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Sample size re-estimation in paired
comparative diagnostic accuracy studies
with a binary response
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Abstract

Background: The sample size required to power a study to a nominal level in a paired comparative diagnostic
accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a
gold standard, depends on the conditional dependence between the two tests - the lower the dependence the
greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus
cannot determine the exact sample size required. One option is to use the implied sample size for the maximal
negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and
unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate
of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated.

Methods: This paper discusses a sample size estimation and re-estimation method based on the maximum
likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence
between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing
the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of
tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard
of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions.

Results: The results show that the type I error rate of the overall experiment is stable using our suggested method
and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error
rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on
the actual number of participants recruited.

Conclusion: We recommend multinomial model maximum likelihood estimation of the conditional dependence
between paired diagnostic accuracy tests at an interim to reduce the number of participants required to power the
study to at least the nominal level.
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Background
An assessment of diagnostic accuracy is crucial in the
development of medical testing procedures [1]. Compar-
ing the accuracy of these procedures in terms of their
sensitivities and specificities [2, 3] relative to a gold
standard, is essential to ensuring that the most appropri-
ate tests are deployed in the clinical setting [4, 5]. The
focus of this paper is sample size re-estimation in the
comparison of two candidate tests to a gold standard.
However, diagnostic accuracy studies do not necessarily
involve comparisons; many such studies report the ac-
curacy of a single test.
At the outset of a study, a sample size is calculated

based on assumptions made about the expected changes
in sensitivity and specificity and, in a prospective design,
the likely prevalence of the condition to be tested for in
the sample. However, the initial assumptions about pa-
rameters in the study, especially the conditional depend-
ence between the two tests, may be revealed to be
inaccurate, resulting in a potentially over- or under-
powered study. A planned interim analysis can allow the
study’s sample size to be updated based on the data
already collected. This involves utilising the information
observed at the interim stage to refine the sample size
estimate. A resulting increase in sample size allows the
time, cost and patient discomfort already invested in the
study to yield valid results while a decrease in sample
size means that less time and cost will be expended
overall and patients will not needlessly undergo un-
necessary testing [6].
There are well-established methodologies for in-

terim sample size re-estimation in treatment studies
for continuous and normally distributed response var-
iables [7–11], some of which provide mechanisms to
maintain blinding in the study [8–10]. Methods also
exist for the re-estimation with binary response vari-
ables [12, 13], and mechanisms to maintain blinding
have been proposed in this more complex situation
where the variance and mean parameters are not sep-
arable [14]. Proschan [15] gives an overview of sam-
ple size re-estimation procedures based on a nuisance
parameter. Specifically, procedures for determining
the difference of means between two samples with a
common, unknown, variance and difference in pro-
portions between two groups, with an unknown over-
all proportion, are considered. In the case of normally
distributed data, the independence of the sample vari-
ance and sample mean ensures that the validity of es-
timates is unaffected by the interim sample size re-
estimation and this is shown to hold asymptotically in
the binary case. However, Proschan does not consider
the case of paired data which is the focus of the
current paper. Furthermore, the implications of sam-
ple size re-estimation in the context of comparative
diagnostics studies, inherently different from those in
treatment (randomised controlled) studies [16], have
not been fully explored in the statistical literature.
A number of salient differences in interim analysis be-

tween studies comparing diagnostic tests and those
comparing treatments are highlighted in Gerke et al. [5]
and Gerke et al. [16]. Firstly, in paired diagnostics accur-
acy studies, full blinding is often not possible, specific-
ally, certain types of test may not be able to be blinded
from the patient, the person administering the test, the
person interpreting the test, or the person measuring
the outcome. However, as long as the results of the two-
tests which are being compared are temporarily blinded
from the person measuring the outcome, this is not a
major threat to a study’s validity [17]. In fact, it has the
advantage that the patients can benefit from their clini-
cians knowing the results of both diagnostic tests after
testing has taken place. Secondly, in diagnostic accuracy
studies, early cessation of the study due to futility is not
as easy to establish as in treatment studies. The reasons
for this are 1) the fact that treatment studies often test a
single outcome while diagnostic studies test two out-
comes, sensitivity and specificity, and futility must be
established for both simultaneously, and 2) patient out-
comes may only be seen further downstream from the
test results [18]. Thirdly, the sample size required for a
hypothesis test in diagnostic studies, powered to a given
level, is closely related to the conditional dependence be-
tween the two testing procedures which has been shown
to present problems in a number of contexts [5, 19–24].
More specifically, the lower the conditional dependence
between the tests, the greater the sample size will be,
with the largest sample size being implied by the max-
imum negative dependence, given the specified alterna-
tive hypotheses. This level of conditional dependence
between the tests is one of the primary factors driving
the required sample size estimate and it is often difficult
to estimate a priori. Gerke et al. [5] assert that for com-
parative diagnostic studies, as long as an interim sample
size re-estimation is planned it bears no threat to the
validity of the study. However, Gerke et al. [5] do not
provide justification for this assertion and, further-
more, their assertion does not take the inherent un-
certainty of the interim data into account. This study
aims to present a method and give practical guide-
lines for its application, for the initial estimation and
interim re-estimation of sample size in a paired diag-
nostic study which will allow utilisation of informa-
tion on the conditional dependence between tests at
the interim to potentially reduce the required sample
size while maintaining the approximate nominal stat-
istical power of the experiment as a whole. While we
present a method of estimating the size of the condi-
tional dependence to reduce sample size, it should
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also be noted that there is a body of literature dealing
with the problems caused by conditional dependence
in other areas [25–27].
The remainder of the article is organised as follows.

The methods section outlines sample size estimation
methods for paired diagnostic test studies, introduces a
motivating example application, and then goes on to
propose a new method for re-estimation based on a
multinomial likelihood. The results section first provides
extensive simulations of the method under various real
world conditions and then moves back to apply the sam-
ple size re-estimation method proposed in this paper to
the motivating example. The article then continues with
a brief discussion of the place of this study in the litera-
ture and the optimal interim sample size to choose. Fi-
nally, the conclusion, summarises and restates the major
outcomes of this study.

Methods
A representation of data from a paired comparative diag-
nostic accuracy study is given in Table 1. The subjects
are initially divided according to whether they are dis-
covered, via the gold standard test, to be diseased or
non-diseased. They are then further subdivided as to
whether they test positive or negative on tests A and B.
For example, the cell nA represents subjects that were
found to have the disease via the gold standard test and
also tested positive on both test A and B, while cell nF
denotes subjects who tested negative on the gold stand-
ard and test B but positive on test A.
A possible initial sample size calculation, using a nor-

mal approximation of the logarithm of the ratio of sensi-
tivities and specificities, and assuming a comparison
between a new test, test A, and an existing test, test B,
follows from Alonzo et al. [21] and a full derivation can
be found therein. The experiment, as a whole tests
jointly both sensitivity and specificity improvement to
pre-specified levels, the sample size is calculated for each
and the largest sample size is chosen to power the study.
Note that this paper concentrates on the situation in
which superiority is tested for both sensitivity and speci-
ficity. However, the method elaborated below should be
extendable to situations where we are interested in test-
ing non-inferiority in either or both of sensitivity and
specificity. For details on the construction of the confi-
dence intervals and hypothesis tests in these situations
Table 1 Paired study design

Diseased Non-diseased

Test B Test B

+ive -ive +ive -ive

Test A
+ive nA nB Test A +ive nE nF

-ive nC nD -ive nG nH
see Alonzo et al. [21]. In the case of the estimation of a
sample size for superiority, the initial sample size calcu-
lation for sensitivity is given by:

np1 ¼ Z 1−βð Þ þ Z 1−α=2ð Þ

logγ1

� �2
γ1 þ 1ð ÞTPRB−2TPPR

γ1TPR
2
B

� �
=π

ð1Þ

where, α is the type I error rate of the study and β is the
power of the study. The main quantity of interest, γ1, is
the ratio of true positive rates=TPRA/TPRB, TPRB is the
true positive rate (sensitivity) on test B, i.e. TPRB = (nA
+ nC) / (nA + nB + nC + nD), TPRA is the true positive
rate (sensitivity) on test A, i.e. TPRA= (nA + nB) / (nA +
nB + nC + nD), TPPR is the proportion of diseased pa-
tients who test positive on both tests, i.e. TPPR = nA/
( nA + nB + nC + nD) and π is the prevalence of disease.
The null hypothesis is that γ1 = 1, the alternative hypoth-
esis is that γ1≠1.
For testing superiority of specificity we are interested

in the true negative rates so the formula is instead:

nn1 ¼ Z 1−βð Þ þ Z 1−α=2ð Þ

logγ2

� �2
γ2 þ 1ð ÞTNRB−2TNNR

γ2TNR
2
B

� �
= 1−πð Þ

ð2Þ

where, γ2, the main quantity of interest is the ratio of
true negative rates =TNRA/TNRB, TNRA is the true nega-
tive rate (specificity) on test A = (nG + nH) / (nE + nF +
nG + nH), TNRB is the true negative rate (specificity) on
test B = (nF + nH) / (nE + nF + nG + nH), and TNNR is
the proportion of non-diseased patients who test nega-
tive on both tests = nH/( nE + nF + nG + nH).
It is interesting to note that, following the notation of

Vacek [25] and considering the population 2 × 2 table
(in Table 1), the conditional dependence of the two tests
can be denoted by eb and ea., the conditional covariance
when the gold standard disease status is positive or
negative, respectively [25]. Therefore, the probability of
both tests being positive can be expressed as TPPR =
TPRA ∙ TPRB + eb and the probability of both tests being
negative TNNR = (1 − TNRA) ∙ (1 − TNRB) + ea. When ea
and eb = 0 the tests are conditionally independent, when
ea and/or eb ≠ 0 the response on one test changes the
probability of that response on the other test. For ex-
ample, when eb > 0 an individual who responds positively
on test A is more likely to respond positively on test B.
For initial estimates of TPPR and TNNR, from Alonzo

et al. [21] we can use the fact that TPPR ≥ (1 + γ1)TPRB

− 1 and TNNR ≥ (1 + γ2)TNRB − 1 to estimate the lower
bounds of the possible values of TPPR and TNNR, under
the specified hypotheses. The required sample size is lar-
gest when TPPR = (1 + γ1)TPRB − 1 and TNNR = (1



Table 2 Interim PET diagnostic study results

Diseased patients Non-diseased patients

Pre-PET Pre-PET

+ive -ive +ive -ive

Post-PET +ive 66 3 Post-PET +ive 21 4

-ive 3 10 -ive 11 69
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+ γ2)TNRB − 1, thus, these estimates represent the “worst
case scenarios” of maximal negative conditional depend-
ence between the tests, conditional on the fixed values
of TPRA and TPRB. The sample size implied by using
these levels of TPPR and TNNR would very likely over-
power the study, i.e. more participants will be recruited
than is strictly necessary to achieve the power specified
by β. The required sample size is smallest when the con-
ditional dependence between tests A and B are maximal,
conditional on the fixed values of TPRA and TPRB, i.e.
when TPPR = TPRB and TNNR = TNRB. The implied
sample size in this case would likely underpower the
study, i.e. too few participants recruited to reach the
power specified by β. The sample size in this “best case
scenario” can be substantially lower than that in the
worst case scenario. Conservatively, it might be thought
a good idea to always use the “worst case scenario” im-
plied sample size estimate which will always power the
study sufficiently. However, in cases where the recruit-
ment and testing of participants comes at a premium,
both financially and in terms of discomfort to the patients,
it might be preferable to apply a more nuanced strategy.
Furthermore, the sample size implied by the “worst case
scenario” implies the highly unlikely condition of a max-
imal negative conditional dependence between two tests,
which are performed on the same patients to detect the
same disease. The implied sample size based on this con-
dition is not recommended [28]. One possibility, to enable
a more accurate evaluation of the conditional dependence
between the two tests, and thus the required sample size,
is to perform a planned interim sample size re-estimation
using this information to refine the sample size estimate.
At a planned interim, where a proportion of the

overall sample size has been collected, we would have
some information about the true values of TPPR,
TNNR, π, TPRB and TNRB, however, these values
would only come from a limited sample size. The
crucial parameters to use in re-estimation are those
related to the conditional dependence between the
tests, i.e., TPPR and TNNR, as these values are diffi-
cult to estimate and, for these parameters, it is un-
likely that research exists which can provide an
approximate value. Conversely, the values of, TPRB

and TNRB, the sensitivities and specificities of an
established test, may have known values in the litera-
ture and these should preferably be used over those
from the relatively small interim sample. For the
value of π,the prevalence, a judgement must be made
as to whether the researcher feels that any pre-
existing estimate of prevalence would be a more ac-
curate reflection of the true prevalence in the specific
study population than any interim estimate. In the ex-
ample given below, we use values for TPPR, TNNR
and π at the interim in the sample size calculation.
Naively, it might appear that interim sample size re-
estimation would entail a straightforward replication of
eqs. (1) and (2) with π, and in the case of (1), TPPR or in
the case of (2), TNNR, replaced with the estimates at the
interim point. However, this approach does not effectively
take into account the inherent uncertainty in the interim
parameter estimates of TPPR, TNNR and π, nor the fact
that only a specific range of values for TPPR and TNNR
are actually possible under the alternative hypothesis. An
approach which does take these factors into account is re-
estimation of the sample size based on maximum likeli-
hood estimation, at the interim, of the parameters in ques-
tion under a multinomial model. This model is
constrained by the hypothesised values of TPRA ,TPRB,
TNRA, and TNRB, i.e. the marginals in Table 1.
Application
The numerical example we use involves an interim sam-
ple size recalculation of a study comparing the incre-
mental benefits to sensitivity and specificity of
augmenting current methods for diagnosing pancreatic
cancer with Positron Emission Tomography (PET) and
computed tomography (CT) technologies. The alterna-
tive hypotheses were that sensitivity would rise from
81% to 90%, and specificity would rise from 66% to 80%,
additionally, the expected prevalence of pancreatic can-
cer from the literature was 47%.
To calculate the sample size for sensitivity equation 1

was used, taking α ¼ 0:05; β ¼ 0:2; γ̂ 1 ¼ 0:9
0:81 ;

dTPRB

¼ 0:81; dTPPR ¼ 0:71, and π̂ ¼ 0:47 gives a sample size
of 598. To calculate the sample size for specificity equa-
tion 2 was used taking α ¼ 0:05; β ¼ 0:2; γ̂ 2 ¼ 0:8

0:66 ;dTNRB ¼ 0:66; dTNNR ¼ 0:46, and π̂ ¼ 0:47 gives a sam-
ple size of 409. The minimum sample sizes for sensitiv-

ity and specificity, given dTPPR ¼ 0:81 anddTNNR ¼ 0:66, are 186 and 106, respectively. Given the
disparity between the minimum and maximum sample
size estimates it was decided to re-assess the sample size
at a planned interim.
Table 2 gives the results after data from 187 participants

had been collected. The observed values at the interim

are: dTPPR ¼ 0:80, dTNNR ¼ 0:66 and π̂ ¼ 0:44. Taking a
naive approach and plugging these values directly into
equations 1 and 2 the implied sample sizes for sensitivity
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become 242 and for specificity 100, giving a total sample
size for the study of 242 (or 342 and 145, respectively,
had we also used the interim values of TPRB and TNRB).
However, this method does not take into account the fact

that dTPPR and dTNNR are random variables and we are
actually interested in the true value of the probability of
TPPR and TNNR under the specified alternative hypoth-
esis. In fact, had the observed value for TPPR been equal
to 0.86, the sample size given via the naive method would

have been −22, given the fact that dTPPR would have been
larger than both TPRA and TPRB. Clearly, the naive
method, which uses the random value of a single cell, is
inappropriate and a method that uses information about
the value of TPPR from all of the observed cells and the
specified marginals is required.
Sample size re-estimation via maximum likelihood estimation
of TPPR
For illustration purposes, we will discuss the re-
estimation of the sample size for sensitivity, the estima-
tion procedure for specificity is analogous. Taking TPRA

as the test with the highest expected diagnostic utility,
i.e. the “new” test whose performance we are comparing
to the “standard”, the probabilities corresponding to the
cells in Table 1, given the situation of the maximally
negative conditional dependence between the tests are:
p1 = TPRB − (1 − TPRA), p2 = 1 − TPRB, p3 = 1 − TPRA,
p4 = 0. The probabilities of the cells when the condi-
tional dependence between TPRA and TPRB is at its
maximally positive are given by: p1 = TPRB, p2 = TPRA

− TPRB, p3 = 0, p4 = 1 − TPRA. We could alternatively
specify these cell probabilities according to the covari-
ance between the two tests. Specifically, Vacek [25] gives
the maximum value of the covariance as TPRB (1
− TPRA) and the minimum value as −(1 − TPRA)(1
− TPRB). Thus, the maximum and minimum values for
the cells can be ascertained by finding the product of the
marginal probabilities associated with a cell and adding
the minimum or maximum value of covariance, for
cells p1 and p4, or subtracting the values of covariance
for cells p2 and p3. For example, the minimum value
for p1 = TPRA ∙ TPRB − (1 − TPRA)(1 − TPRB). Between
the minimum and maximum values lies every permis-
sible joint configuration. Let these possible joint configu-
rations be expressed as vector, p, with p1 = TPPR,whereP4

i¼1pi ¼ 1; p1 þ p2 ¼ TPRA and p1 + p3 = TPRB.
When the conditional dependence is maximally positive

the sample size required is the smallest, when it is max-
imally negative the sample size required is at its largest. At
the beginning of the experiment we do not know which of
these possible levels of conditional dependence our data
were generated under and thus we use the, usually overly
conservative, largest possible sample size estimate.
However, at the interim we can use our observed data
to infer a likelihood of that data having been generated
under each of the permissible joint configurations of cell
probabilities given the implied range of probabilities
under a multinomial model. A simple method of extract-
ing an estimate of TPPR is to maximise the likelihood
function of the interim data given the values of p im-
plied by the marginal probabilities:

L pjxð Þ ¼
Y4
i¼1

pxii ð3Þ

where p is the vector of joint probabilities defined above
and x are the observed cell frequencies. The constraints
imposed on the above multinomial likelihood make the
parameter space one dimensional, thus, substituting the
constraints in order to express the likelihood in terms of
p1, gives:

L p1jxð Þ ¼ px11 TPRA− p1ð Þx2 TPRB− p1ð Þx3 1− TPRA− TPRB þ p1ð Þx4

ð4Þ

p1∈ TPRB− 1− TPRAð Þ; TPRB½ �

Code to estimate this in R, via optimisation of the
negative log-likelihood, is in the Appendix. In effect, this
method bounds the value for the conditional depend-
ence between the minimum and maximum values under
the specified marginals and then uses information from
the frequency values of the four cells of the table to infer
the most probable value of p1. We can use this estimate

of p1 as our value of dTPPR and use the observed value
of the prevalence (if required) as our measure of π̂ in
equation 1 to re-estimate the sample size at the interim.

Results
Simulation studies
In order to verify the integrity of the method for sample
size re-estimation described and applied above a series of
simulation studies were carried out. The objectives of these
studies were to assess the implications of re-estimating a
sample size based on data already collected on the type I
and II error rates under various permutations of parame-
ters. The type II error rate should be as close to nominal as
possible (i.e. 0.8 in the example above), and the type I error
rate should be minimally affected by the re-estimation.
It should be noted that the statistical power provided by

the sample size implied by the Alonzo et al. [21] method
(when no re-estimation is undertaken) is related to the level
of conditional dependence between the tests, Fig. 1 illus-
trates this relationship. In total 100,000 replications were
generated under the specified true alternative hypothesis
(i.e. γ1 = 0.9/0.81 = 1.11), for the example situation above,
at various levels of conditional dependence between the



Fig. 1 Simulated power of sample size specified by the true TPPR in equation 1 when TPRA=0.9, TPRB=0.81 and π=0.45
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two tests. The number of replications 100,000, is more than
required, however as the computing time to calculate these
was trivial, there was little cost in simulating to this level of
accuracy. This number of simulations was used throughout
this paper. In all cases in Fig. 1 the simulated power was
higher than nominal but where the conditional dependence
was highest the power was greatly over specified. As the
conditional dependence tends towards becoming max-
imally positive, i.e. as TPPR tends towards its maximal
value, the cell nC tends towards 0. This means that the
asymptotic assumptions underlying formulae 1 and 2 and
those underlying the significance test no longer hold. How-
ever, this should not be of too great a concern, with regards
to balancing the minimisation of the required sample size
estimate with the statistical power of the experiment, as the
instances where the power is over specified are when the
sample size is lowest. Additional conservatism at positive
levels of conditional dependence has a significantly lesser
Fig. 2 Simulated power of re-estimation method across various interim sample
impact on the overall sample size than it would have at the
end of the continuum where the conditional dependence is
negative. Whatever the case may be, it should be noted that
the results of re-estimation will follow a similar pattern.
In the first set of simulations, which aim to assess the

stability of the type II error rate, data are generated under
the conditions TPRA = 0.9,TPRB = 0.81, π = 0.45, while the
sample sizes at the interim are varied between 50 and 200
and the values for TPPR are varied between 0.71 and 0.81.
The null hypothesis is: TPRA/TPRB = 1, and our data were
simulated under the alternative hypothesis TPRA = 0.9 and
TPRA = 0.81, with varying levels of conditional depend-
ence within the implied limits. Figure 2 shows how the
power of the experiment overall (i.e. using the data from
both before and after sample size re-estimation) varies as
a function of the interim sample size and the true value of
TPPR. As expected the values follow the same pattern as
that in Fig. 1. The minimum of the nominal power, or very
sizes and levels of true TPPR when TPRA = 0.9, TPRB = 0.81 and π = 0.45
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close to it, was achieved at all levels of conditional de-
pendence and at all interim sample sizes.
Table 3 provides information about the mean sam-

ple size, bias, coverage and Root Mean Squared Error
(RMSE) (from the value specified by equation 1 using
the true value of TPPR for the simulated data) under
the combinations of conditional dependences and in-
terim sample size. The sample sizes implied by Equa-
tion 1 for maximal and minimal levels of conditional
dependence are 194 and 625, respectively. The in-
terim sample sizes of 50, 100, 150 and 200 were
chosen to illustrate the effects of choosing various in-
terim sample sizes that were smaller than the total
sample size of 242 calculated by the Alonzo method
described above for our application.
An increasing interim sample size does not have that

great an impact on the average estimated sample size.
Table 3 Mean sample size (S.D.), bias, coverage and RMSE of simula
true levels of TPPR when TPRA= 0.9, TPRB = 0.81 and Prevalence = 0

Mean sample size

N = 50 N = 100 N = 150 N = 200

TPPR

0.81 217(77) 202(35) 198(23) 205(17)

0.80 256(114) 241(71) 238(56) 241(48)

0.79 297(139) 283(92) 281(72) 282(62)

0.78 338(155) 326(105) 325(83) 325(70)

0.77 381(166) 371(114) 369(89) 369(75)

0.76 423(170) 415(118) 413(92) 413(78)

0.75 465(171) 460(118) 457(93) 456(79)

0.74 506(166) 503(115) 501(91) 500(78)

0.73 546(156) 546(107) 545(86) 543(73)

0.72 585(143) 588(95) 88(76) 586(65)

0.71 621(124) 629(75) 630(59) 629(50)

Coverage

N = 50 N = 100 N = 150 N = 200

TPPR

0.81 0.923 0.925 0.924 0.923

0.8 0.936 0.937 0.936 0.936

0.79 0.942 0.943 0.944 0.943

0.78 0.947 0.947 0.947 0.946

0.77 0.948 0.948 0.949 0.947

0.76 0.949 0.950 0.950 0.949

0.75 0.950 0.950 0.949 0.950

0.74 0.950 0.950 0.950 0.950

0.73 0.950 0.951 0.951 0.951

0.72 0.951 0.949 0.950 0.951

0.71 0.949 0.949 0.950 0.950
However, it does have a large impact on the RMSE. Thus,
choosing a larger interim sample size at which to re-
estimate will ensure a more accurate sample size re-
estimate in individual cases, meaning that the experiment
will be more likely to be powered to the appropriate level
while recruiting as few participants as possible. Of course,
if the interim sample size is chosen to be too large
then there is a risk of having already recruited too
many participants at the interim. Therefore, some
sensible trade-off is required. The bias and coverage
seem to be at acceptable levels although the coverage
does dip when the conditional dependence between
the tests is high.
A second set of simulations was run to assess the per-

formance of the method under the null hypothesis
where γ1 ¼ TPRA

TPRB
¼ 1 . Table 4 shows the cell probabil-

ities for these simulations. Rather than report across the
ted sample sizes with varying interim sample size estimates and
.45. (N = interim sample size)

Bias

N = 50 N = 100 N = 150 N = 200

−0.00091 −0.00027 0.00018 0.00048

−0.00031 0.00035 0.00062 0.00064

−0.00007 0.00069 0.00072 0.00068

0.00045 0.00056 0.00082 0.00062

0.00043 0.00054 0.00058 0.00050

0.00054 0.00035 0.00054 0.00041

0.00069 0.00056 0.00029 0.00033

0.00029 0.00028 0.00031 0.00031

0.00047 0.00045 0.00022 0.00022

0.00043 0.00027 0.00017 0.00022

0.00024 0.00037 0.00033 0.00019

RMSE

N = 50 N = 100 N = 150 N = 200

80 36 23 18

115 71 62 48

140 92 72 62

156 105 80 70

166 114 89 75

171 118 92 78

171 119 93 79

166 115 91 78

156 107 86 73

143 95 76 65

124 75 59 50



Table 5 Type I error rate, Mean sample size (S.D.), bias,
coverage and RMSE of simulated sample sizes under various
simulation settings

N = 50 N = 100 N = 150 N = 200

Type I error rate

TPPR

0.81 0.050 0.050 0.050 0.050

0.76 0.050 0.050 0.050 0.050

0.71 0.050 0.050 0.050 0.050

Mean sample size

TPPR

0.81 304(121) 298(78) 297(61) 296(52)

0.76 463(159) 457(107) 454(84) 453(71)

0.71 627(118) 631(74) 630(58) 629(50)

Bias

TPPR

0.81 0.00207 0.00224 0.00198 0.00186

0.76 0.00147 0.00110 0.00100 0.00087

0.71 0.00021 0.00023 0.00005 −0.00019

Coverage

TPPR

0.81 0.952 0.951 0.950 0.951

0.76 0.950 0.949 0.949 0.949

0.71 0.948 0.949 0.950 0.949

RMSE

TPPR

0.81 164 130 119 115

0.76 168 117 95 83

0.71 118 74 59 50
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entire range only the minimum, 50% (i.e., median) and
maximum levels of TPPR are reported.
Table 5 shows the type I error rate, mean sample size,

bias, coverage and RMSE of simulated sample sizes under
various simulation settings. At all levels of conditional de-
pendence and at all interim sample sizes the type I error
rate is close to the specified levels. Again, the inference to
be made from the RMSE value is that a larger sample size
provides a more accurate estimate of the full sample size
required, reducing the extent to which an experiment will
be over or underpowered in individual cases. The bias and
coverage also appear to be at acceptable levels.
Table 6 gives the results of a range of simulations under-

taken at various values of TPRA, TPRB and π in both true
alternative and null cases. Regarding the best sample size to
specify at the interim, a possible balance to be struck be-
tween a suitably large interim sample, which would increase
the precision of the measure of conditional dependence,
and minimising the overall experimental sample size would
be to take the minimal possible sample size for the experi-
ment as a whole at the interim. In this way, the interim
sample could never be larger than the overall required sam-
ple size, which means that it is impossible to collect more
data than actually needed. Yet, the minimum possible over-
all sample size represents a significant proportion of the
total experimental sample size. Thus, for the values in Table
6, the sample size re-estimate was conducted at the number
implied by equation 2, when TPPR is at maximal value
given the marginals. The maximum positive, mid-range
and maximum negative levels of TPPR were reported to
show a range of values across different levels of TPPR. The
mean sample size is provided in parentheses in order to
allow intuition about the reduction in the sample size this
method brings. In all cases, where data were generated
under the true alternative hypothesis, the simulated power
is above or very close to the nominal value. Furthermore, in
all cases where data were generated under the true null hy-
pothesis the size is close to the nominal value. Comparing
the mean sample sizes given for the maximal and mid-
point TPPRs against the fixed values that would be used if
Alonzo et al. [21] had been followed we can see that the
sample size re-estimation method outlined above can dra-
matically reduce the required sample size to power an ex-
periment to the minimum of a nominal level.
Table 4 Simulation settings to estimate Type I error

pA pB pC pD TPRA TPRB γ

0.81 0.045 0.045 0.10 0.855 0.855 1

0.76 0.095 0.095 0.05 0.855 0.855 1

0.71 0.145 0.145 0.00 0.855 0.855 1
Application revisited
Given the robustness of the proposed method of sample
size recalculation described and validated in simulation
above, we return to apply it to the application presented
earlier in this paper. The cell probability values at max-
imum positive conditional dependence for diseased pa-
tients under the specified values of TPRA and TPRB are
p̂ 1 ¼ 0:81; p̂2 ¼ 0:09 , p̂3 ¼ 0 , p̂ 4 ¼ 0:1 . The cell prob-
ability values at maximum negative conditional depend-
ence for diseased patients under the specified values
of TPRA and TPRB are p̂1 ¼ 0:71; p̂2 ¼ 0:19, p̂3 ¼ 0:10,
p̂ 4 ¼ 0. Table 7 shows an example range of the permis-
sible values under the specified values of TPRA and TPRB.
Given this, we can create a likelihood of our observed
interim data having come from each possible configur-
ation of the alternative hypothesis using equation 3.
Applying the method outlined in section 3, we take;dTPRA ¼ 0:9, dTPRB ¼ 0:81, observed n̂A ¼ 66, n̂B ¼ 3;
n̂C ¼ 3, n̂D ¼ 10 and n̂ E þ n̂ F þ n̂G þ n̂H ¼ 105, im-
plying π̂ ¼ 0:439 . Using equation 4 the maximum



Table 6 Simulated type I and II error rates and fixed maximal sample size values under various true values of TPRA, TPRB and
prevalence across various levels of conditional dependence (average sample size given in brackets)

TPRb TPRa prev = 0.1 prev = 0.3 prev = 0.5

Alternative Null Fixed Alternative Null Fixed Alternative Null Fixed

Maximum positive TPPR 0.5 0.6 0.979(871) 0.049(1255) 7084 0.977(289) 0.05(417) 2361 0.977(172) 0.048(249) 1417

0.5 0.7 0.98(434) 0.047(616) 1585 0.98(143) 0.047(204) 528 0.978(85) 0.049(122) 317

0.5 0.8 0.986(297) 0.048(401) 622 0.985(98) 0.047(133) 207 0.985(58) 0.048(79) 124

0.5 0.9 0.991(232) 0.048(279) 303 0.99(76) 0.046(92) 101 0.989(45) 0.046(54) 61

0.6 0.7 0.976(858) 0.047(1244) 5505 0.975(284) 0.05(414) 1835 0.975(170) 0.047(248) 1101

0.6 0.8 0.978(431) 0.048(605) 1185 0.979(142) 0.049(200) 395 0.976(84) 0.048(119) 237

0.6 0.9 0.984(297) 0.045(375) 442 0.984(98) 0.047(124) 147 0.985(58) 0.046(74) 88

0.7 0.8 0.974(846) 0.048(1222) 3930 0.973(281) 0.05(410) 1310 0.971(167) 0.049(245) 786

0.7 0.9 0.979(431) 0.049(575) 789 0.978(142) 0.046(190) 263 0.976(84) 0.049(114) 158

0.8 0.9 0.971(837) 0.048(1195) 2357 0.971(277) 0.051(398) 786 0.97(165) 0.049(238) 471

50%TPPR 0.5 0.6 0.802(3974) 0.05(4050) 7084 0.806(1321) 0.049(1347) 2361 0.8(792) 0.049(807) 1417

0.5 0.7 0.82(1013) 0.048(1082) 1585 0.822(336) 0.52(358) 528 0.818(200) 0.05(214) 317

0.5 0.8 0.856(462) 0.049(517) 622 0.854(153) 0.046(171) 207 0.854(91) 0.048(102) 124

0.5 0.9 0.911(270) 0.043(298) 303 0.908(89) 0.046(98) 101 0.905(52) 0.047(58) 61

0.6 0.7 0.809(3175) 0.049(3277) 5505 0.805(1056) 0.05(1090 1835 0.804(633) 0.049(653) 1101

0.6 0.8 0.839(809) 0.051(891) 1185 0.838(268) 0.052(295) 395 0.835(160) 0.052(176) 237

0.6 0.9 0.885(371) 0.046(416) 442 0.888(122) 0.047(137) 147 0.881(72) 0.047(82) 88

0.7 0.8 0.809(2379) 0.053(2513) 3930 0.813(792) 0.052(836) 1310 0.812(474) 0.053(500) 786

0.7 0.9 0.863(607) 0.05(687) 789 0.868(201) 0.052(228) 263 0.864(120) 0.051(136) 158

0.8 0.9 0.832(1585) 0.05(1753) 2357 0.836(528) 0.051(583) 786 0.832(316) 0.051(349) 471

Maximal negative TPPR 0.5 0.6 0.796(7105) 0.05(7109) 7084 0.797(2360) 0.49(2361) 2361 0.797(1413) 0.05(1414) 1417

0.5 0.7 0.812(1608) 0.047(1609) 1585 0.804(533) 0.051(534) 528 0.81(318) 0.05(318) 317

0.5 0.8 0.827(639) 0.05(641) 622 0.829(211) 0.049(212) 207 0.832(126) 0.049(126) 124

0.5 0.9 0.87(312) 0.05(317) 303 0.867(103) 0.048(104) 101 0.868(61) 0.048(62) 61

0.6 0.7 0.798(5522) 0.05(5519) 5505 0.796(1836) 0.049(1836) 1835 0.798(1099) 0.05(1099) 1101

0.6 0.8 0.812(1204) 0.051(1205) 1185 0.0818(399) 0.051(400) 395 0.812(238) 0.051(238) 237

0.6 0.9 0.844(451) 0.048(456) 442 0.842(149) 0.047(151) 147 0.839(89) 0.047(90) 88

0.7 0.8 0.799(3944) 0.049(3943) 3930 0.806(1311) 0.049(1311) 1310 0.803(785) 0.048(785) 786

0.7 0.9 0.824(799) 0.052(803) 789 0.826(265) 0.05(266) 263 0.824(158) 0.05(159) 158

0.8 0.9 0.806(2366) 0.052(2368) 2357 0.808(787) 0.05(788) 786 0.808(471) 0.051(471) 471

Table 7 Example range of cell probabilities based on: TPRA= 0.9
and TPRB = 0.81

p1 p2 p3 p4 TPRA TPRB

0.81 0.09 0.00 0.10 0.9 0.81

0.80 0.10 0.01 0.09 0.9 0.81

... ... ... ... ... ...

0.72 0.18 0.09 0.01 0.9 0.81

0.71 0.19 0.10 0.00 0.9 0.81
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likelihood value of dTPPR is 0.793. Given the fact that π
is binomially distributed, the maximum likelihood esti-
mate for the prevalence is equal to the observed preva-
lence, π̂ . Taking these values and inserting them into
equation 1 we get the value for the sample size required
for sensitivity as 275. Taking dTNRA ¼ 0:8 and dTNRB

¼ 0:66, with the observed values n̂ E ¼ 21, n̂ F ¼ 4; n̂G

¼ 11, n̂G ¼ 69 and n̂A þ n̂ B þ n̂C þ n̂D ¼ 82, imply-
ing 1−π ¼ 0:561 . Using equation 3 to derive the max-
imum likelihood of the cell probabilities for specificity
we estimate that dTNNR ¼ 0:635. Inserting these values
into equation 2 gives us a sample size estimate of 136.
Thus, the updated sample size, in order to use the
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interim information about the conditional dependence
between the tests and to preserve a minimal nominal
power of 0.8 should be 275.

Discussion
This paper has presented a robust method of sample size
re-estimation for use in paired diagnostic accuracy stud-
ies where the conditional independence between the two
tests may be unknown or inaccurately estimated at the
start of the study. In terms of the recommendation of
sample size estimation for the experiment as a whole a
specific protocol is suggested given the results. Rather
than basing the estimate for the experiment as a whole
on the case where there is the maximal negative condi-
tional dependence between tests – thus the largest pos-
sible sample size - as suggested in Alonzo et al. [21], we
would suggest an alternative strategy, the robustness of
which is highlighted in Table 6. Specifically, initially esti-
mating the sample size at the maximal positive condi-
tional dependence between tests, i.e. using TPPR = TPRB

- giving the smallest possible sample size - then, re-
estimating the final sample size using the method simu-
lated in Table 6. As long as the initial estimate for preva-
lence is close to accurate, this protocol is deemed
appropriate as it balances the risk of collecting more
participants than might actually be needed with collect-
ing the most information about the true conditional de-
pendence at the interim. Table 6 provides strong
evidence for the integrity of this method in providing at
minimum the nominal power while reducing the sample
size when we have a higher than maximally negative true
conditional dependence. Should the interim sample size
be some other value, the maximum likelihood method
will still be appropriate, although it should be kept in
mind that the larger the interim sample size, as a pro-
portion of the total possible sample size, the more accur-
ate the interim sample size estimates will be, for
individual cases.
Interestingly, the sample size values in the table seem to

be somewhat greater, even when using our method than
those typically seen in the literature in diagnostic test ac-
curacy studies, see for example van Enst et al. [29] Al-
though it is difficult to know the specifics of the 859 studies
mentioned in the van Enst collection of meta-analyses, e.g.
clinically significant differences, sample size estimation and
hypothesis testing procedures, it is striking that the 50% co-
variance sample size is only 87 (IQR 45–185) participants.
Very few of our sample sizes in Table 6 are this low for the
size of effect (ratios) we are considering, even using our
method of sample size reduction. It may be that many diag-
nostic accuracy studies commissioned do not carefully con-
sider their sample sizes. While the method discussed here
of estimating the conditional dependence between the tests
via maximum likelihood, given constraints imposed by the
specified marginals and under a multinomial model, is per-
tinent to paired diagnostic accuracy tests, there is little rea-
son why similar processes could not be extended to similar
problems. The kernel of the method, maximum likelihood
estimation of the parameter related to the conditional de-
pendence using a constrained multinomial model, is
equally valid in other applications involving sample size re-
estimation for paired binary 2 × 2 tables.

Conclusions
In this paper we have described a sample size re-
estimation procedure that can be applied in an interim
analysis for a diagnostic test study that is comparing two
methods of testing on patients that are being followed
up over a period of time. The procedure uses informa-
tion on the levels of conditional dependence between
the two tests at the interim in order to refine the re-
quired sample size for a paired diagnostic accuracy study
with a binary response. Evidence from simulations has
been provided to demonstrate its functionality under
various parameter values thought to reflect a range of
commonly occurring situations. The procedure can be
applied in the case of paired comparative diagnostic ac-
curacy studies in order to more accurately gauge the
sample size required for a given power thereby reducing
both the costs associated with this kind of study and also
the burden on patients.

Appendix R code for maximum likelihood sample
size re-estimation
ss.est.mle <- function(obs.a, obs.b,
obs.c, obs.d, obs.x, tpra, tprb, alpha,
beta){mle.tppr <- function(theta.1,
obs.a, obs.b, obs.c, obs.d, tpra, tprb){-
((obs.a*log(theta.1)) + obs.b*log(tpra-
theta.1) + obs.c*log(tprb-theta.1) +
obs.d*log(-tpra-tprb+theta.1+1))}tppr <-
optim(par=(tpra+(tprb-(1-tpra)))/2 ,fn=
mle.tppr, obs.a=obs.a, obs.b=obs.b,
obs.c=obs.c, obs.d=obs.d, tpra=tpra,
tprb=tprb, method = "Brent", lower=(tprb-
(1-tpra)), upper=tprb)$parobs.prev <-
(obs.a+obs.b+obs.c+obs.d)/(obs.a+obs.b+
obs.c+obs.d+obs.x)alonzo <- function(-
lambda, prev ,beta, alpha, tprb,
gam1){(((qnorm(1-beta) + qnorm(1-alpha))/
log(gam1))^2 * (((gam1+1) * tprb)-(2 *
lambda))/(gam1*tprb^2))/prev}gam1 <- tpra/
tprbss.est <- alonzo(tppr, obs.prev, beta
= beta, alpha = alpha, tprb = tprb, gam1 =
gam1 )return(ss.est)}### Example sensiti-
vityss.est.mle(obs.a=66, obs.b=3, obs.
c=3, obs.d=10, obs.x=105, tpra=0.9,
tprb=0.81, alpha=0.025, beta=0.2)###



McCray et al. BMC Medical Research Methodology  (2017) 17:102 Page 11 of 11
Example specificityss.est.mle(obs.a=69,
obs.b=11, obs.c=4, obs.d=21, obs.x=82,
tpra=0.8, tprb=0.66, alpha=0.025, beta=0.2)
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