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Abstract

Background: Sufficient-cause interaction is a type of interaction that has received much attention recently. The
sufficient component cause model on which the sufficient-cause interaction is based is however a non-identifiable
model. Estimating the interaction parameters from the model is mathematically impossible.

Methods: In this paper, | derive bounding formulae for sufficient-cause interactions under the assumption of no

redundancy.

Results: Two real data sets are used to demonstrate the method (R codes provided). The proposed bounds are

sharp and sharper than previous bounds.

Conclusions: Sufficient-cause interactions can be quantified by setting bounds on them.
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Background

A common aim of many observational studies is to identify
risk factors for disease. Once risk factors have been identi-
fied, researchers will often be interested in knowing
whether any two factors can interact in causing the disease.
‘Sufficient-cause interaction’ (also referred to as ‘synergism,
‘causal co-action; ‘causal mechanistic interaction, or simply
‘mechanistic interaction’) is a type of interaction that has
received much attention recently [1-11] and is based on
Rothman’s sufficient component cause model [12, 13]. The
model posits that the causation of disease can be through
any one of many different mechanisms or pathways. A
mechanism/pathway requires several different component
causes to operate, hence it is also called a ‘causal pie’. If two
factors participate in the same causal pie, then a sufficient-
cause interaction can be said to exist between them.

If the monotonicity assumption is not imposed [14—18],
the sufficient component cause model in its general form is
over-parameterized and non-identifiable. That is, the total
number of model parameters exceeds the total degrees of
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freedom the data can offer. For example, two binary risk fac-
tors mean the data can offer at most four degrees of freedom
(four different exposure profiles) but the model has a total of
nine parameters, each corresponding to one of the nine
possible causal-pie classes (one ‘all-unknown’ class unre-
lated to either factor, two main-effect classes for each factor,
and four two-factor interaction classes). [If the monoton-
icity assumption is imposed on the two factors, the number
of causal-pie classes reduces to four (one ‘all-unknown’ class
unrelated to either factor, one main-effect class for each fac-
tor, and one two-factor interaction class), and the model
becomes identifiable.] Researchers recently found ways to
circumvent the non-identifiability problem and have devel-
oped methods fo test for sufficient-cause interactions with-
out imposing the monotonicity assumption [1-11]. It is
however mathematically impossible to estimate the inter-
action parameters from a truly non-identifiable sufficient
component cause model. At best, bounds can be set.

In this paper, I derive the bounding formulae for
sufficient-cause interactions under the assumption of no
redundancy [6-11, 19]. R codes for all computations are
provided for convenience and the method is demonstrated
with two real datasets. The proposed bounds will also be
shown to be sharp and sharper than previous bounds [20].
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Methods

Notations and definitions

This paper closely follows the notations used in previous
studies [6—11]. Here, we are interested in the relation-
ship between two exposures and a binary outcome (e.g.,
disease/no disease). We assume a population is studied
from time 0 to 7. The two exposures (X; and X;) can
have arbitrarily many levels (a total of L; >2 and L, >2,
respectively). We assume that the exposure profile for a
person does not change over time during the study
period and is represented by profile = x;,x,, with x; €
{1,...,.L;} and x5 € {1,...,.L,} We assume that there is no
loss to follow up and competing death during this study
period. Let D =1 represent disease occurrence in (0, T),
and D =0, otherwise. We assume D is known but the
exact time of disease occurrence, if ever, is unknown to
researchers. (D is a binary outcome within a defined
period, not a time-to-event outcome.) It is assumed that
there is no confounding, selection bias or measurement
error in the study. The associations between the two ex-
posures and the disease should reflect the genuine causal
effects of the exposures on the disease.

While there is only a total of L; x L, exposure profiles,
there is a total of (L;+1)x (L, + 1) different causal-pie
classes, including one all-unknown class, L; + L, main-
effect classes, and L; x L, interaction classes. (Figure 1 in
Lee’s paper [7] depicts (2 + 1) x (2 + 1) =9 causal-pie clas-
ses in total for two binary exposures.) The causal-pie clas-
ses can be represented by class = ¢1,¢5, with ¢; € {*,1,...,Ly}
and ¢, € {*1,...,L,}. Note that here we introduce a null no-
tation *, such that a class contains for k=1,2, “X; = ¢’ as
one of its component causes if ¢; = *, and does not involve
Xy whatsoever if ¢, = *. For example, the all-unknown class
involving neither X; nor X, is represented by class =*%
the main-effect classes are represented by class = ¢;,* with
¢, = * for X;-only classes, and class = *,c, with ¢, = * for X,-
only classes; and the interaction classes are represented by
class = ¢1,co with ¢y 2 * and ¢, # *.

The sufficient component cause model is partly deter-
ministic and partly stochastic. The presence of risk factor(s)
alone is not sufficient for the disease. Only when all un-
known components (complement causes) also appear can
the sufficient cause become complete and the disease
occur. We let U ., =1 represent the arrival of the un-
known components of the class = cj,c, causal-pie class in
(0, 7), and U, ., =0, otherwise, for ¢c;€{ ,1,...,L;} and
el ,1,..,L}

Cumulative disease risk, cumulative completion risk, and
relative prevalence

Let RiskP™le=*1% denote the cumulative disease risk in
(0, T) for people in the population with profile = xy, x5,
that is, Pr(D = 1|1X; =1, X5 =x5). Let Riskg,s - ;; denote
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the cumulative completion risk in (0, 7) for a specific
class = i,j sufficient-cause interaction, that is, Pr(l/;=1)
for the specific ie{l,...,Li} and je{1,..., Ly}. Let Risk-
class = int denote the cumulative completion risk in (0, 7)
for the global sufficient-cause interaction (sufficient-

cause interaction regardless of classes), that is, Pr

U (uy=1)|. Let Riskcjass - any denote the cumula-
ie{l,.., L1},

je{l, ..., Ly}
tive completion risk over (0, T) for any class (all-un-

known, main-effect, or interaction), that is,
r U (uy=1)|, or equivalently, the proportion
ie{*,1,...,L1},
je{x,1,.... Lo}

of those excluding the ‘immune’ persons in the study
population during the study period. (An immune person
is one who will not contract the disease during the study
period, no matter what exposure profile he/she might
contrary-to-fact assume.)

If the disease is rare we would always expect the above
cumulative completion risks (or period prevalence, since
these are defined for subjects in the study population
over the study period) to be close to 0. To be inform-
ative for interactions for rare diseases, here we follow
Sjolander et al’s suggestion [20] to define the relative

prevalence (RP) for the specific sufficient-cause interac-
RiSkclass:i./

tions: RPclass:iAj = Riskprofie=i7»

for the specific ie{1,..., L}
and je{l,...,Ly}. In addition, we also define a relative

prevalence for the global sufficient-cause interaction:
RPjags—int = sikes=it - Note that specific and global RPs

RisKclass—any
assume different denominators.

The no-redundancy assumption

The no-redundancy assumption is a Poisson-like as-
sumption which dictates there can only be at most one
arrival event of the unknown components (at most one
class of sufficient causes that can be completed) in a suf-
ficiently short time interval for each and every subject in
the population [19]. In other words, there are at most
(L1 +1)x(Ly+1)+1 causal response types in a very
short time interval, with each of the (L, +1)x (Ly+1)
types corresponding to exactly one causal-pie class, plus
an additional one for the immune type. The table in
Lee’s paper [6] enumerates the total (2+1)x (2+1)+1=
10 causal response types for two binary exposures under
the no-redundancy assumption. By comparison, the
conventional potential outcome model (without the
no-redundancy assumption) would have a total of
2h1%L2 causal response types, and 2°**=16 for two
binary exposures.
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The no-redundancy assumption is a relatively weak as-
sumption that can still hold true even if there is a strong
dependency in the arrival events. Note that no redun-
dancy is specified only with respect to an infinitesimally
short time interval. It says nothing about the entire
follow-up period and can therefore also hold true even
for non-rare diseases (diseases with high RiskP™¢=% for
iefl,..., L} and je{l,..,Ly}). Several sufficient-cause
interaction tests had previously been developed under
this assumption [6-11].

Bounds on sufficient-cause interactions under the
no-redundancy assumption

In Additional file 1, I derive the bounds on sufficient-
cause interactions under the no-redundancy assumption.
For the specific sufficient-cause interactions, the bounds
are (LB in superscript for lower bound; UB for upper
bound):

RiskiP, . =1- min

class=t/ i #i)e(l,...,L1}

j #)e{l, ... Ly}
{ l_Riskproﬁle:Lj ) }
(l—Riskpmﬁle:"'*/) % (1_Risk1>r0ﬁle=iaiv)’ ’
(1)
RISkclass ij RiSkpmﬁle:l’Aj’ (2)
LB RISkclass ij 3
class=ij — W ( )

and

RPclass ij 1’ (4)

respectively, for the specific i€ {1, ...,L;} and je {1, ..., L,}.

For the global sufficient-cause interaction, the bounds

are:
Risk:? =1- min (5)
permutations of (u1, ..., uz,)
and permutations of (v, ...,

class=int —

VLz)

L L,

. ol U XY
HH (I_Rlskproﬁle 1,/) 1’ 1},
i=1 j=1

L L,

= 1-[ [ JJ (1-RiskPefe=H), .

i=1 j=1

RiskYB

class=int —

RISkclass int (7)

class=int — L L, ’

1 —H H (1-Riskprofile=t)

i=1 j=1

RPL?

and
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RPUE =1, (8)

class=int —

[Risk:B _inc involves the use of ‘con-
trast coefficients’. The contrast coefficients for Xj,
(u1,...,,ur,), contains as its elements an equal num-
ber of ‘+1” and ‘-1’ if L; is an even number, and
exactly one ‘0’ and an equal number of ‘+1” and ‘-1
for the remaining elements if otherwise. The con-
trast coefficients for X,, (vi,...,,v1,), are similarly
constructed.]

When both exposures are binary, the lower bound for-
mula is simplified considerably. Formula (1) becomes

respectively.

l_Riskprofile:ij
= 1-min — —, 1
Rlskdw i (I_Riskproﬁle:Bﬂ‘/) % (I_Riskproﬁle:z,Sﬁ) ’ ’

©)

for i,j € {1, 2}. Formula (5) becomes

rgs = 1-min(PRISM, PRISM ™), (10)

class=int

(1_Riskproﬁle:2.1 ) % (I_Riskproﬁlezl,z)
(17Riskpmﬁlc:2.2) % (17R151<prnﬁlc:1,l )
ratio index of synergy based on multiplicativity’ [7].

where PRISM =

is the ‘peril

Case-control study for rare diseases
For a rare disease with exceedingly low risks, we have

1-RiskProfle=i/ . 1profile=ij 1y 1 profile=i'
- 1-Ri — ~Risk J_Risk I
(1 RiskPTe 1) x (1-RiskP o017 )

RiskPle=i" for (i" 2 i) e (L, ...,

Ly} and (' %)) €l ..., Lo},

L
1- ﬂﬂ 1-Riskprofie= ”)M'XV’ Zliu, X v X RiskProfile=t/
i=1 j=1 i=1 /'*l
l l l
,and 1- HH (1- Riskprofile= ’ szskpmﬁle . There-
i=1 j= i=1 j=1

fore, the lower bounds on the relative prevalence of
sufficient-cause interactions are approximately

: file=ij_po: file=i'j _1p: file=i,’
max( )e{l oy }{Rlsk”“”e Y _RiskProte=t / _RjskProte=t/ .,0}

RpLB (j'#)e{l, ... Lo}

class=ij ~

Riskprofle=ij

max /. a L) {ORproﬁIe:i./ioRproﬁle:i J_QRerofile=i; 0}
§;¢z§e R ’

i #j)e{l,...,Lo}

ORProfle=ij

(11)

for the specific i€ {1, ..., L} and je {1, ..., L}, and
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L L )
max i Zui X v X RiskPle=/ q
2o,

permutations of (i, ... =1 j=1

B and permutations of (vi,...,,vL,)
RP giyge—ine = oL L
ZZRiSkproﬁlczi,/‘
e L L .
max ZZui X Vj X ORProfile=i ¢
permutations of (u1, ..., ur,) =1 j=1
B and permutations of (vi,...,,vL,)
= L, L,
ZZORpruﬁle:i,/
i=1 =1
(12)
rofile=ij Oddsproﬁle:t,/’ o Riskproﬁle:z./‘ Riskproﬁ]e:l.l .
where ORP ) = OddsPoie=TT = l_RiSkpmﬁlc:i.j/I_Riskpmﬁlczl.l 1S

the odds ratio comparing the profile = i, j subjects with the
profile = 1, 1 subjects. These bounds are functions of odds
ratios and can therefore be estimated directly from a case-
control study conducted in the study population.

When both exposures are binary, the bounds reduce to

max{ ORproﬂle:i,j_ORproﬁle:Ii—i, j_ORproﬁle:i,S—j , 0 }

LB
RPclass:LjA' ORProfile=i, ’
(13)
for the specific i,j € {1, 2}, and
Rl IRERI|
class=int ™~ ORproﬁlezZ,Z + ORproﬁlezZ,l + ORproﬂle:LZ +1
(14)

where RERI = ORproﬁle =22 _ ORproﬁle =21 _ ORprofile =12
+ 1 is the ‘relative excess risk due to interaction’ in terms
of odds ratios [1-5].

Additional file 2 presents two functions written in R
code: ‘bounds.cohort’ for cohort data and ‘bounds.cscn’
for case-control data. Input the data as the argument
and the functions will output the various bounds on
sufficient-cause interactions. Additionally, the functions
also automatically perform 10,000 bootstrap replications
to calculate a 95% lower confidence limit for a lower

bound and a 95% upper confidence limit for an upper
bound.

Results
Example 1. A cohort study of hypertension risk
The data of a cohort study on hypertension risk (taken
directly from Example 3 in Zou’s paper [21]) is analyzed
here as an example. The cohort study assesses the effects
of body mass index (BMI, coded as 1 if BMI > 25 kg/m>
and 0 if otherwise) and age (coded as 1 if age > 40 years
and O if otherwise) on hypertension (coded as 1 if dia-
stolic blood pressure>90 mmHg and 0 if otherwise).
We assume that there is no confounding, selection bias
or measurement error in the study and that the follow-
up is 100% complete.

Table 1 presents the bounds and their 95% boot-
strapped confidence limits for sufficient-cause interac-
tions between BMI and age. The lower bounds for the
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(high BMI, old age)-specific sufficient-cause interaction
are greater than zero (0.0411 for the cumulative comple-
tion risk; 0.1509 for the relative prevalence), but do not
achieve statistical significance (as judged from their 95%
lower confidence limits which are both zero). As for the
global sufficient-cause interactions, the lower bounds are
0.0830 (cumulative completion risk) and 0.1758 (relative
prevalence), respectively, and are both significantly
greater than zero. The upper bound for the cumulative
completion risk of the global sufficient-cause interaction
is 0.4718 with an upper 95% confidence limit of 0.4993.

Example 2. A case-control study on lung cancer risk
Zhang et al’s case-control data (directly taken from
Table 4 in reference [22]) is analyzed here as the second
example. The study examines the gene-gene interactions
between two DNA base excision repair genes on lung
cancer risk: the ADPRT (adenosine diphosphate ribosyl-
transferase) Val762Ala polymorphism and the XRCCI
(X-ray repair cross-complementing group 1) Arg366Gln
polymorphism (both having three genotypes). The rare-
disease assumption is invoked here (For lung cancer, the
assumption is tenable). In addition, we assume gene-
environment independence [10] such that unmeasured en-
vironmental factors, no matter what they may be, cannot
confound the genetic effects of the two studied genes.

Table 2 presents the lower bounds and the 95% lower
limits for sufficient-cause interactions between these two
genes. The lower bound of the relative prevalence for the
(ADPRT = Ala/Ala, XRCCI = GIn/Gln)-specific sufficient-
cause interaction is greater than zero (0.5221) but does
not achieve statistical significance. The lower bound
of the relative prevalence for the global ADPRT-
XRCCI interaction is 0.2471 and is significantly
greater than zero (as judged from its 95% lower con-
fidence limit which is 0.0784).

Discussion

Public health researchers have long sought a way to
quantify sufficient-cause interactions using only the ob-
servational data at hand. Due to the non-identifiability
problem, a sufficient-cause interaction can be tested but
unfortunately not estimated. We are therefore provided
with a very limited piece of information (of whether or
not a sufficient-cause interaction is statistically signifi-
cant), which falls far short of quantification. By setting
bounds on sufficient-cause interactions (as demonstrated
in the two examples in this paper), we can finally make
some actual (if not exact) quantifications of such
interactions.

Additional file 3 shows that the bounding formulae
we presented in this paper produce ‘sharp’ bounds,
i.e., bounds that are attainable. Previously, Sjolander
et al. [20] derived an assumption-free lower bound
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Table 1 Bounds on sufficient-cause interactions in a cohort study on hypertension risk (Example 1)

Case Population Risk Cumulative completion risk of Relative prevalence of
number sufficient-cause interaction sufficient-cause interaction

95% LCL® LBC UB* 95% UCL® 95% LCL® LB®

Specific BMIF®, ageb)

(low, young) 79 1810 0.0437 0.0000 0.0000 0.0436 0.0530 0.0000 0.0000
(low, old) 100 681 0.1468 0.0000 0.0000 0.1468 0.1733 0.0000 0.0000
(high, young) 153 1385 0.1105 0.0000 0.0000 0.1105 0.1278 0.0000 0.0000
(high, old) 278 1021 02723 0.0000 0.0411 02723 0.2997 0.0000 0.1509
Global 610 4897 0.1246 0.0338 0.0830 04718 04993 0.0879 0.1758

old: age > 40 years; young: age < 40
PBMI body mass index; high: BMI > 25 kg/m? low: BMI < 25

°LCL lower confidence limit for the lower bound, LB lower bound, UB upper bound, UCL upper confidence limit for the upper bound

for the cumulative completion risk of the specific
class=1i,j sufficient-cause interaction (which they
called ‘weak’ sufficient-cause interaction). Using the
notations  of this  paper, their bound is
max Elnﬂ.)e (1, L} {Riskpmme:i'j _RiskProfile=i j_Rigjprofile=ij ’,O}.
j#)e{l, ..., L}

Additional file 4 shows we can achieve a sharper
lower bound.

In this paper, the lower bound formulae also provide
an avenue for testing of specific sufficient-cause interac-
tions; if the bootstrapped 95% lower confidence limits
for a particular lower bound is greater than zero, then
the corresponding sufficient-cause interaction is present.
Alternatively, one can rely on the lower bound for the
global sufficient-cause interaction; if its bootstrapped
95% lower confidence limit is greater than zero, then
some sufficient-cause interaction (between certain levels
of the two factors) must be present. When both expo-
sures are binary, such global test reduces to testing

PRISM =1 against PRISM # 1 in cohort studies [7], and
RERI = 0 against RERI # 0 in case-control studies.

The assumption of no confounding is a strong one. To
alleviate the problem, the data can be stratified by the
confounders (if these are identified and measured in the
study) and separate bounds set on sufficient-cause inter-
actions using the proposed formulae in this paper for
each of the resulting strata. Further work is warranted to
develop stratified bounding methods for sufficient-cause
interactions when the total number of strata is large and
the average stratum size is small (the sparse-data sce-
nario) and when some of the stratifying variables also
interact with the two exposures of concern (sufficient-
cause interactions involving more than two variables).

Conclusions

The study provides bounding formulae for sufficient-
cause interactions under the assumption of no redun-
dancy. The bounds are sharp and sharper than previous

Table 2 Bounds on sufficient-cause interactions in a case-control study on lung cancer risk (Example 2)

Case Control Case- Relative prevalence of sufficient-cause interaction
Number Number gcc)jrgjtsrol 95% LCL G
Specific (ADPRT®, XRCC1®)
(Val/val, Arg/Arg) 157 186 0.8441 0.0000 0.0000
(Val/val, Arg/Gln) 124 142 0.8732 0.0000 0.0000
(Valval, GIn/Gln) 26 31 0.8387 0.0000 0.0000
(Val/Ala, Arg/Arg) 273 286 0.9545 0.0000 0.0000
(Val/Ala, Arg/Gln) 180 183 0.9836 0.0000 0.0000
(Val/Ala, GIn/Gln) 56 53 1.0566 0.0000 0.0000
(Ala/Ala, Arg/Arg) 105 77 1.3636 0.0000 0.0000
(Ala/Ala, Arg/Gln) 59 55 1.0727 0.0000 0.0000
(Ala/Ala, GIn/Gln) 20 5 4.0000 0.0000 05221
Global 1000 1018 0.9823 0.0784 02471

@ADPRT: adenosine diphosphate ribosyltransferase
PXRCCT: X-ray repair cross-complementing group 1
LCL lower confidence limit for the lower bound, LB lower bound
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bounds. Sufficient-cause interactions cannot be estimated
but can be quantified using the bounds presented in this
study.

Additional files

Additional file 1: Derivations of the bounding formulas. (PDF 272 kb)
Additional file 2: R code. (PDF 151 kb)
Additional file 3: A proof that the bounds are sharp. (PDF 179 kb)

Additional file 4: A proof that the bounds are sharper than previous
bounds. (PDF 286 kb)
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