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Abstract

Background: The extended illness-death model is a useful tool to study the risks and consequences of
hospital-acquired infections (HAIs). The statistical quantities of interest are the transition-specific hazard rates and the
transition probabilities as well as attributable mortality (AM) and the population-attributable fraction (PAF). In the
most general case calculation of these expressions is mathematically complex.

Methods: When assuming time-constant hazards calculation of the quantities of interest is facilitated. In this
situation the transition probabilities can be expressed in closed mathematical forms. The estimators for AM and PAF
can be easily derived from these forms.

Results: In this paper, we show how to explicitly calculate all the transition probabilities of an extended-illness model
with constant hazards. Using a parametric model to estimate the time-constant transition specific hazard rates of a
data example, the transition probabilities, AM and PAF can be directly calculated. With a publicly available data
example, we show how the approach provides first insights into principle time-dynamics and data structure.

Conclusion: Assuming constant hazards facilitates the understanding of multi-state processes. Even in a
non-constant hazards setting, the approach is a helpful first step for a comprehensive investigation of complex data.

Keywords: Homogeneous Markov process, Transition probabilitiy, Attributable mortality, Population-attributable
fraction, Nosocomial infection

Background
Understanding the correct use of statistical models in
hospital epidemiology is challenging. When studying the
burden of hospital-acquired infections (HAIs) one has to
not only account for the time-dynamic of the acquisition
of an HAI but also for competing events (hospital death
and discharge).
Different statistical models and approaches are available

to study the occurrence, determinants and consequences
of HAIs. Pierce et al. [1] nicely contrast and compare these
methods, which range from simple logistic regression to
complex multi-state models in survival analysis.
While the logistic regression model is the most fre-

quently used model, it has a number of restrictions. As
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it ignores the timing of the events it is only appro-
priate for a crude investigation of the data. In con-
trast, multi-state model approaches adequately account
for time-dependencies, but have a complex mathematical
background.
In the companion paper [2] to this one, we link the

results of a logistic regression to the results of a multi-
state model approach based on constant hazard rates.
The focus is on time-constant quantities and the basics of
multi-state methods are discussed.
In this paper, we aim to give a simple explanation of

the time-dynamics in a multi-state model approach. We
focus specifically on the extended illness-death model
(Fig. 1). This multi-state model is a useful tool to study
the association of HAIs and mortality in observational
cohort studies. It accounts for death in hospital and dis-
charge alive as competing events. In order to account
for the time-dependency of the acquisition of infections,
the event is modelled as intermediate event. The model
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Fig. 1 Extended Illness-Death Model with hazard rates λ01(t), λ02(t), λ03(t), λ14(t) and λ15(t)

allows death and discharge to occur without or after the
acquisition of an HAI.
A complete multi-state model analysis includes an

investigation of the hazard rates and the transition
probabilities [3]. In this paper we discuss these quan-
tities in a time-constant hazards setting. This is the
rare setting where the hazard rates are simply accessi-
ble, formally obtained via maximum likelihood estima-
tion [4]. Moreover, a derivation of closed mathematical
forms for the transition probabilities becomes feasible.
We calculate these forms for the extended illness-death
model. The transition probabilities are further being
used for an analysis of the data in terms of attributable
mortality.
With an application to the publicly available dataset

los.data from the Comprehensive R Archive Network
package (R) etm we aim to show the performance of the
theoretical time-constant quantities in a real application.
The data example is a sample from the SIR-3 study, which
is an observational cohort study conducted to analyse the
burden of HAIs. The data example is best analysed with
an extended illness-death model.
We begin in “The extended illness-death model” with

a mathematical definition of the extended illness-death
model. This section is followed by the derivation of closed
mathematical forms for the transition probabilities in a
time constant hazards setting. In “Attributable morta-
lity of hospital-acquired infections” we show how the
formulas of the transition probabilities, derived in the
section “Closed mathematical forms for the transition
probabilities”, can be used to estimate the attributable
mortality risk of HAIs. The data example is presented in
“Results and discussion”.We close in the last section with a
discussion.

Methods
The extended illness-death model
In hospital-epidemiology the extended illness-death
model, shown in Fig. 1, is a useful tool to study HAIs. The
model allows both an etiological exploration of the events
infection and in-hospital death and an investigation in
terms of absolute risks.

In the extended illness-death model patients start in
state 0 which is admission to the hospital. At this time
none of the patients is infected. The patients remain in this
state until they either leave the hospital without an HAI
(state 2 if the discharge is alive, state 3 if the patient dies)
or acquire an HAI. The concerned patients then move to
state 1. In state 1 the patients remain under observation
until discharge alive with an HAI (state 4) or death in the
hospital with an HAI (state 5). The model is equivalent
to the four-state model where death without and with an
HAI are one state (state 3 and 5 are modelled as state 3) as
well as discharge without and with an HAI (state 2 and 4
are modelled as state 2). In the four-state extended illness-
death model a transition from state 1 to state 2 and 3 is
possible. The six-state model is a progressive model and
has the advantage that it is possible to generally express
the transition probabilities even for non-Markov and non-
semi-Markov models [5]. Further, we prefer to use the
six-state model as it is easier to distinguish and illustrate
the transition probabilities without an HAI and those with
an HAI.
The extended illness-death model accounts not only for

the time-dependency of the acquisition of HAIs, but also
differentiates between the competing events discharge
alive and death.Wolkewitz et al. [6] explain why it is highly
important to account for discharge alive when studying
the event hospital-death. As we will see in “Closed mathe-
matical forms for the transition probabilities”, the transi-
tion probabilities of the multi-state model depend on all
the hazard rates. Ignoring discharge alive would lead to
biased estimations.
For a statistical exploration of the data with an extended

illness-death model, Andersen et al. [7] propose to
describe themodel as a stochastic process (X(t), 0 ≤ t ≤ τ),
where τ denotes the end of study time. The stochastic pro-
cess has right continuous sample paths and a finite state
space S = {

0, 1, 2, 3, 4, 5
}
.

This mathematical formulation allows an analysis in
terms of transition-specific hazards and transition proba-
bilities. The transition probabilities of Markov multi-state
models are defined as Pij(s, t) = P(X(t) = j|X(s) = i), 0 ≤
s ≤ t ≤ τ , i, j ∈ S. The transition-specific hazard rates,
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also known as transition intensities, are directly linked to
the transition probabilities. They are given by λij(t) =
lim
dt→0

Pij(t,t+dt)
dt , where 0 ≤ t ≤ τ , i, j ∈ S, provided the

limits exist.Multi-statemodels are fully determined by the
transition-specific hazard rates [3]. The Markov property
implies that the future distribution of the process depends
on the present only. For the extended illness-death model
this means that the risk of death and discharge given an
HAI depends only on the total length of stay in the hos-
pital and not on the length of stay in the hospital until
acquisition of an HAI. This assumption can be tested by
including time of acquistion of an HAI as covariate in a
Cox proportional hazards model for the transitions from
state 1 to states 4 and 5 [8].
As a consequence, transition probabilities from state

1 are defined since time origin even though all patients
start in state 0, which implies P(X(0) = 1) = 0.
In the estimation patients entering state 1 are treated
as left-truncated. This means they are assumed to be
infected since time point zero, but were not observed until
time of infection.
In practice the transition probabilities in state 1

become relevant as soon as the first patients acquire
an HAI. By definition of HAIs, this is not before
day three since admission. Thus, the definition
from time point zero to three is rather artificial.
In the data application we therefore choose two different
landmark time-points for a more practical illustration of
the transition probabilities from state 1. This approach
corresponds to the conditional survival function
discussed for example in Andersen et al. [9].
In the following we assume constant hazard rates. Thus,

λij(t) = λij for i ∈ {0, 1} and j ∈ {1, 2, 3, 4, 5}. As a con-
sequence, we have Pij(s, t) = P(X(t) = j|X(s) = i) =
P(X(t−s) = j|X(0) = i) = Pij(0, t−s) = Pij(0, t̃). The con-
stant hazards model implies that the instantaneous risk of
any event in the model is the same throughout the whole
hospital stay of a patient. The effect on the transition
probabilities is that they only depend on the considered
time frame t̃ = t − s, but not on the current time point s.

Using constant hazards is the most simple paramet-
ric model to describe a multi-state process. Maximum
likelihood methods are available to obtain estimators for
the hazard rates in a real dataset. A formal derivation
of the approach for an extended illness-death model can
be found in the Appendix. In most situations the con-
stant hazard assumption is too simple. For a profound
analysis often more sophisticated parametric and semi-
or non-parametric methods are needed (see e.g. [10, 11]).
Nevertheless, in this paper and the companion paper
[2] we show that assuming constant hazards is an eas-
ily accessible way to obtain a fast general understanding
of the data.

Closed mathematical forms for the transition probabilities
Given all the transition-specific hazard rates of a multi-
state model, it is theoretically possible to calculate and
estimate the transition probabilities. Nevertheless, in non-
Markov models this calculation is infeasible. For Markov
models the calculation is facilitated as it is possible to use
matrix multiplication [3]. Statistical software for an esti-
mation based on a dataset is available [12–14]. However,
an explicit mathematical term for a defined set of hazard
rates describing a multi-state model is still hard to derive.
In contrast, if we assume constant hazards, the transi-
tion probabilities of complex multi-state models can have
accessible mathematical forms.
In (1) we explicitly formulate the transition probabili-

ties of an extended illness-death model based on arbitrary
time-constant hazard rates. An explanation of how we
obtain these formulas is given in the Appendix.
With λ0 = λ01 + λ02 + λ03 and λ1 = λ14 + λ15, we have

P00
(
0, t̃

) = exp
(−λ0 t̃

)

P01
(
0, t̃

) = λ01
(λ1 − λ0)

(
exp

(−λ0 t̃
) − exp

(−λ1 t̃
))

P02
(
0, t̃

) = λ02
λ0

(
1 − exp

(−λ0 t̃
))

P03
(
0, t̃

) = λ03
λ0

(
1 − exp

(−λ0 t̃
))

P11(0, t̃) = exp
(−λ1 t̃

)

P14(0, t̃) = λ14
λ1

(
1 − exp

(−λ1 t̃
))

P15(0, t̃) = λ15
λ1

(
1 − exp

(−λ1 t̃
))

P04(0, t̃) = λ01λ14
λ0λ1

− λ01λ14
λ0 (λ1 − λ0)

exp
(−λ0 t̃

)+ λ01λ14
λ1 (λ1 − λ0)

exp
(−λ1 t̃

)

P05(0, t̃) = λ01λ15
λ0λ1

− λ01λ15
λ0 (λ1 − λ0)

exp
(−λ0 t̃

)+ λ01λ15
λ1 (λ1 − λ0)

exp
(−λ1 t̃

)
,

(1)

where t̃ = t − s for any 0 ≤ s < t.
If λ0 = λ1 then transition probabilities become

P01(0, t̃) = λ01t exp(−λ1 t̃)

P04(0, t̃) = λ14λ01
λ0λ1

(1 − exp(−λ0 t̃) − λ0t exp(−λ1 t̃))

P05(0, t̃) = λ15λ01
λ0λ1

(1 − exp(−λ0 t̃) − λ0t exp(−λ1 t̃)).

The other transition probabilities remain the same as in
the general case λ0 �= λ1.
These formulas reveal how the various transition proba-

bilities depend on the different transition-specific hazard
rates. Furthermore, it is possible to directly obtain the
transition probabilities when the hazard rates are known.
Thus, complicated estimation based on the data is not
necessary in a time-constant hazards setting.
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These formulas show, that the transition probabilities
from state 0 to state 2 and 3 are independent of the haz-
ard rates after an infection. Nevertheless, they depend on
all the three hazards that are modelled out of state 0. The
state occupation probability of state 0 also depends on
these hazard rates. The transition probabilities from state
1 only depend on the discharge and death hazard after
an HAI. Only the transition probabilities from state 0 to
states 4 and 5 depend on all the five hazards.
The formulas show that all the transition probabilities

depend on time. For t towards infinity the limits exist.
They are shown in (2).

P00(t) → 0
P01(t) → 0
P02(t) → λ02/λ0

P03(t) → λ03/λ0

P11(t) → 0 (2)
P14(t) → λ14/λ1

P15(t) → λ15/λ1

P04(t) → (λ01λ14)/(λ0λ1)

P05(t) → (λ01λ15)/(λ0λ1),

for t → ∞.

The speed of convergence depends on exp(−λ0t) and
exp(−λ1t). The limits are the proportions of patients that
died and were discharged without and with infection at
the end of follow-up. Thus, they can be seen as estimators
for the probabilities to be in either of the states at the end
of the hospital stay. The difference in the limit of moving
from state 1 to states 4 and 5 compared to from state 0 lies
in conditioning on conditioning that patients are already
infected.

Attributable mortality of hospital-acquired infections
Schumacher et al. [15] show how the transition probabil-
ities of an extended illness-death model can be used to
obtain estimators for the attributablemortality (AM) of an
HAI and the population attributable fraction (PAF). These
two statistical quantities describe the risk increase of hos-
pital death due to the HAI. The attributable mortality is
defined as

AM(t) = P(D(t) = 1|E(t) = 1)−P(D(t) = 1|E(t) = 0),

where D(t) indicates if the patient died by time t and E(t)
if an HAI was acquired by time t.
If AM(t) is greater than zero, patients that acquire

an HAI up to time t have a higher death risk than
patients that don’t acquire an infection until then. The
higher AM(t) the higher is the risk of death for infected
patients compared to patients without infection. If AM(t)

is smaller than zero, then uninfected patients have a
higher risk of death.
The PAF is defined as

PAF(t) = P(D(t) = 1) − P(D(t) = 1|E(t) = 0)
P(D(t) = 1)

.

It indicates to what amount the overall hospital mortal-
ity would decrease, if there were no HAIs. The resulting
fraction is similarly interpreted as AM(t). If PAF(t) is
greater than zero, the occurrence of HAIs up to time t
increases the risk of death and therefore the overall death
risk. The closer PAF(t) is to one, the higher is the attri-
bution of death due to an HAI to the overall death risk at
time t.
Given the formulas proposed by Schumacher et al. for

infections that were only acquired after hospital admis-
sion (P(X(0) = 0) = 1 and P(X(0) = 1) = 0), we can
calculate by using (1) that

P(D(t) = 1|E(t) = 1) = P05(t)
P01(t) + P04(t) + P05(t)

(3)

= λ15
λ1(λ1 − λ0)

{
λ1−λ0−λ1exp(−λ0t)+λ0exp(−λ1t)

1 − exp(−λ0t)

}

and

P(D(t) = 1|E(t) = 0) = P03(t)
P00(t) + P02(t) + P03(t)

(4)

= λ03(1 − exp(−λ0t))
λ01 exp(−λ0t) + λ02 + λ03

.

The overall hospital mortality is the sum of the death
risk without and with an HAI among all initially unin-
fected patients. Thus,

P(D(t) = 1) = P03(t) + P05(t). (5)

Note that in this setting t should be interpreted as
time since hospital admission. Above, as we are in a
time-constant hazards setting, t (denoted as t̃) could
be seen as any time-window starting from an arbitrary
time-point s since admission. This matter is explained in
“The extended illness-death model”.
The formulas show that the risk of death given no HAI

depends only on the hazard rates without infection. In
contrast, the risk of death given an HAI depends on all
five hazards. Moreover, there is a clear difference between
P03(t) and P(D(t) = 1|E(t) = 0) and between P05(t) and
P(D(t) = 1|E(t) = 1).
P05(t) is the probability to die by time t with an infection

for an initially uninfected patient. P(D(t) = 1|E(t) = 1)
is P05(t) devised by the probability of having acquired an
infection by time t. This probability is the sum of P01(t),
P04(t) and P05(t) (in the data example the sum of the lower
three graphs in Fig. 3), which is the cumulative incidence
function of the acquisition of an infection. In other words,
P(D(t) = 1|E(t) = 1) is the proportion of patients that die
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with infection by time t among patients with an infection
at time t.
Similarly, P03(t) is the probability to die by time t with-

out infection for an initially uninfected patient. In other
words, it is the proportion of patients that die without an
infection by time t. P(D(t) = 1|E(t) = 0) conditions on
being infection-free until time t. This condition can be
expressed as the converse probability of the acquisition of
an infection. Thus, P(D(t) = 1|E(t) = 0) is the proportion
of all uninfected patients at time t that die by time t.
Taking the limits of Eqs. (3), (4) and (5), we get

P(D(t) = 1|E(t) = 0) → λ03
λ02 + λ03

(6)

P(D(t) = 1|E(t) = 1) → λ15
λ1

P(D(t) = 1) → λ03λ1 + λ01λ15
λ0λ1

for t → ∞.

Interestingly, the limit of the probability that a hospital
stay with noHAI ends in death is independent of the infec-
tion hazard. Moreover, the limits of P15(t) and P(D(t) =
1|E(t) = 1) are the same. P15(t) is the proportion of all
infected patients that die by time t. In contrast to P15(t),
P(D(t) = 1|E(t) = 1) takes into account that all patients
were initially uninfected. For t towards infinity eventually
all patients that ever had an infection are observed to have
acquired the infection.
The limits of AM(t) and PAF(t) are

AM(t) → λ02λ15 − λ03λ14
λ1 (λ02 + λ03)

(7)

PAF(t) → λ01 (λ02λ15 − λ03λ14)

(λ02 + λ03) (λ03λ1 + λ01λ15)

for t → ∞.

The limit of AM(t) is independent of the infection haz-
ard λ01. The probability of being infected and still in the
hospital for t → ∞ is 0. The fraction λ02

λ02+λ03
is the prob-

ability that the patient was discharged at the end of the
hospital stay, given he didn’t acquire an HAI. This fraction
is multiplied by the end-of-stay probability that the patient
died, given he had an HAI. This part of the difference rep-
resents the negative impact of an HAI. From this quantity
the probability that the opposite happens (death given no
HAI, discharge given an HAI) is subtracted. Moreover, the
limits are exactly the same number we would get, when
disregarding the time of acquisition of an HAI.
PAF(t) converges to a value that also depends on the

infection hazard. As the PAF is a measure for the over-
all mortality risk, the quantity depends on the amount
of patients that acquire an HAI. If the infection is rare,

then the overall mortality risk is not as much increased
as for a large infection rate, given the same mortality and
discharge rates.
In the companion paper, the limits (2) and (7) are inter-

preted and linked to the results of a logistic regression
analysis.

Results and discussion
In this section, we demonstrate how to apply the for-
mulas from the sections “Closed mathematical forms for
the transition probabilities” and “Attributable mortality
of hospital-acquired infections” to a real data example.
We use the publicly available los.data from the R-package
etm. The data is a sample from the SIR-3 cohort study.
This is an observational cohort study from the Char-
ité university hospital in Berlin, Germany. The data was
prospectively accessed to examine the effect of HAIs in
intensive care (ICU) [16]. The study followed 756 patients
over the time period from February 2000 until July 2001.
Of these patients 475 patients were discharged alive with-
out an HAI and 157 died without an HAI. Of the 124
patients that acquired an HAI, 90 were discharged and 34
died. In this sample of the SIR-3 cohort study none of the
patients were censored.
We first use non-parametric Markov methods to esti-

mate the transition specific hazard rates and the transi-
tion probabilities. The non-parametric hazard rates are
estimated with the R-package bshazard [17]. This pack-
age uses B-splines to obtain smooth estimators of all
transition-specific hazards based on the data sample.
In order to estimate the transition probabilities non-
parametrically, we use the R-package etm [12]. This
package uses matrix multiplication to obtain the Aalen-
Johansen estimators for all possible transition probabili-
ties in a multi-state Markov model. A detailed description
is given in the tutorial by Allignol et al. [12].
In order to apply the closed mathematical forms of the

transition probabilities, we further estimate the constant
hazard rates based on the data. The maximum likelihood
estimator of each transition specific hazard is simply the
occurrence/exposure rate [4], given by

λ̂ij = Number of i → j transitions
Summed patient-days in state i

. (8)

These are the time-constant counterparts of the non-
parametric transition-specific hazard rates of the data. A
formal derivation of the parametric estimators is provided
in the Appendix.
Figure 2 shows the non-parametric transition-specific

hazard rates with their parametric counterparts that are
based on (8). The figure shows that the time-constant
parametric hazards roughly approximate the bshazard-
based ones. While the infection hazard as well as the
discharge and death hazard after an HAI seem to be more
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Fig. 2 Hazard rates of los.data estimated with non-parametric (straight line) and parametric (dotted line) methods

or less constant, this is not the case for the discharge and
death hazards without an HAI.
In a next step the time-constant hazard rates

are plugged into Eq. (1) to obtain the transition
probabilities. Figures 3 and 4 show the resulting
curves next to the transition probabilities that are
based on an estimation with etm. In Fig. 3 the
transition probabilities from state 0 are illustrated.
Since all patients start in state 0 at time zero, we estimate
and show the graphs from time origin. The plots show
that the probability to stay in the ICU quickly decreases
while the probability of discharge and death without an
HAI increase. The probability of discharge without an
HAI is clearly larger than the death risk. The probability
to acquire an HAI and still being an inpatient is a bit
lower and reaches a peak around day 10. The risk of first

acquiring an infection and then dying or being discharged
is also quite low due to the relatively low infection risk.
The plots further show that the parametric estima-

tors behave in the same way as the non-parametric ones.
Despite the circumstance that not all the transition-
specific hazard rates seem to be constant, the transition
probabilities of the two approaches appear quite simi-
lar. Though there are observable discrepancies. These are
mainly due to the discharge hazard which is not constant.
Patients are more likely to be discharged after about seven
to ten days since admission than on other days. More-
over, this hazard has the strongest impact as most of the
patients are discharged without an HAI.
Figure 4 shows the transition probabilities from state 1

for two different landmark time points (days four and ten
after ICU admission). Since we assume a Markov model,

Fig. 3 Transition probabilities from state 0 of los.data estimated with non-parametric (straight line) and parametric (dotted line) methods
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Fig. 4 Transition probabilities from state 1 of los.data estimated with non-parametric (straight line) and parametric (dotted line) methods at the
landmark time points 4 and 10 days after admission

the transition probabilities in state 1 are defined since
time origin. Nevertheless, as an HAI can’t occur before
three days after admission per definition, no events hap-
pen before day four. Therefore, in practice the transition
probabilities become more relevant at later time-points.
Hence, we have chosen to estimate the transition proba-
bilities at the landmarks four and ten.
The parametric approach is independent of the starting

time point s. Accordingly, the transition probabilities esti-
mated with the formulas are the same for both landmarks.
In the non-parametric approach we observe slight differ-
ences between the landmarks. The estimators at landmark
four are the same as those at time-origin zero. At land-
mark ten, the probability of staying in the ICU with an

HAI seems to be slightly decreased compared to land-
mark four. In contrast, the discharge chances seem to be
increased while the death risk is also slightly decreased.
These observed discrepancies arise mainly from the
death hazard with HAI which is slightly decreasing.
Nevertheless, these differences between the two land-
marks are minor and the parametric estimators nicely
approximate their non-parametric counterparts at both
landmarks.
Furthermore, we used the time-constant hazard rates as

plug-in values in (3) to (5) to obtain parametric estima-
tors for AM and PAF. In Fig. 5 we see the overall hospital
mortality, the mortality risk given no HAI and the mor-
tality risk given an HAI. Figure 6 shows the resulting AM

Fig. 5Mortality risks in los.data for uninfected and infected patients, as well as the overall risk estimated with non-parametric (straight lines) and
parametric (dotted lines) methods
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Fig. 6 Attributable mortality and population attributable fraction of HAIs for los.data estimated with non-parametric (straight lines) and parametric
(dotted lines) methods

and PAF. The plots show both, the parametric and the
non-parametric, estimators.
The figures demonstrate that both, the mortality risks

and the quantities AM and PAF, are roughly approximated
by their parametric analogous. The limits are the same.
The overall mortality and the mortality given that no

infection occurs, shown in Fig. 5, increase strongly up to
40 days after admission to the ICU and then both converge
to ∼ 0.25. Thus, past 40 days the overall hospital mortal-
ity and hospital mortality given that no infection occurs
until that time is approximately 25%. The two curves show
no big difference. This may either imply that the mortality
risk among already infected patients is not very different
to that of still uninfected patients or that the infection risk
is very low. Then, infected patients have not a great influ-
ence on the overall mortality risk. In our case, we have a
comparable low infection risk, but also the risk of death
for already infected patients is not highly increased after
an infection as can also be seen in Fig. 5.
The risk of death given that an infection occurred con-

stantly increases until 60 days after admission and then
converges to ∼ 0.28. The risk of death given an HAI is
lower than the overall mortality and the mortality without
an HAI until about 40 days after admission. The reason
for this is that patients have to make a transition from
state 0 to state 1 first in order to be at risk of dying with
an HAI. Thus, events in the group of infected patients
are delayed. We would also like to point out, that infected
patients are observed to die more frequently in the ICU
due to a decreased discharge hazard. While the death haz-
ards before and after an infection are quite similar, the
discharge hazard with an HAI is clearly lower than with-
out an HAI. Thus, the discharge hazards affect the length
of stay in the ICU. Patients with an HAI stay longer in

the ICU and are therefore more often observed to die in
the ICU.
As a consequence, AM and PAF are smaller than zero

in the first 40 days. A plateau is reached about 60 days
after admission. At the end of the hospital stay the AM
is ∼ 0.026 and the PAF is ∼ 0.017. We obtain the same
numbers with Eq. (7) and the time constant hazard rates
estimated with (8).
There are apparent differences between the parametric

and the non-parametric approach, especially observable
in Fig. 6. These differences are consequences of the dif-
ferences in the transition-probabilities which were in this
example mainly due to the non-constant discharge hazard
without HAI.
The complete R code of this analysis is provided in the

Additional file 1. The functions to calculate the parametric
transition probabilities can be used for any data example
that corresponds to an extended illness-death model.

Conclusions
In this paper closed mathematical forms for the tran-
sition probabilities of an extended illness-death model
are derived. Despite the complexity of the mathemati-
cal processes behind the multi-state model, the terms
are accessible for constant hazard rates. Multi-state mod-
els depend on all the hazard rates and additionally on
time. In this paper we reveal the mechanisms underlying
an extended illness-death model with constant hazards.
Moreover, the derived formulas can be used to perform
multi-state analysis in a highly facilitated manner by using
the time-constant hazard rates as plug-in values. These
are easily obtained by dividing the number of observed
events by the total number of patient days (uninfected or
respectively infected). Thus, no sophisticatedmethods are
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needed to obtain a first insight in the determinants and
consequences of HAIs using multi-state methodology.
The application to a specific data example shows that

the results obtained with the time-constant hazards anal-
ysis show the same time-dynamics as those of the non-
parametric Markov methods for multi-state models. The
data is a sample of the SIR-3 cohort, which is a German
observational study from 2001 to access information
about HAIs and the association to hospital mortality. We
use the R-package etm to estimate the transition prob-
abilities. The R-function assumes that the sample fulfils
the Markov assumption. Testing this assumption in the
way described in “The extended illness-death model”, we
obtain non-significant hazard ratios for the time of an
HAI. Therefore, we presume that the Markov assump-
tion is adequate. Note that the test we use only allows a
rejection of the Markov assumption, but does not prove
it’s plausibility. The non-parametric hazard rates are esti-
mated with the R-package bshazard.
A comparison of the non-parametric estimators of the

hazard rates to the parametric ones shows that the infec-
tion hazard as well as the discharge and death hazard
with an HAI are more or less in concordance with the
time-constant ones. The discharge hazard and the death
hazard without an HAI are clearly not constant. Despite
these violations of the constant hazards assumption, all
the transition probabilities obtained with the mathemati-
cal terms show high concordance to the non-parametric
ones. We have made the same experience with larger
datasets onHAIs from France and Spain. Nevertheless, we
recommend to use this parametric approach only as a first
step in the data analysis. If the constant hazards assump-
tion is clearly violated, the resulting estimators offer only
insights into basic data structure and time-dynamics. For a
profound understanding more sophisticated methods are
needed.
We further use the transition probabilities to calculate

the AM and the PAF of HAIs. We present closed math-
ematical forms for the risk of death depending on the
state of infection in the course of time. Together with
the overall mortality risk, these are the components of
the AM and the PAF. In the data example these mathe-
matical terms are compared to the non-parametric ones.
The mathematical forms roughly approximate the results
from the non-parametric estimation. The limits of the
estimators are exactly the same and correspond to an esti-
mation where time of an HAI and infection is completely
neglected [2].
The R-code for the data analysis can be found in the

Additional file 1. We further implemented a function
to calculate the parametric transition probabilities for
any extended illness-death model. The five transition-
specific hazard rates are used as plug-in values and can be
obtained from any dataset of interest. Hence, the R code

can be used to perform a parametric multi-state analysis
or to perform a re-analysis of reports if the five hazard
rates are available from the publication.
As a consequence, we propose that all five hazards (or

the total number of patient days (infected and uninfected)
as well as the observed number of each event) should
always be published. That way the reader has the chance
to retrace the analysis in a simplified setting (see also
Wolkewitz et al. [2]).
In the companion paper [2] we discuss the multi-state

analysis with constant hazards in a more basic man-
ner. The extended illness-death model can be used for
example to estimate the extra length of hospital stay due
to HAIs [18].
The proposed approach has clear limitations as the con-

stant hazards assumption is often not met in practice.
Then, the obtained estimators may be misspecified. In
this case, we recommend to use this parametric approach
only as a first step in the data analysis. Semi- and non-
parametric approaches are often more suitable for a cor-
rectly specified data analysis. Especially when the Markov
assumption is met, a great variety of easily applicable sta-
tistical software is available [10]. Moreover, we have not
derived closed mathematical forms for the variances of
the parametric transition probabilities. For a more com-
prehensive investigation of the data, an estimation of the
deviation from the obtained estimators is essential.
Nevertheless, assuming the highly facilitated setting of

time-constant event rates is sufficient for a first under-
standing of the data.We recommend this approach to gain
a basic understanding of the data and the statistical quan-
tities of interest. We hope this simplified approach leads
to a better understanding of multi-state processes and is
easier to communicate to non-statisticians.
The use of these methods has a wide range of appli-

cations. The extended illness-death model is a general
concept that may be used to study any data setting with
adverse outcomes and a binary time-dependent covariate.

Appendix: Calculation of the transition
probabilities for a Multi-state model with constant
hazards
Short introduction of the general theory
In order to calculate the transition probabilities of an
extended illness-death model with constant hazards we
follow the book of Hougaard [19]. For a deeper under-
standing also for general Markov multi-state models we
refer to Kijima [20] and Aalen et al. [3].
The big advantage of Markov models is the possibil-

ity to obtain the transition probabilities at a time-point
t via Matrix multiplication. Is the model furthermore
time-homogeneous, only the initial distribution and the
one-step transition matrix is needed for a calculation. In
a time-discrete model, this means P(n) = Pn, where P is
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the one-step transition matrix and n is the n-th step. The
one-step transition matrix has entries pij = P(X(n + 1) =
j|X(n) = i) = P(X(1) = j|X(0) = i) [3].
For a time-continuous Markov model the argumenta-

tion is more complex. In order to obtain the transition
probabilities at a time point t > 0, we need to define
the so-called infinitesimal generator λ. The off-diagonal
elements of this matrix are the transition intensities (the
transition-specific hazard rates) of the multi-state model.
The diagonal elements are the negative total hazards (the
sum of the hazards from the initial and transient states).
Thus, each row of thematrix add up zero. The relationship
of P and λ leads to

dP(t)
dt

= P(t)λ, (9)

where P(t) = (Pij(0, t))i,j∈S is the transition probabil-
ity matrix at time t. This equation follows from the
Chapman-Kolmogorov equations. The initial condition is
P(0) = I, where I is the identity matrix [3]. Remark that
λ = dP(0)

dt . A solution of this equation is given by

P(t) = exp(λt) =
∞∑

n=0

(λt)n

n!
. (10)

If λ has distinct Eigenvalues, than the matrix is diago-
nalizable and we have

P(t) = exp(λt) =
∞∑

n=0

(λt)n

n!

= M
∞∑

n=0

(λDt)n

n!
M−1

= M exp(λDt)M−1,

where λD is a diagonalmatrix and M is a regular trans-
formation matrix. In this case the transition probabilities
can be written as the sum of exponential equations. The
Eigenvalues are the exponents. In case where some Eigen-
values have multiplicity higher than one, there exists a
Jordan-Normalform for theMatrix λ. The transition prob-
abilities can then be expressed as combined polynomials
and exponential functions [19].

The transition probabilities of an extended illness-death
model
In this section we explicitly show how to calculate the
transition probabilities of an extended illness-deathmodel
(shown in Fig. 1). The time-constant hazard rates of the
model are denoted λ01, λ02, λ03, λ14, and λ15. The total
hazard is defined as the sum over all hazard ratesmodelled
from a specific state. In the extended illness-death model
the total hazards are λ0 = λ01+λ02+λ03 from state 0 and
λ1 = λ14 + λ15 from state 1.

According to Hougaard [19] the transition probabilities
of this model can be written as

Pij(0, t) = αij1 exp(−λ0t) + αij2 exp(−λ1t) + αij3. (11)

The values λ0, λ1 and 0 are the eigenvalues of the 6 × 6
matrix λ. This is a matrix with the diagonal elements
λ00 = −λ0, λ11 = −λ1 and λii = 0 for i = 2, 3, 4, 5. The
off-diagonal elements are the transition-specific hazard
rates λij = λij if the transition exits, 0 otherwise.
To correctly solve the Eq. (11) under the conditions

imposed by (9), Hougaard introduces boundary and bal-
ance equations. The boundary equations are given by

∑

r
αiir = 1,

∑

r
αijr = 0, i �= j, (12)

for r = 1, 2, 3. The balance equations are

−αijrβr =
5∑

k=0
αikrλik , (13)

where βr (r = 1, 2, 3) are the Eigenvalues of λ. Solving the
Eqs. (12) and (13) for each combination of i = 0, 1 and
j = 1, 2, 3, 4, 5 , we obtain the transition probabilities of
the extended illness-death model.
In the following we provide a simplified way to obtain

the transition probabilities. It is possible to apply the same
trick as used by Hougaard in [19] to calculate the tran-
sition probabilities of an illness-death model. That is, we

define the reduced matrix λred = −λ0 λ01
0 −λ1

of a hid-

den Markov model. The Eigenvalues of this matrix are
λ0 and λ1. This reduction facilitates the calculation of
P00(0, t),P01(0, t) and P11(0, t). After solving the boundary
and balance equations we obtain

P00(0, t) = exp(−λ0t)
P11(0, t) = exp(−λ1t)

P01(0, t) = λ01
(λ1 − λ0)

(exp(−λ0t) − exp(−λ1t))

Now we extend λred by including the hazard rates λ02 and
λ03. We obtain a 6 × 6-matrix with the Eigenvalues λ0, λ1
and 0. By the boundary and balance equations it is easily
calculated that

P02(0, t) = λ02
λ0

(1 − exp(−λ0t)),

P03(0, t) = λ03
λ0

(1 − exp(−λ0t)).

Further, we note that a Markov model is a “nested series
of competing risks” [10]. Therefore, we have a simple com-
peting risks situation (with left-truncated entry times) in
state 1. At each time point t we have P14(0, t)+P15(0, t) =
1 − P11(0, t). The transition probability P14(0, t) is given
by the probability 1 − P11(0, t) times the probability that
the individual ends up in state 4 and not in state 5. This



von Cube et al. BMCMedical ResearchMethodology  (2017) 17:111 Page 11 of 12

corresponds to a Bernoulli-experiment with probability of
success λ14

λ1
that the state is 4. Analogously, for P15(0, t) we

multiply by λ15
λ1

. Thus,

P14(0, t) = λ14
λ1

(1 − P11(0, t)) = λ14
λ1

(1 − exp(−λ1t))

P15(0, t) = λ15
λ1

(1 − P11(0, t)) = λ15
λ1

(1 − exp(−λ1t))

Finally, we calculate P04(0, t) and P05(0, t) by using
P04(0, t)+P05(0, t) = 1−(P00(0, t)+P01(0, t)+P02(0, t)+
P03(0, t)). Analogous to the argument above, we have

P04(0, t) = λ14
λ1

(1− P00(0, t) − P01(0, t) − P02(0, t) − P03(0, t))

=λ01λ14
λ0λ1

− λ01λ14
λ0(λ1 − λ0)

exp(−λ0t)+ λ01λ14
λ1(λ1− λ0)

exp(−λ1t)

P05(0, t) =λ15
λ1

(1 − P00(0, t) − P01(0, t) − P02(0, t) − P03(0, t))

=λ01λ15
λ0λ1

− λ01λ15
λ0(λ1− λ0)

exp(−λ0t)+ λ01λ15
λ1(λ1−λ0)

exp(−λ1t).

Appendix: Maximum likelihood estimation of the
constant hazard rates
Time-constant hazard rates imply that the event times
follow an exponential distribution. Explicitly for the
extended illness-death model (figure ??), this means that
in state 0 an event-time T is assumed to be generated by
exp(λ0) and in state 1 by exp(λ1), where λ0 = λ01 + λ02 +
λ03 and λ1 = λ14 + λ15. The type of event is generated by
λij
λi

for i = 0, 1, j = 1, 2, 3, 4, 5 and i �= j. Note that λij = 0
for i = 0 and j = 4, 5 and also for i = 1 and j = 2, 3.
The parameters we want to estimate with our dataset

are the five transition-specific hazard rates. These can
be obtained by standard maximum likelihood methods.
A general derivation of maximum likelihood methods in
survival and event history analysis is given by Andersen
et al. [21]. A more explicit but less detailed description
of maximum likelihood methods for parametric hazards
estimation of multi-state models is formulated by Ander-
sen and Perme [4]. In the special case of the extended
illness-death model, the maximum likelihood function is

L(λ01, λ02, λ03, λ14, λ15) =
n∏

h=1

∏

i,j∈S
i �=j

(
∏

t≤τ

λijh(t)�Nijh(t)
)

× exp
(

−
∫ Ch

0
λijh(u)du

)

,

where n is the total number of individuals in the dataset,
S = {0, 1, 2, 3, 4, 5} is the state space, τ is the endpoint
of the study time and Ch ≤ τ is the of the event times
independent right-censoring time of individual h. Further,
Nijh(t) is the number of transitions of individual h from

state i to state j in [ 0, t] and �Nijh(t) is the number of
transitions at the time point t. With λijh(t) = λijYih(t) we
denote the individual hazard rate from state i to state j of
patient h. The function Yih(t) = 1{Tih>t} indicates if the
exit time Tih from state i of individual h is greater than
t. In order to obtain the maximum likelihood estimator
we use the standard procedure. First the derivative of the
logarithm of L is calculated. The log likelihood is

log (L (λ01, λ02, λ03, λ14, λ15)) =
n∑

h=1

∑

i,j∈S
i �=j

(
∑

t≤τ

log(λijh(t))�Nijh(t)
)

− λij (Tih ∧ Ch) .

Then, the score statistic of each λij �= 0, i �= j is derived.
For one parameter λij it is given by

∂log(L)

∂λij
=

n∑

h=1

∑

t≤τ

�Nijh(t)
λijh(t)

−
n∑

h=1
(Tih ∧ Ch)

= λij

n∑

h=1

∑

t≤τ

�Nijh(t)
Yih(t)

−
n∑

h=1
(Tih ∧ Ch).

Setting this to zero and solving for the parameter λij we
get as maximum likelihood estimator

λ̂ij =
∑n

h=1
∑

t≤τ

�Nijh(t)
Yih(t)∑n

h=1 (Thi ∧ Ch)
= Nij

Di
,

whereNij is the total number of observed transitions from
state i to state j and Di is the total number of patient-
days in state i. Thus, the maximum likelihood estimator of
the constant hazards in a multi-state model are the basic
“occurrence/exposure rates” [4].
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