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Abstract

Background: Seeking treatment in formal healthcare for uncomplicated infections is vital to combating disease in
low- and middle-income countries (LMICs). Healthcare treatment-seeking behaviour varies within and between
communities and is modified by socio-economic, demographic, and physical factors. As a result, it remains a
challenge to quantify healthcare treatment-seeking behaviour using a metric that is comparable across
communities. Here, we present an application for transforming individual categorical responses (actions related to
fever) to a continuous probabilistic estimate of fever treatment for one country in Sub-Saharan Africa (SSA).

Methods: Using nationally representative household survey data from the 2013 Demographic and Health Survey
(DHS) in Namibia, individual-level responses (n = 1138) were linked to theoretical estimates of travel time to the
nearest public or private health facility. Bayesian Item Response Theory (IRT) models were fitted via Markov Chain
Monte Carlo (MCMC) simulation to estimate parameters related to fever treatment and estimate probability of
treatment for children under five years. Different models were implemented to evaluate computational needs and
the effect of including predictor variables such as rurality. The mean treatment rates were then estimated at
regional level.

Results: Modelling results suggested probability of fever treatment was highest in regions with relatively high
incidence of malaria historically. The minimum predicted threshold probability of seeking treatment was 0.3 (model
1:0.340; 95% Cl 0.155-0.597), suggesting that even in populations at large distances from facilities, there was still a
30% chance of an individual seeking treatment for fever. The agreement between correctly predicted probability of
treatment at individual level based on a subset of data (n =247) was high (AUC = 0.978), with a sensitivity of 96.7%
and a specificity of 75.3%.

Conclusion: We have shown how individual responses in national surveys can be transformed to probabilistic
measures comparable at population level. Our analysis of household survey data on fever suggested a 30% baseline
threshold for fever treatment in Namibia. However, this threshold level is likely to vary by country or endemicity.
Although our focus was on fever treatment, the methodology outlined can be extended to multiple health seeking
behaviours captured in routine national survey data and to other infectious diseases.
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Background

Delay in seeking treatment for ill health in low- and
middle-income countries (LMICs) affects disease progres-
sion, management and outcomes [1-3]. Most infectious
diseases in LMICs are preventable by using cost-effective
interventions and treatable at peripheral health facilities
[4]. However, weak health systems affect the delivery of
most interventions [5] and socio-economic and physical
barriers that modify health-seeking behaviour compound
this, leading to under-utilisation of health facilities [6]. En-
couraging appropriate treatment-seeking behaviour for
uncomplicated infections is vital to further reduce disease
burden in these countries or for successful elimination.
For malaria, for example, the current World Health Or-
ganisation (WHO) recommendation is for malaria treat-
ment to be sought in the formal healthcare sector within
24 hours of fever onset and other malaria-related symp-
toms [7]. This is because patients who seek treatment
through the formal sector are likely to receive an appro-
priate diagnosis and effective management [8]. However,
there are many factors influencing population treatment-
seeking behaviour including, but not limited to; availability
of healthcare providers, proximity or travel time to health-
care facilities, condition severity and perception, and the
socio-demographic profile of the population at risk [9].

Studies on treatment-seeking behaviour can be
grouped into two categories of approach. The first is a
qualitative description of steps undertaken by the popu-
lation in different settings [10—12] while the second is a
quantitative association between determinants (factors)
and choice of health service use [13-18]. Although these
approaches are used widely in bio-medical research, they
usually do not examine the latent (i.e. theoretical) char-
acteristics such as individual-level traits to estimate vari-
ation at population level. In addition, comparability is
not simply guaranteed with the same questionnaire
because of differential item functioning problem i.e. the
varying behavioural response to the same question de-
pending on the respondent [19]. Such variation can then
be translated to spatially explicit applications that can be
combined with existing spatial data on populations [20]
and disease incidence to inform and optimise targeting
of community-based interventions.

Model-based geostatistical methods have already been
used to predict and estimate disease incidence at fine
spatial resolution [21, 22]. This has been aided by public
health intelligence data that are increasingly becoming
available across space and time from geo-located nationally
representative household surveys. These include the Mal-
aria Indicator Surveys (MIS) [23], Demographic and Health
Surveys (DHS) [24], and Multiple Indicator Cluster Sur-
veys (MICS) [25]. These nationally representative house-
hold surveys also collect information on self-reported
health behaviour such as fever management [14]. However,

Page 2 of 12

how can responses concerning fever treatment from
household surveys be compared across populations with
varying access, demographics, cultures, and disease bur-
dens? Item response theory (IRT) has been widely used to
examine surveys items (questions) and person characteris-
tics in psychology and education [26-28]. In education, for
example, it has been used to estimate the person-level
traits (such as ability) or item-level difficulty in an examin-
ation [29-31]. IRT concepts can be extended to health as
applied previously in delirium screening [32], longitudinal
data analysis [33], and interpreting medical codes from pa-
tient records [34]. IRT approaches are essentially probit
models with additional regression effects used to aid esti-
mation of item characteristics [35]. Extending this to a
Bayesian framework has the advantages of incorporating
uncertainty in estimating latent traits and prior distribu-
tions can be imposed on the Bayesian probability model to
capture many aspects of data not included in descriptive or
quantitative frequentist approaches [36]. Although Imput-
ation techniques can be used to handle missing data, this
was beyond the current scope of this manuscript.

Here, the aim was to demonstrate the application of
IRT to fever treatment-seeking modelling using data
from a low malaria transmission setting, the Namibia
2013 DHS. We analyse fever treatment-seeking behav-
iour at a national level and derive response characteristic
curves based on travel times to the nearest facilities. The
rest of this paper is organised as follows. Section 2 pro-
vides an overview of household survey data in LMICs
and the proposed modelling approach. We then present
treatment-seeking behaviour model outputs in section 3,
including evaluation of model performance. The paper
concludes with a brief discussion in sections 4 and 5.

Methods

Data characteristics in low- and middle income countries
Distance or proximity to healthcare provider is an im-
portant parameter in the choice of treatment by patients
in many LMICs [37-39]. In these countries, the majority
of people access facilities by walking. Therefore, it is
preferable to use a facility close to the place of residence
because it is less costly compared to travelling greater
distances requiring motorised transport [40]. Other
factors that influence utilisation patterns include: age,
gender, healthcare costs, socio-economic status, resi-
dence (urban or rural), familiarity with health personnel,
fever severity, and quantity as well as quality of services
at peripheral facilities [41, 42]. In some cases, however,
the phenomenon of by-passing the nearest healthcare
facility can be encountered, even for mild fever condi-
tions [43, 44]. Empirical data are not always available
to model such nuances and we therefore assume use
of the nearest facility in this case study.
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Estimation of travel times to the nearest formal
healthcare treatment provider

Estimating travel times between population centres and
formal healthcare providers has already been considered
in previous research [14]. In brief, this requires a com-
bination of mode of travel (walking or motorised) and
an impedance surface that is constructed based on mul-
tiple data layers, including the various land use and land
cover characteristics, elevation, and roads [45]. Travel
time to nearest healthcare facility is a useful measure be-
cause it is relatively easy to estimate and to relate travel
times in different settings compared to estimating the
actual physical distance. The approach in Alegana et al.
[14] shows how travel times for Namibia were derived.

Quantification of formal healthcare use based on national
representative household surveys

To estimate the utilisation of healthcare facilities, this
study used the reported use of formal healthcare for
fever treatment from the DHS. These surveys are con-
ducted in 90 countries worldwide, and 44 in SSA, pro-
viding information on reproductive health, fertility,
population demographics and general health status, nu-
trition, household characteristics, socio-economic status
and infant and child mortality rates [46]. The surveys
are based on a random two-stage cluster sampling de-
sign in which clusters are usually first sampled within a
region on a probability-proportional-to-size basis and
thereafter, within each cluster, households are sampled
randomly [47, 48]. Cluster sizes usually vary, but are typ-
ically approximately 15 to 30 households. The household
survey provides information on health and the socio-
demographic profile of consenting participants including
their treatment-seeking behaviour for conditions such as
malaria-associated fever.
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A notable feature of the fever treatment variable in the
DHS is the decay in treatment with increasing travel
time to nearest facility (Fig. 1). The geographical barrier
to utilisation, manifested as a distance decay, is a well-
known phenomenon in studies of healthcare utilization
[37, 38, 49] and occurs when usage of health facilities
declines with increasing distance [50, 51]. This feature
motivates the use of probit models to characterise
treatment-seeking behaviour (section 2.4). Another
feature of utilisation is that even for patients in close
proximity to healthcare facilities, treatment for fever is
not always 100% as some mild conditions self-resolve,
are treated through informal care, or may be treated at a
more distant facility [9]. Household survey data usually
contain detailed information on other factors that could
affect utilisation of healthcare facilities. These explana-
tory variables can be grouped largely into socio-
economic and demographic characteristics and have
been used selectively in quantitative studies of healthcare
utilisation [3, 10, 17, 52, 53].

Application of Bayesian probit models to healthcare
utilisation research

Item response modelling was proposed in the 1960s
[54-56] and is commonly applied to studies in educa-
tion and psychology to estimate item characteristics
[28]. The first applications of IRT used maximum
likelihood estimation [57, 58]. Bayesian extensions
were proposed for one- and two-parameter models
[59] and extended to the three-parameter logistic
model [60]. Fitting via Gibbs sampling became popu-
lar using data augmentation (DAG) techniques in the
1990s particularly for application to the normal-ogive
models [61-63]. Fu et al. [64] provided some exten-
sions to the three-parameter model following Sahu’s
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Fig. 1 Visualisation of malaria-associated fever treatment from DHS data by a age (Children 0-5 years) and b by travel time to the nearest health
facility generated from GIS methods combining spatial data (Land cover, roads), population centres and the locations of health facilities
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DAG approach [63] and compared Gibbs sampling to
BILOG-MG software [65] using likelihood estimation.
There have also been other innovations in parameter
estimation [62], including extension to a multi-level
approach [26-28] and comparison with maximum
likelihood methods [66]. Here, a unidimensional
three-parameter model with a hierarchical structure
was used, its parameters estimated, and prior sensitiv-
ity checked by comparing model goodness-of-fit sta-
tistics. The main objective was to estimate the
probability of a positive response to choice of treat-
ment for persons with fever associated with malaria
at a household level.

In general, let Y; represent a dichotomous response
variable of an individual j (j = 1,....., N) on a set of ques-
tions (items) i (i = 1,....., n) on use of public healthcare
for treatment. Y;;=1 represents a positive response on
one item (e.g. pubhc healthcare use), while Y;; =0 repre-
sents a negative response (e.g., non-public healthcare
use). The probability of ¥;;=1 can then be written fol-
lowing [64] as:

P(Yij = 1|9j7ﬂi>bi7ci)
m
exp{z aiOi—b }
=¢+ (1-¢) =l

o)

1+ exp{
(1)

where, 6;=0j1......, Ojpyovn By With — 00 < B> + 00 for k=
1,....m dimension represents the person traits (i.e. the
ability parameter). a; represents item discrimination pa-
rameters between individuals separated by individual-
level traits, and is positive (@ > 0). bj(—o0 < by < ) rep-
resents item difficulty (or location) parameters which for
multiple items represents relationship between items
and the underlying individual-traits (see Appendix for
full glosary of symbols). Lastly, ¢; (0<c¢;<1) represents
the threshold (i.e., minimum) probability for the item in
question (fever treatment). This specification of thresh-
old probability is important to this application because
the estimated probability is never equal to one when 6,
is zero, due to several individual characteristics. Hence,
probability of treatment is constrained to be greater than
zero and less than one. In many applications in psych-
ology and education, the ability parameter, for example,
is modelled as a latent characteristic independent of sur-
vey observations [67, 68]. In this application, a predictor
variable was introduced on the individual traits param-
eter in terms of travel-time to the nearest health facility.
This parameterisation also enables the introduction of
other variables such as residence (urban or rural), socio-
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economic status, or educational levels. Thus, Eq. 1 can
be simplified to:

Py = ¢+ (1-¢;) ¥ (2)
Where
l] _exp{z lkejk } 1+3XP{Z lkgjk ik }:|
k=1 k=1

91' =a; +ﬁ1]-X1/' +

with Bo; representing coefficients of dependent variables
X, exploring differences in ability.

The likelihood and posterior specification

In general, let fi6, a, b, ¢) denote a collection of unknown
parameters, the posterior can be expressed as the prod-
uct of the likelihood and prior distributions for unknown
parameters given as:

f(8,a,b,cly)=<L(y|6,a,b,c)f(0,a,b,c) (3)

where fl0, a, b, ¢) = 0)a)ib)f(c) and the posterior dens-
ity we wish to evaluate is

N n
D x L(y|6,a,b,c) x {Hf(ﬁlﬂe,ﬂé)} < [ Tf (@il 02)
j=1 i=1
xI(ay > 0) x [ [f (Biluy, 03) x [ Jf (el 72)
i=1 i=1

where D is a proportionality constant and

L(y|6,a,b,c) HH[ P (1-Py) 1%,}

i=1j=
and

N

Hf(‘9|/40a(79 Hexp{

=1

11 (i, o2) > Hf(ailuu,ai)

a0, x—05)°
GZHH02 { = )202( : b)}
i=1k=1
H (cilxiy i) = Hc (1-¢;)"

)"z (01}

Goodness-of-fit statistics, prior specification and Markov
chain Monte Carlo implementation

The same notation was used for the item discrimination
parameter, witha; >0, where a half-normal or truncated
normal prior was used such that a; ~ N(u,, A)I(a; > 0)and
I(:) is an indicator function. The rationale for this
specification is to ensure that the parameter estimate
is positive. The probability threshold parameter was
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constrained on c < (0, 1] using a beta distribution such
that 7(cg k, T)ack (1 -¢)" ' for suitable parameters
values «. and 7, . The recommended procedure for
selecting suitable estimates of these parameters is
such that the E(c)=«x/(x+ 1) and weakly informative
priors may be used for parameters of beta
distribution.

Two different specifications were used for the diffi-
culty parameter. The first was a normal prior b; ~ N(0,
10) (model 1) and the second a truncated normal (model
2) restricting b; ~ N(uy, 02)I(b;>0) to be positive. Thus,
the difference between model 1 and model 2 was only in
the prior specification for the b parameter. Figure 2a
represents the overall parameter structure for Model 1
and Model 2. The rationale for using different priors for
b was to evaluate the effect of constraining item diffi-
culty to positivity (b;>0) compared to allowing for
flexible Gaussian density.

Lastly, the individual-trait parameter 6; was modelled
in a hierarchical approach following Fox and Glas [30]
such that the joint distribution of 6, parameters follows
a multivariate normal distribution. Thus, in general, a
and f5 are the intercept terms and regression coefficients,
respectively, modelled as independent effects in model 1
and model 2 (Fig. 2a). In extending the model to a
multi-level representation, time to the nearest facility
could then be used to explain individual traits. Normal
priors (e.g.a ~ N(0, 1)) were used for a and f5 in Fig. 2a.
Secondly, this was extended to a random intercept in
model 3 (Fig. 2b) and lastly, as a random slope and
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intercept model including residence (urban or rural) as a
centering variable (model 4, Fig. 2c). For model 4, the
random slope and intercept were modelled jointly as:

aj Ba, i1 T2
~MVN i),5 T = 4
<ﬁ1> {</3ﬁﬁi> Z (TZI T22>} “
with a Wishart (multivariate scaled y?) distribution

2000) fo)=

-1

||/ 2e4er(n32) ; d dimension matrix; vdegrees of
freedom; specified for covariance matrix Y. Thus, the in-
verse is specified as ¥~ ! = Wishart(Q, p) where Q is a scale
matrix, usually identity, and pis the degrees of freedom
equal to the number of random components. Alternative
approaches could employ a scaled inverse-Wishart distribu-
tion because of the large standard errors associated with
large variances in the use of the inverse-Wishart prior [69].

Validation was considered via a subset of 40% of the
data selected randomly (=247 of the 1138 children)
with the remaining 60% (n = 891) used in model estima-
tion. Model 1 was then applied to the validation set and
the predicted probability of treatment transformed to a
binary outcome. A receiver operating characteristic
(ROC) curve was then used to derive the specificity and
sensitivity of predictions when compared to observed re-
sponses from survey data. For estimation, different
model specifications were also used to check the sensi-
tivity of different prior specifications (i.e. models differ
only on prior structure) and complexity. Model outputs

(Barnard et al with  density

O 0°Q 000

Item i Item i

Item i

Individual j Individual j

Individual j

prior specification for item difficulty (b) parameter

Fig. 2 Graphical representation of the form of the models used. a simplified fixed parameter specification used for model 1 and model 2; b
allowing for a random slope (model 3) on the aparameter; ¢ random slope and intercept (model 4) for the a and 3 parameters, respectively,
centering on residence (urban and rural) with correlation estimated via the Wishart prior specification. Model 1 and Model 2 differ only in the
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were evaluated and compared via goodness-of-fit statis-
tics, for example, the Deviance Information Criterion
(DIC). The DIC summarises model fit based on a com-
bination of model deviance and complexity (effective
number of parameters) [70, 71]. This is defined as:

DIC =D + pD (5)

where D = Eg,[D]is the mean deviance for D=-2x
log{P(y|0)} with

D
D

- [ 21ogtp0l6)a0
~2log{P(y10) }

and complexity (effective number of parameters) given
by pD = D-D. The two parameters were monitored in
the MCMC implementation using five chains in JAGS
version 4.2.0 and the rjags package in R version 3.3.1
[72]. A combination of Gelman-Rubin [73] with Raftery-
Lewis diagnostic [74] approaches were used to check for
convergence. For the former, we checked for a reduction
factor of <1.05 while the latter provided estimates of
burn-in and thinning factors given an accuracy of 0.0005
at quantile (0.025) and coverage probability of 0.975.

Results

We used the Namibia 2013 DHS data to estimate the
probability of fever treatment in the formal sector (re-
ported fever treatment in public and private sectors) for
children under five years. There were 4818 children
under five years enumerated, of which 1138 (23.6%) re-
ported at least one fever episode in the preceding fort-
night. Of those that reported a fever episode, 726 (63.8%)
sought treatment in the formal sector (public and private
sector excluding traditional healers). Overall, the proportion
of children with reported fever was fairly homogeneous
across all the regions surveyed but varied by estimated
travel times. Estimation of probability of treatment focussed
on children reporting fever (n=1138) rather than all
children examined in the cross-sectional survey.

In terms of computation, the Gelman-Rubin test was
less than or equal to 1.05 for all the parameters moni-
tored in the MCMC implementation. However, the
Raftery-Lewis method showed that a minimum of
55,318 iterations were required to achieve an accuracy of
0.0005 at coverage probability of 0.999 with quantile at
0.05. More than 100,000 iterations with a burn-in of
50,000 were implemented. Table 1 shows the DIC esti-
mates and the effective number of parameters from the
four models implemented. Comparison between model
1 (M1 DIC 3615.9) and model 2 (M2 DIC 3685.1)
suggests that using truncated normal priors for the b
parameter did not improve model fit. Increasing DIC
(for model 3 and 4) was also directly proportional to the

Page 6 of 12

Table 1 Model comparison based on goodness-of-fit statistics

Model  DIC PD Inverse log likelihood ~ Number of chains
M1? 36159 21789 —-0.001 3
M2° 3685.1 2256.1 —-0.001 3
M3 5098.7  3693.1 -0.001 3
M4 238741 227540 -0.002 3

DIC is the deviance information criterion while PD is the model complexity
(number of model parameters)
“Model 1 and model 2 only differ in prior specification for the b parameter

increase in model complexity by including random inter-
cept and slope. This also increased computational
demands for M3 and M4 requiring at least 250,000
iterations with longer burn-in (slow convergence). The
difference in DIC estimates also suggested that the
models were sensitive to changes in model structure.
Based on a binary classification of predicted probability
at the individual level from model 1, the area under the
curve (AUC) was 0.978 with a sensitivity of 96.7% and a
specificity of 75.3% (155 true positive, 21 false positive,
64 true negative, and 7 false negative).

Table 2 shows posterior estimates of the parameters
along with 95% equal-tailed credible intervals. A plot of
fever-response curves based on the fitted parameters is
shown in Fig. 3a along with a scatterplot of a and f8
parameters from Model 4 (Fig. 3b), posterior density of
parameters (Fig. 3c) and ROC plot (Fig. 3d). Different
mean combinations of parameters a, b, and c resulted in
response characteristics based on travel time to nearest
health facility (Fig. 3a). Parameter estimates could be
compared and interpreted jointly in this manner because
they apply to one item (on estimating fever treatment).
Comparison between model 1 and model 2 suggested
that constraining the b parameter did not have a major
impact on mean estimates of the individual-level traits,
a or the threshold parameter c¢. Overall, model 4 had lar-
ger person discriminant parameter estimates (mean and
median) compared to all the other model specifications.
The correlation between mean estimates for @ and Sas
estimated from the model was weak (mean -0.011,
median 0.006 scatterplot Fig. 2b). The combination of
correlation and DIC estimates suggested a fixed prior
independent specification as a better choice. It also
imposes less computational demand. The threshold
probability was >0.3 for all model estimates, suggesting
this as the lower limit probability of use of nearest facil-
ity for fever treatment in the four models implemented
from the 2013 Namibia DHS.

Table 3 shows the estimated mean probabilities for
malaria related fever treatment at a regional level in
Namibia with associated confidence intervals and popu-
lation estimates. Population estimates are useful in esti-
mating fever treatment burden based on probability
estimate at regional level. For malaria, the probability of
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Table 2 Estimated summary statistics and the 95% Bayesian credible intervals of parameters based on all four models

Model  Estimate a b C a B Corr (0, B)

M1 Mean 0.704 0.807 0.340 -0.084 -0.098 -
Median 0.556 0.850 0.326 —-0.087 -0.112 -
95% Cl [0016-2.194]  [-1.044-2346] [0.1554-0.597]  [-0.682-0.523]  [-0439-0394] -
Gelman-Rubin Convergence estimate 1.000 1.000 1.000 1.000 1.000 -
Gelman-Rubin Convergence upper Cl 1.000 1.010 1.000 1.000 1.030 -

M2 mean 0.784 1.060 0.352 —-0.080 -0.123 -
median 0.654 0.978 0.344 -0.081 -0.121 -
95% Cl [0.042-2.243]  [0.100-2452]  [0.172-0.572] [-0661-0518]  [-0417-0.218] -
Gelman-Rubin Convergence estimate 1.001 1.000 1.001 1.001 1.020 -
Gelman-Rubin Convergence upper Cl 1.010 1.000 1.000 1.000 1.040 -

M3 mean 0.789 0977 0376 —0.582 —0.140 -
median 0.660 0.895 0372 —0.581 —-0.150 -
95% Cl [0046-2.225]  [0.055-2423] [0.176-0.597] [-2.208-1.069]  [0434-0.248] -
Gelman-Rubin Convergence estimate 1.000 1.000 1.000 1.000 1.000 -
Gelman-Rubin Convergence upper Cl 1.000 1.000 1.000 1.000 1.000 -

M4 mean 0.870 1.003 0313 -0.133 —-0.008 -0.011
median 0.768 0912 0311 -0.152 -0.012 0.006
95% Cl [0.059-2.244]  [0.063-2477]  [0.095-0.527] [-0.665-0.501]  [0.880-0.873]  [-0.957-0.952]
Gelman-Rubin Convergence estimate 1.000 1.000 1.000 1.010 1.000 1.010
Gelman-Rubin Convergence upper Cl 1.000 1.000 1.010 1.040 1.000 1.050

M1 and M2 use a fixed parameter specification for a and 8 using normal priors but different priors for item parameters, M3 allows random intercepts only, and
M4 is both a random slope and intercepts model. Only M4 include a measure of correlation between the multi-level regression parameters

fever treatment among febrile cases was highest in en-
demic areas in Zambezi and Kavango (mean probability in
Zambezi 0.546 (95% Credible Interval (CI): 0.369-0.671))
compared to Kunene with less than one case per 1000
population with mean probability 0.433 (95% CI: 0.364—
0.614). Overall mean probability of fever treatment was
greater than 0.5 in areas with malaria incidence >1 per
1000 population.

Discussion

Characterising treatment-seeking behaviour in LMICs is
valuable because it varies by geographic location, type of
disease and severity, person characteristics including age
and gender, as well as health system based factors such
as availability, cost among other enabling factors [9, 75, 76].
Here, the focus was on the estimation of latent parameters
of a survey question on fever and estimating the probability
of seeking treatment based on a dichotomous response. We
used data from a nationally representative household survey
from the DHS in one country to estimate fever treatment
latent characteristics using a Bayesian IRT approach. By
using this method, we estimated the parameters of fever re-
sponse curves that characterise geographical decay in the
use of formal health care based on travel time to the nearest
facility. The method is particularly appealing because of the
joint estimation of IRT parameters related to fever

treatment with uncertainties incorporated in prior distri-
butions and the ability to extract the full posterior distri-
bution compared to point estimates from maximum
likelihood approaches [26, 61]. This is important because
estimates from such probabilistic modelling can then be
applied in estimating numbers of symptomatic infections
(treatment burden) when such probabilistic estimates
are transformed into gridded metrics that vary spatially
[77, 78]. The modelling approach can also be extended to
other items in household surveys to further understand
human behaviour response to health conditions.

The lower limit probability estimated here, related to
the threshold parameter (e.g. from Table 2 model 1:
0.340; 95% CI 0.155-0.597), for Namibia suggests that
even at large distances from health facilities, there was
still a 30% chance of individuals seeking fever treatment.
We suggest that this is an important property in
treatment-seeking behaviour for individuals living far
from health facilities in Namibia, although this threshold
may be different by country or endemicity and was not
explored further in this analysis. In this study, estimates
of probability of fever treatment at the regional level
showed that the mean probability was highest in regions
with relatively high incidence of malaria historically
(Table 3). Another operational application of the prob-
ability response characteristics curves, derived from the
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latent parameters in Fig. 3a, could be in identifying
areas where community health workers could be
deployed [79, 80]. This, however, requires definition
of a cut-off probability (y-axis on Fig. 3a), currently
not established for malaria transmission settings, to
delineate areas with limited access. Constraining the b
parameter (item parameter) did not influence

estimates of the individual-level traits and the thresh-
old parameters. This is primarily because only one
item was used in this application resulting in similar
parameter estimate for the location parameter.

In extending the model to a multilevel framework,
travel times were used as predictors. Comparison be-
tween constant intercept and slope model parameters
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Table 3 Estimated probability for fever treatment (mean and 95% Bayesian Credible Interval) at the nearest health facility

Probability of using a
dispensary or clinic for
fever treatment mean
(95% Cl)

Probability of using

a health centre for
fever treatment mean
(95% Cl)

Probability of using a
Regional or district
hospital for fever
treatment mean (95% Cl)

0.546 (0.369-0.671

3 (0.368-0.649
0.522 (0.368-0.650
0.504 (0.368-0.644
0.504 (0.368-0.643

0.368-0.650
0490 (0.367-0.631
0.561 (0.369-0.677

0487 (0.367-0.636
0447 (0.365-0.619

0.537 (0.369-0.667)
0498 (0.368-0.633)
0.494 (0.367-0.630)
0492 (0.367-0.633)
0486 (0.367-0.623)
0497 (0.367-0.637)
0.496 (0.367-0.637)
0.545 (0.369-0.661)
0.426 (0.364-0.608)
0483 (0.367-0.631)
0440 (0.365-0.613)

0.531 (0.369-0.661)
0.503 (0.368-0.638
0497 (0.368-0.632
0496 (0.367-0.637
0.499 (0.368-0.637
0.498 (0.367-0.638

0.547 (0.369-0.663
0429 (0.364-0.612
0482 (0.367-0.631
0446 (0.365-0.618

Region Population  Estimated mean Estimated Average
estimate malaria incidence travel time to
2015° per 1000 population  nearest health

in 2014 facility (minutes)

Zambezi 105,804 1612 230

Kavango 259,984 1467 29.7

Ohangwena 283,188 1426 293

Oshikoto 210,881 1.256 373

Otjozondjupa 167,186 1227 31.8

Omusati 281,050 1.131 356

Omaheke 82,441 1.126 383

Oshana 207,218 1.096 17.6

Kunene 102,986 0.967 146.4

Khomas* 418,742 - 439

Karas® 88,977 - 110.2

Hardap© 93,447 - 86.7

Erongo© 180,672 - 984

) (
) (
) (
) (
) (
) (
) (
) (
) (
) (
) (
) (

0471 (0.366-0.628
0443 (0.365-0.620)

0470 (0.366-0.626) 0461 (0.366-0.616

( )
( )
( )
( )
( )
0493 (0.367-0.634)
( )
( )
( )
( )
( )
0440 (0.365-0.618) 0.440 (0.365-0.617)

3
(
(
0433 (0.364-0.614
(
(
(
(

Data for health facilities represent public and private entities based on facility census 2009 [85] updated based on HMIS reports. Probability of use for fever

treatment estimated from parameters of model 1
#Population estimates derived from worldpop [20]
PMean malaria incidence derived from Alegana et al. [86]

“Regions designated as no malaria risk with case incidence of less than 1 per 10,000 population

with a random parameter model showed that the former
resulted in shorter MCMC runs and better model fit
compared to the latter (i.e., the random slope and inter-
cept), which experienced slow convergence as the num-
ber of effective parameters increased exponentially. We
are not discouraging use of a more complex modelling
approach while estimating IRT parameters, but this
highlights the increasing computational demands and
efficiency related to increased complexity.

MCMC techniques were used to estimate and jointly
interpret IRT parameters. The three-parameter logistic
model [60] was particularly useful compared to the two-
parameter model [59], because, the third parameter ¢
represents the threshold probability on the fever re-
sponse curve, ensuring that probability is always greater
than or equal to zero. Despite the known benefits of IRT
in other fields [28], this approach has seldom been
applied to modelling human behavioural aspects for
treatment-seeking behaviour. The current study was
confined to patients’ responses to a fever question in
household survey data and how latent (rather than
observed) properties can be quantified in relation to pa-
tient behaviour and travel time. Dichotomous responses
are common in many health surveys in LMICs and
methods used here can be extended to other health con-
ditions. Although we did not have to deal with missing
data (NAs), several data imputation techniques can be
used for non-ignorable NAs [81]. These may arise when
there is lack of response, or, associated with refusal to
participate or simply unobserved variable for survey items.

When NAs are imputed into the data matrix, for example,
these do not usually contribute to likelihood estimation
[82] of the ability parameter and the higher the number of
missing values the more likely that there will be an in-
crease in uncertainty for the parameter estimate.

There exist some additional limitations aside from
those related to computational speed and efficiency.
While fever in the Namibia 2013 DHS was associated
with malaria treatment, the survey data did not include
a laboratory confirmation of malaria infection [83].
Moreover, the sampling methodology for children with
fever in the DHS may be inferior because the survey is
not powered for fever detection [47]. Most current sur-
veys however incorporate rapid diagnostic tests (RDTs)
and future identification of febrile cases could include la-
boratory results as a preprocessing step in identifying
malaria-related fever cases. In addition, although prior
specifications introduce a measure of uncertainty in a
hierarchical way, assumptions in generating input data
such as use of the nearest facility may not be sufficient
in understanding treatment-seeking behaviour. It has
been shown in separate population surveys that patients
may bypass the nearest health centre due to various in-
dividual- or supply-based factors such as quality [84].
While an obvious recommendation is to include such
effects, increasing model complexity to capture such
differences may have an impact on computational
efficiency as seen in model 3 and model 4. More import-
antly, identifying measures of quality of care in public or
private health sectors can be challenging [40].



Alegana et al. BMC Medical Research Methodology (2017) 17:67

Conclusion

In the context of fever treatment, we have demonstrated
that there is potential to use nationally representative
household data to provide a probabilistic measure of
treatment using a Bayesian method. Our estimates of
threshold probability apply to one low malaria transmis-
sion country and may be different in other countries
with varying malaria endemicity. Future studies will aim
to conduct such comparative analysis between and
within countries via spatially varying parameters. The
methodology can be extended to multiple human behav-
ioural questions (items) related to health and demo-
graphics in the routine national survey data.

Appendix

Parameter notations

j Individual/person

i Item/survey question

k Dimension for items

g Dimension for dependent variables

a Discrimination parameter

b Difficulty parameter on items

¢ Probability threshold parameter

0 Individual trait/ability parameter

P(Y) Probability that event Y occurs

1(-) Indicator function for event in sample space
E(X) Expectation for random parameter X
¢# Mean

DIC Deviance Information Criterion

D Mean deviance
[{(1)}] Order of brackets
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