
o: (1, o (1,1
O 0.1 . . 0.01 u: (0.34, 2.38) 0.04 w: (-0.08, -0.59) 1.31 0.795
0:(0.98, 0.98) 0: (0.99, 0.99)
p 04 § " 0.30 u: (0.56, 2.56) 0.33 w: (-0.14, -0.63) 142 0.810
0: (0.94, 0.94) 0: (0.96, 0.96)

In each population, a disease prevalence of 20% was used

Population ‘A’ is considered as reference population; all other populations are compared w.r.t ‘A’

SD standard deviation, OR odds ratio
p: Pearson correlation between two continuous predictors

A risk factor X ~ Normal (, o) implies X’ follows a normal distribution with mean u and variance o°
In Approach |, the adjusted ORs were pre-specified and thus considered as input parameters

Numbers are rounded to two decimals except for AUC estimates

theoretically independent of disease prevalence. We first
alternately varied the correlation, mean, and standard
deviation of the normal distributions, and the effect sizes
of the predictors in Approach I to construct 16 hypo-
thetical populations denoted by A-P. In Approach II, a
presumed unadjusted effect size of the predictor was
varied by increasing the difference in the mean values
among cases and controls (i.e., absolute difference be-
tween pcuse and Uconmo). This process constructed 9
hypothetical populations denoted by A-L

To explain possible changes in the estimated AUCs,
we estimated the standard deviation (SD) of the resulting
LP of each risk model in each development population.

Higher variability of the LP indicates more heterogeneity
of case-mix, which implies that individuals have a larger
variety of characteristics, suggesting a higher AUC value
[17]. For Approach I, we also reported the mean and SD
of predictor values among cases and controls to observe
the extent to which the two distributions were separated
from each other. For Approach II, we reported the result-
ing mean and SD of predictor values in the total popula-
tion. Further explanations and mathematical notations for
each method are provided in the Supplemental Material.

All analyses were performed using R software (version
3.3.0; www.r-project.org). Simulation codes are available
on request from the corresponding author.
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Table 2 Input and estimated parameters in Approach II
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Population  Input parameters for cases and controls  Estimated parameters for the population
o Normal (u, o) o (U, 0) Unadjusted OR *  Adjusted OR **  SD of By +283X; AUC
A Cases=0.2  uCases: (1, 2); Ctrls: (0, 0) 025 :(0.2,04); 0: (204,2.15) 1.28,1.65 1.17,1.60 113 0.770
Ctrls=0.2 oCases: (2, 2); Ctrls: (2, 2)
B Cases=02 040 B 1.09, 1.60 1.09 0.765
Ctrls=04
@ Cases=02 -004 B 1.34,1.68 1.25 0.785
Ctrls=-0.2
D Cases=0.1 " 016 Y 122,162 117 0.777
Ctrls=0.1
E Cases=-0.1 -002 Y 1.35,1.70 1.28 0.795
Ctrls=-0.1
F Cases=0.2  uCases: (1, 3); Ctrls: (0, 0) 027 w:(0.2,06), 0: (204,2.33) 1.28,212 1.11, 207 1.77 0.858
Ctrls=0.2 SD Cases: (2, 2); Ctrls: (2, 2)
G " uCases: (1, 3); Ctrls: (0, 2) 023  :(02,02);0:(204,204) 128,1.28 1.23,1.23 067 0676
SD Cases: (2, 2); Ctrls: (2, 2)
H B uCases: (1, 2); Ctrls: (0, 0) 024 w:(02,04); 0: (204,3.10) 1.28,1.25 1.21,1.22 0.80 0.705
SD Cases: (2, 3); Ctrls: (2,3)
B uCases: (1, 2); Ctrls: (0, 0) 027 (02,04 0:(204,1.28) 128,739 1.05,7.23 256 0922

SD Cases: (2, 1); Ctrls: (2, 1)

In each population, a disease prevalence of 20% was used

Population ‘A’ is considered as reference population and all other populations are compared w.r.t. ‘A’

SD: Standard Deviation; OR: Odds Ratio; Ctrls: controls
p: Pearson correlation between two continuous predictors

A risk factor X ~ Normal (u, 0) implies ‘X’ follows a normal distribution with mean u and variance o°
*when a risk factor is normally distributed in both cases and controls and sigma is the common variance of the risk factor in both cases and controls, then

unadjusted OR = exp((Hcase _IJConrrol)/SDZ) [19]
**adjusted ORs estimated by fitting logistic model

Results

Model development

Approach |

a) When effects of the predictors pointed in the same
direction (i.e. the ORs were both above 1), an increas-
ingly positive correlation coefficient caused distributions
of the predictors among cases and controls to be more
separated from each other; thus, the SD of the LP in-
creased. This in turn resulted in higher AUC values,
while the mean and SD of the predictor distributions in
the total population, and the adjusted ORs were kept

fixed. For example, only correlation among predictors
was varied in population A-E (Table 1) and the esti-
mated AUC was lowest (0.64) in population C with a
minimum correlation of -0.2. This gradually increased to
0.68 in population E, where the correlation was maximum
(0.4). A similar trend is observed when the effects were
made negative, suggesting ORs below 1 (Fig. 1a). However,
when the effects of predictors pointed in opposite direc-
tions (i.e. one OR was above 1 and the other below 1), an
opposite pattern was observed: more positive correlation
yielded smaller SDs of the LP and lower AUC (Fig. 1b).

A

0.65 0.70
I

AUC

Odds Ratio

9 — Predictor 1 &2=15
v = = Predictor 1 &2=1.2
“* Predictor 1 &2=0.8

B

0.70
L

AUC

0.60
L

Odds Ratio ~

— Predictor1=1.5, Predictor2=0.6 A
— — Predictor1=1.2, Predictor2=0.8

05 10

Fig. 1 Relationships between AUC and correlation coefficient of two predictors: a Odds Ratios pointing in the same direction; b Odds Ratios
pointing in opposite directions. Legend: Modeling is based on Approach | with populationy : (0, 0);,0 : (1, 1). p: Pearson correlation

-1.0 -05 0.0 05

P




Kundu et al. BMC Medical Research Methodology (2017) 17:63 Page 5 of 9

For example, in population J-L (Table 1), the highest AUC  population E (AUC =0.795) and lower for A (AUC=
was observed in population ] where the correlation was  0.770).
minimal (-0.1). On the other hand, the lowest AUC ap- b) More separation of the distribution of cases and con-
peared in population L, where the correlation was maximal.  trols indicated a higher AUC value. For example, when
Figure 1 further illustrates this relation between AUC and  the difference in the predictors’ means among cases and
correlation coefficient for the condition in which ORs point  controls was larger (smaller), AUC increased (decreased),
in the same direction and when they are in opposite direc- as observed in population A and F (A and G). Similarly,
tion. When effect sizes of predictors pointed in opposite di-  when the SD of a predictor among cases (or both cases
rections, increasingly negative correlations consistently and controls) increased, the amount of overlap between
improved the AUC. The SD of the LP and the estimated cases and controls increased, resulting in lower AUC
AUC were perfectly related: when AUC was replaced by  values, as observed in populations A and H.
the SD of the LP for the y-axis of Fig. 1, an identical plot Figure 3 shows the AUC as a function of correlation of
emerged (Additional file 1: Figure S1). cases, when correlation of controls was fixed at different
b) A higher SD of a predictor yielded a higher AUC levels. Four scenarios were considered with varying
when other parameters were kept fixed, as shown in  mean and SD values of cases and controls. In each sce-
Table 1 for populations ‘D’ and ‘O’. The SD of one pre- nario, increasingly negative correlations in cases lead to
dictor was increased from 1 to 3 and the AUC increased increasing improvement in AUC. The same results were
from 0.66 to 0.80. observed with varying correlations of controls, while
c) As expected, when the effect size of a predictor in a  keeping the correlation of cases fixed at different levels
risk model increased, the AUC increased. For example, (data not shown). With a very large positive correlation,
the AUC in population F decreased to 0.63 from 0.66 as  the AUC also increased. However, when the correlation
observed in population A, which had a higher OR of one  was positive but not very large, we did not observe a

predictor (Table 1). consistent pattern of change of AUC. As in Approach I,
the SD of the LP and the estimated AUC were perfectly
Approach Il related, the plots in Fig. 3 and Additional file 1: Figure S2

a) Table 2 shows that increasing the correlation of pre-  appear very similar.

dictors among controls (and/or cases) implied less vari-

ation in the LP of risk models. This was indicated by a  Model validation

lower SD of the LP, which in turn resulted in a lower In both approaches, we observed the following results:
AUC value as shown in populations A-E. Figure 2 shows

the extent of separation of linear predictor values in a) The AUC of a risk model was highest when the
cases and controls, with higher separation observed for model was validated in the same dataset (derivation

Population A’ Population 'D’ Population 'E’

21 Control S Control S Control
Case Case Case

Density
02
L
Density
02
1
Density
02
L

T T T T T
£ -4 -2 0

T T T T T T T T T T
-2 0 2 4 £ -4 -2 0 2 4

N
IS
&
w4

Linear Predictor Linear Predictor Linear Predictor

Fig. 2 Amount of separation of linear predictor values for cases and controls in hypothetical populations with different AUCs. Legend: AUC of
population ‘A" is 0.770; ‘D" is 0.777; and 'E"is 0.795. Modeling is based on Approach Il with the following specifications: Population ‘A" pcgse = 0.2,
Ocontror=0.2; Hease = (1, 2); Ucontror & (0, 0); Ocase = (2, 2); Ocontror - (2, 2). Population ‘D" pcase = 0.1, Pcontor=0.1; i and o same like in ‘A’. Population ‘D"
Ocase =0.1, Pcontror =0.1; pand o same like in ‘A", Population ‘E pegse =-0.1, Pconior=-0.1; i and ¢ same like in ‘A’. Note: When the two linear
predictor distributions are fully overlapping, for each chosen cut-off value on the range of linear predictor values, the proportion of false positives
(controls labeled as high risk) equals true positives (cases labeled as high risk). This would result in an AUC of 0.5. Similarly when the two distributions
are not overlapping, the AUC approximates 1
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sample) that was used to construct the model. Any
risk model constructed in another population would
perform equal to or less than the model fitted in the
firstly mentioned derivation population (compare
the rows in Tables 3 and 4). For example, in the first
row of Tables 3 and 4, when risk models derived in
different populations were validated in population A,
the highest AUC was observed when the risk model
was developed in population A.

b) However, when a derived risk model was validated
in different external populations, the AUCs could be
higher or lower than the AUC in the derivation
sample (compare values in any column in Tables 3
and 4). In other words, although the AUC in the
derivation sample is not promising, the risk model
can show a higher AUC in an external population.
For example, in Table 3, the AUC of the risk model
developed in population G is 0.575, but became as
high as 0.810 when validated in population P.
Conversely, it is also possible to develop a model
with an apparently adequate AUC that performs
poorly when validated on external populations. For
example, in population H, the AUC was 0.789,
which decreased to 0.587 when the same risk model
was validated in population I (Table 3). Even when
the adjusted ORs of the predictors were similar in
both development and validation samples, higher
AUC values could be obtained in the validation

sample, as shown for the model derived in
population A and validated in E (Table 3) and for
the model derived in population G and validated in
H (Table 4).

Discussion

We constructed risk models in several hypothetical pop-
ulations with varying correlations, standard deviations,
and effect sizes among the predictors, and subsequently
evaluated the performance of these models to investigate
the impact of correlation on discriminative ability. Two
approaches were used to construct hypothetical popula-
tions. In both approaches, the magnitude of the AUC in
the development and external validation samples depended
on the correlations among predictors.

There are some differences in the two approaches. In
Approach I, the adjusted predictor effects were pre-
specified and subsequently the correlation in the whole
population was varied. In Approach II, the adjusted ef-
fects were a result of choosing the predictors’ distribu-
tion and correlation structure conditional on case and
control status. To construct hypothetical populations,
Approach II intuitively seems to be a more realistic ap-
proach than Approach L. In the latter, it is assumed that
we know a priori the underlying independent effect of
each predictor and that the degree of confounding,
through correlated with the other predictor, varies across
different populations. However, correlation coefficients
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Table 3 AUCs for risk models developed and validated in various populations: Approach |

Validated in  Developed in population

population B C D E F G H | J K L M N 0 P
A 0.663 * * * * 0656 0663 0652 0663 0556 ** *x * * * *
B 0645 0.645 * * * 0632 0645 0631 0644 0534 ** ** * * * *
@ 0639 * 0639 * * 0626 0639 0622 0639 0534 ** *x * * * *
D 0660 * * 0.660 * 0649 0660 0649 0659 0545 ** ** * * * *
E 0676 * * * 0.676 0670 0676 0670 0676 0570 ** ** * * * *
F 0624 * * * * 0629 0624 0602 0625 0578 ** x> * * * *
G 0575 % * * * 0571 0.575 0570 0575 0526 ** ** * * * *
H 0770 * * * * 0728 0770 0.789 0767 0502 ** ** * * * *
I 0593 * * * * 0590 0593 0587 0.593 0534 ** x> * * * *
J 0531 * * * * 0529 0530 0531 0530 0632 ** ** * * * *
K 0540 * * * * 0571 0540 0502 0543 0615 0.616 ** * * * *
L 0542 * * * * 0541 0540 0541 0542 0602 ** 0.603 * * * *
M 0804 * * * * 0792 0804 0800 0804 0693 ** ** 0804 * * *
N 0781 * * * * 0759 0781 0775 0781 0692 ** ** * 0.781 * *
(o] 0795 * * * * 0782 0795 0790 079 0686 ** ** * * 0795 *
p 0810 * * * * 0802 0810 0806 0810 0695 ** ** * * * 0.810

*Risk models with the same adjusted ORs will have equal impact on an external validation population. Therefore, prediction models developed in population A-E
and M-P will perform similarly in an external validation population, and thus the values indicated as “*' in these columns are identical to those in column A
**The adjusted ORs in population J-K are the same and therefore perform similarly in an external validation population. Thus, the values indicated as “**' in columns K

and L are identical to those in column J
The numbers in bold indicate the AUC estimated in the development population

of predictors can be very different for cases and controls
[21, 22], which is difficult to include when using Ap-
proach L.

In the context of studying correlations as parameters
independent of the predictors’ true effects, Approach I
provides an interesting perspective. Using this approach,
increasing positive correlations must result in less over-
lapping distributions of the LP among cases and controls.
Similarly, increasing negative correlations result in more
overlap, when the predictor effects point in the same dir-
ection. In this situation, mean predictor values among

cases and controls must lie far apart (i.e., large unadjusted
effects exist) when a large degree of confounding with
positive correlation is introduced; mean values converge
when confounding is removed with negative correlation.
For the same reasons, less overlap results when the pre-
dictor effects point in the opposite direction and the cor-
relation coefficient is made more negative.

In Approach II, the independent predictor effects are
not known a priori, but result from varying the degree of
confounding through the correlation. Unadjusted effects
pointing in the same direction are created first, by

Table 4 AUCs for risk models developed and validated in various populations: Approach Il

Validated in population Developed in population

A B C D E F G H |

A 0.770 0.768 0.767 0.770 0.767 0.767 0.753 0.754 0.762
B 0.764 0.765 0.759 0.763 0.759 0.764 0.745 0.746 0.761

C 0.783 0.777 0.785 0.785 0.784 0.773 0.774 0.774 0.763
D 0.777 0.773 0.776 0.777 0.776 0.771 0.763 0.764 0.763
E 0.790 0.781 0.795 0.793 0.795 0.777 0.785 0.786 0.763
F 0.855 0.858 0.845 0.852 0.845 0.858 0.819 0.821 0.857
G 0.664 0.655 0672 0.667 0671 0651 0.676 0676 0.642
H 0.696 0.690 0.702 0.700 0.703 0.689 0.705 0.705 0.682
| 0.89 0914 0.864 0.885 0.863 0917 0811 0814 0.922

The numbers in bold indicate the AUC estimated in the development population
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specifying mean predictor values separately for cases and
controls. By introducing more positive correlation in cases
and controls combined (i.e. the correlation coefficient in
the total population), adjusted effects will decrease. This
results in significant overlap of LP distributions among
cases and controls, especially when the differences in
mean values of the predictors are small between cases and
controls. However, when the correlation is equal among
cases and controls, a correlation coefficient close to +1
will result in perfect discrimination: the AUC approximates
1 (Fig. 3). In that case, values of predictors will perfectly
“move” in the same direction and the two distributions of
the LP cannot be overlapping. This is especially the case
when predictor means are further apart and standard devi-
ations smaller (Fig. 3a, b and d).

Some of our results are in line with those of earlier
studies. First, the AUC is generally highest in the popu-
lation in which the risk prediction model is developed,
since the coefficients of the model are best fitted to the
data. Second, solely increasing the SD of predictors sug-
gests higher variation in LP values or case-mix hetero-
geneity, and as a result, the model tends to discriminate
better [15, 16]. As far as we know, only one previous
study also evaluated the impact of correlation on the
AUC, using Approach II only, and also showed that in-
creasingly negative correlations improve the AUC [23].
However, this previous study only evaluated the effect
on the AUC in the derivation sample.

The findings of our study should be interpreted in the
light of some methodological considerations. First, even
though discrimination in the form of the AUC is the
most commonly used metric to investigate the predictive
ability of risk models, we did not incorporate calibration
and other performance measures [24, 25]. The potential
merit of using risk models does not solely depend on
their predictive performance, but also on their ability to
improve treatment decisions and cost-effectiveness. Sec-
ond, we only investigated logistic regression models, and
did not consider interaction, collinear, and non-linear pre-
dictor effects. Third, we did not investigate non-Gaussian
distributions of predictors. Fourth, we assigned disease
status without considering differences in disease severity.
Disease severity may vary with prevalence across different
populations and generally changes the distribution of risk
factor values. Therefore, disease prevalence may indirectly
affect the AUC, also known as the spectrum effect
[26-28]. We recommend investigating these potentially
important issues in further research.

Our findings suggest that even when the AUC in the
derivation sample is not promising, the same risk model
can have a higher AUC at external validation [9, 14].
Conversely, even though the AUC in both derivation
and a particular validation dataset is high, the same risk
model can perform poorly in another external
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population. As shown in Approach I, when the adjusted
predictor effects are similar across derivation and valid-
ation cohorts, the underlying mechanism for the vari-
ation in AUCs can be explained by heterogeneous
correlations among populations. When the AUCs and
one or more adjusted predictor effects are different,
other factors may play a role, including: i) underlying in-
dependent predictor effects may vary, or ii) predictors
and/or disease status were misclassified or measured dif-
ferently. Varied underlying predictor effects can occur
due to heterogeneity in (ignored or overlooked) effects
such as interactions, non-linearity, associations with re-
sidual confounders, and disease biology. As demonstrated
in Approach II, when unadjusted effects are similar across
the derivation and validation samples, stronger correla-
tions in the validation sample may lead to smaller adjusted
effects, less heterogeneity in the LP, and a lower AUC.

Recently, a method was proposed to investigate the re-
latedness of development and validation samples [17]. It
uses a model including the envisioned predictors and
disease status as covariables to predict membership of
an underlying source population for individuals in the
derivation and validation samples. If membership can be
accurately predicted, the derivation and validation popu-
lations are considered not similar in terms of subject
characteristics and outcome status. However, this method
requires that both the derivation and the validation data-
sets are at hand, which is rare. Usually, prediction models
are externally validated using the modeling equations pro-
vided in the published literature.

Conclusions

We demonstrated using two different approaches illustrating
that description of the mean, SD, effect sizes, and correla-
tions among predictors can provide important information
about differences in AUCs across development and external
populations. Although some of these metrics are reported in
predictive modeling studies, reporting of the correlation
structure among predictors is rare. Therefore, we call for
more detailed reporting of summary statistics, in addition to
emphasizing the need for validation of models in various in-
dependent populations to ensure generalizability. The latter
will guarantee quicker incorporation within clinical practice
guidelines and increase accuracy of clinical decision making.
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