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Abstract

Background: Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating
all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently,
network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized
linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling
causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable
in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear
constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the
statistical framework of SEM.

Methods: We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis
models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment
groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach
to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be
undertaken using SEM.

Results: For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence
intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those
in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional
pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique
variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise
comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each
comparison.

Conclusion: SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a
powerful tool for advanced meta-analysis is still to be explored.

Keywords: Randomized controlled trials, Network meta-analysis, Mixed treatments comparisons, Structural equation
modeling, Generalized linear mixed models, Multivariate meta-analysis

Background
Meta-analysis is a very important methodological tool
for evidence synthesis [1]. Traditional meta-analysis
compares outcomes of two groups directly using data
from studies in which the difference in the results between
these two groups were tested. When more than two
groups are to be compared, multiple pairwise meta-
analyses need to be undertaken. When two of those

groups have never been compared directly by any study, it
becomes impossible to undertake the traditional meta-
analysis for them. Even if each pair of those groups have
been compared directly, different pairwise comparisons
involve different studies using different evidence bases in
their comparisons, and the results may not be consistent.
For instance, in three pairwise comparisons for groups A,
B, and C, pairwise meta-analyses may show A is better
than B, B is better than C, but A is not better than C. The
limitations of the traditional approach to comparing mul-
tiple groups have been documented extensively [2–6].
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One recent development in meta-analysis methodology
to resolve those issues is network meta-analysis for com-
parisons of multiple treatment groups [7–15]. Network
meta-analysis incorporates all available evidence into a
general statistical framework to yield consistent results for
comparisons of all available treatments. Whilst the idea of
indirect comparisons for treatments that had not been
tested directly was first proposed in 1990s [16, 17],
Lumley coined the term network meta-analysis and
proposed a linear mixed model approach to compari-
sons of multiple treatments within the same statistical
model [7]. Later, Lu and Ades developed a sophisticated
Bayesian hierarchical model, providing a flexible statis-
tical framework to take into account the complexity in
the data structure within multi-arm trials [11]. Their
statistical approach, widely known as mixed treatments
comparison or Bayesian network meta-analysis, has
been a popular approach to comparisons of multiple
treatments [5, 12, 18, 19].
Several recent articles looked further into the com-

plexity in modeling multiple treatments comparisons
with an attempt to implement Lu and Ades’s approach
within the generalized linear mixed modelling frame-
work [8, 12, 19, 20], to make network meta-analysis
more accessible to clinicians and meta-analysts who are
not familiar with Bayesian statistics. However, it is quite
a challenging task to develop a formal statistical
model for undertaking multiple treatment compari-
sons [9, 11, 18, 19, 21–25]. Two specific issues arise
from implementing Lu & Ades’s Bayesian model into
generalized linear mixed model: First, Lu and Ades’s
approach uses the contrast between two treatment groups,
such as log odds ratio or differences in means, as the
outcome, and consequently, treatment contrasts between
any pair of treatments within a multi-arm study are not
independent; their correlations therefore need to be taken
into account in the model [26, 27]. Secondly, as the ran-
dom effect structure for those treatment contrasts to ad-
dress the heterogeneity becomes increasingly complex
when the number of treatments involved in a network
meta-analysis increases, specifying the random effect
structure with treatment contrasts as the outcomes is not
a simple task [12].
Structural equation modeling (SEM) is a statistical

method originally developed for modeling causal rela-
tions among observed and latent variables. It can also be
used to analyze longitudinal data and its results have
been shown to be equivalent to those from multilevel
modeling. Recent developments in SEM extend its appli-
cation to multilevel data and non-continuous dependent
variables. Consequently, generalized linear mixed model-
ing can now be undertaken within SEM framework. As
random effect is explicitly modeled as a latent variable
in SEM, it is very flexible for analysts to specify complex

random effect structure and to make linear and nonli-
near constraints on parameters. Those advantages have
been shown to be very useful for undertaking multiva-
riate meta-analysis within SEM [28–30]. In our previous
studies, we have shown how to undertake network
meta-analysis by means of generalized linear mixed
modelling [25, 31–33]. In this article, we attempt to de-
velop a SEM approach to network meta-analysis based
on the Lu & Ades’s model. This article is organized as
follows: we first briefly review the Lu & Ades model and
show how it can be implemented within generalized li-
near mixed models using treatment contrasts as the out-
come. We then use an example to show how SEM can
be used to undertake a network meta-analysis for the
fixed and random effect network meta-analysis and how
the weighting for each study can be taken into account.
Finally, we demonstrate how a new approach to network
meta-analysis, namely the unrestricted weight least
squares (UWLS) method, can be implemented in SEM.

Methods
There are two models for network meta-analysis: fixed
effect model assumes that treatment effects are common
across studies, and random effect model assumes that
treatment effects are heterogeneous across studies.

Fixed effect model for network meta-analysis
The fixed effect network meta-analysis for multiple treat-
ment comparisons based on Lu and Ades’s approach can
be specified as:

gðŷk⋅jÞ¼ ηk⋅i ¼
μb⋅j ; b ¼ A;B;C;… if k ¼ b

μb⋅j þ dbk ¼ μb⋅j þ dAk−dAb ; k ¼ B;C;D;… if k is′after′B

(

ð1Þ

where treatments are coded as A, B, C,..., K, and K is the
number of treatments to be compared within the net-
work. The ŷk⋅j is the expected value for yk.j, which is the
observed outcome for treatment k in study j. The g() is a
link function for the model to transform the ŷk⋅j to ηk.j,
which is the expected value given by the model for arm
k in study j, and μb.j is the baseline treatment effect in
trial j. The difference between the other treatment k and
treatment b in the same trial will be estimated by ex-
pressing them in terms of effects relative to the treat-
ment A, which is the global baseline treatment within
the whole network. Due to identification reason and its
interpretation as the effect of treatment A compared to
itself, dAA is fixed at 0, and Lu and Ades called dAB to
dAk the basic parameters. The advantage of expressing
all treatment comparisons as the relations between basic
parameters is that the number of pairwise comparisons
to be estimated for a network meta-analysis involving k
treatments is reduced to k – 1 for the fixed effect [34].
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Random effect model for network meta-analysis
For the random effect network meta-analysis, dbk in
Eq. (1) is replaced by δkb.j, the trial-specific effect of
treatment k relative to trial-specific baseline treatment
b, and the equation is given as:

gðŷk⋅jÞ¼ ηk⋅i ¼
μb⋅j ; b ¼ A;B;C;… if k ¼ b

μb⋅j þ δbk⋅j ; k ¼ B;C;D;… if k is′after′B

(
ð2Þ

These trial-specific effects are then drawn from a nor-
mal distribution: δbk⋅j ∼ Nðdbk ; τ2bkÞ. Then, dbk is expressed
in terms of the basic parameters: dbk = dAk − dAb, with
dAA being fixed at 0 [9, 12, 35]. Note that although the
model in Eq. (2) uses data from each treatment arm of a
study, it selects one treatment within each study as the
trial-specific baseline treatment to estimate the treat-
ment contrast between this baseline treatment and other
treatments within the same study. When a study consists
of more than two treatment arms, it will contribute
more than one treatment contrast, and these treatment
contrasts are not independent. Therefore, δbk.j will follow
a multivariate normal distribution. For instance, suppose
study 1 compares treatment B, C and D, and δBC.1 and
δBD.1 in Eq. (2) for this study will then follow bivariate
normal distribution:

δBC⋅1

δBD⋅1

 !
∼ MVN

dBC

dBD

;
τ2BC cv

cv τ2BD

#!240@
Where cv is the covariance between τ2BC and τ2BD. In

the Lu & Ades approach, all the random effect vari-
ances are constrained to be equal, i.e. τ2BC ¼ τ2BD ¼ τ2,
and cv is 1

2 τ
2 , i.e. the correlation between random

effects is 0.5 [11].

Contrast-based model
To implement the treatment contrasts model in Eqs. (1)
and (2) into general or generalized linear mixed model,
we can either use the contrast-based approach [36],
where treatment contrasts are derived from each study
before undertaking network analysis, or use the arm-
based approach [25, 37], where data from each arm is
used directly. For the contrast-based approach, the
dependency of treatment contrasts within a multi-
arm trial needs to be taken into account in the
model. As taking into account this dependency is not
straightforward in most software packages, data trans-
formation using some matrix algebra techniques can
be used to create an independent dataset [25, 28, 31].
In the contrast-based fixed effect model shown in
Eq. (1), effect size summary odds ratio or risk ratio,

needs to be transformed into natural log odds ratio
or risk ratio, which behaves approximately as a nor-
mal, and the model can now be written as:

Δi⋅j ¼
XK

k¼B
bAktAk þ vi⋅j

vi⋅j ∼ N ð0; σ2i⋅jÞ;
ð3Þ

where Δi.j is the effect size summary of the ith treatment
contrast in study j such as difference in means or log
odds ratio, tAk is the contrast coding dummy variable for
treatment contrast A versus k for k = B to K, bAB to bAK
are regression coefficients for treatment contrasts A ver-
sus B to A versus K in the network, and σ2i⋅j is the known

variance of Δi.j. The vector b for regression coefficients
can be obtained by [38]:

b ¼ XTV−1X
� �−1

XTV−1Δ; ð4Þ

where the matrix X contains all the covariates tAB,
tAC,…, and tAK, X

T is the transposed X, Δ is the vec-
tor of Δi.j, and V−1is the inverse of the block-diagonal
matrix V:

V¼
V1 0 0 0
0 V2 0 0

⋮ ⋮ ⋱ ⋮
0 0 0 VJ

26664
37775

The diagonal elements in V are Vj, j = 1 to J, the
variance-covariance matrix of vi.j in Eq. (3). Vj is a scalar
if study j is a two-arm study and a matrix if study j is a
multi-arm study. Cheung proposed to use Cholesky de-
composition to decompose V−1 = LLT, where L is a lower
triangular matrix and LT is the transpose of L [28]. We
can pre-multiply X and Δ by LT to obtain the trans-

formed matrix Xe ¼ LTX and the transformed vector

Δe ¼ LTΔ. So Eq. (4) can be re-written as:

b ¼ XeTXe� �−1

XeTΔe: ð5Þ

Under this transformation, the impact of vi.j in Eq. (3)

has been absorbed into Xe and Δe , so Eq. (3) can be re-
written as an ordinary least squares model:

Δ
∼

i⋅j ¼
PK

k¼BbAk xAk þ ei⋅j

ei⋅j ∼ N ð0; 1Þ

where Δ
∼

i⋅j is the transformed Δi.j, and xAk is the trans-
formed tAk in Eq. (3).
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Example data: sclerotherapy
The example dataset contains results of 26 studies that
directly compared three treatment groups A, B and C
for prevention of first bleeding in patients with liver cir-
rhosis [39]: A was the control group, B was sclerother-
apy, and C was the use of beta-blocker. The whole
dataset can be found in the Additional file 1. Among the
26 study, two are three-arm trials, and seven compared
A to C and 17 compared A to B. Throughout the ana-
lysis in this article, treatment A was chosen as the global
baseline treatment.
As the outcome is a binary variable, the difference in the

outcome between any two treatments may be expressed
as odds ratio or risk ratio, but to undertake a trial-based
approach, we need to take a natural log transformation of
odds ratio or risk ratio. Here, we used log odds ratio as
the effect size measure. For the three-arm trials, we calcu-
lated two treatment contrasts, A vs B and A vs C, and the
covariance between the two correlated treatment contrasts
is the variance of log odds ratio for treatment A. The re-
gression model for the fixed effect network meta-analysis
is therefore written as:

lnORi⋅j ¼ bABtAB þ bACtAC þ vi⋅j

vi⋅j ∼ N ð0; σ2i⋅jÞ
ð6Þ

where lnORi.j is the ith log odds ratio for study j, σ2i⋅j is
the variance of lnORi.j, tAB is a dummy variable where
treatment contrast for A versus B is denoted 1 and con-
trast for A versus C denoted 0, and tAC a dummy vari-
able where treatment contrast for A versus C is denoted
1 and contrast for A versus B denoted 0. Note that if
there are trials that compared B to C, tAB would coded
−1 and tAC coded 1 for those trials [25]. The regression
coefficient bAB and bAC in Eq. (6) cannot be directly esti-
mated in SEM, because lnORi.j are not independent in
the three-arm trials; but bAB and bAC can be obtained by
transforming lnORi.j, tAB and tAC using the procedure
described in the previous section. For the random effect
model, bAB . j and bAC . j in Eq. (6) are replaced with b�AB:j
and b�AC:j , which are assumed to follow a bivariate nor-
mal distribution:

b�AB:j
b�AC:j

 !
∼MVN

βAB
βAC

;

τ2
1
2
τ2

1
2
τ2 τ2

26664
37775

0BBB@
1CCCA; ð7Þ

where the βAB and βAC are the average treatment effect
difference between A and B and between A and C, re-
spectively; and τ2 is the treatment effect variability
across studies.

Contrast-based SEM network meta-analysis
SEM is a multivariate statistical analysis technique that
is a combination of factor analysis and multiple regres-
sion analysis [40]. Many traditional statistical methods
such as analysis of variance, regression analysis, and fac-
tor analysis can therefore be considered as special
models of SEM. Traditional SEM requires that the out-
come variables and the latent constructs have to be con-
tinuous, but with new development of SEM theory and
software packages, these are no longer limitations of
SEM. As a result, generalized linear mixed models and
SEM can now be considered generalized latent variable
models [41]. The main difference between SEM and
generalized linear mixed models is that random effects
are explicitly specified as latent variables in SEM and re-
lationships between observed/latent variable are expli-
citly specified as causal or non-causal. A comprehensive
overview of SEM is beyond the scope of this article, and
readers can find an in-depth discussion of applications
of SEM to univariate and multivariate meta-analyses in a
series of articles and a textbook [28–30, 42–45].
Although network meta-analysis can now be undertaken

within the statistical framework of generalized linear
mixed models, we feel integrating network meta-analysis
into SEM framework has several advantages: first, network
meta-analysis can be visualized in SEM, and this can be
useful for understanding the complexity of the model,
especially when analysts wish to look into the role of po-
tential effect modifiers or moderators in the comparisons
of multiple treatments by undertaking meta-regression
[46]. Secondly, SEM software packages are more flexible
in making constraints on model parameters such as re-
gression coefficients, variances and covariances, because
random effects are explicitly modelled as latent variables.
Thirdly, SEM is a primary research tool for social scien-
tists, but they are less familiar with network meta-analysis,
which is becoming more and more popular in biological
and medical research. Therefore, integrating network
meta-analysis into SEM framework will bring network
meta-analysis to attentions of greater audiences [45].

UWLS for meta-analysis
Recently, a new approach has been proposed for meta-
analysis, which differs from the standard fixed or ran-
dom effect models [47, 48]. The standard fixed effect
meta-analysis for pairwise comparisons is just weight
least squares regression and can be written as:

Δj ¼ μþ vj ð8Þ

where Δj may be the log odds ratio or difference in
means between two treatments, vj is the standard error
of Δj and vj ∼ N 0; σ2j

� �
, where σ2j is the variance of Δj. In

the (UWLS approach, the variance of vj is in proportion
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to the variance of Δj, i.e. vj ∼ N 0;ϕσ2
j

� �
. The introduction

of variance adjustment factor ϕ to Eq. (8) will not affect
the point estimate for μ, but its standard error will be af-
fected: when ϕ is larger than 1, the confidence interval
for μ will be greater than that given by the standard
fixed effect model, but in contrast, when ϕ is smaller
than 1, the confidence interval for μ will become
smaller. According to recent studies [47, 49], UWLS ap-
proach provides satisfactory estimates and confidence
intervals that are comparable to random effects when
there is no publication bias and identical to fixed-effect
meta-analysis when there is no heterogeneity.

UWLS for network meta-analysis
In network meta-analysis, the numbers of studies involved
in pairwise comparisons are usually quite different, and
the degree of heterogeneity within each pairwise compari-
son also varies. Therefore, network meta-analysis usually
uses random effect model to take into account the hetero-
geneity across the whole network. Currently, the Bayesian
or non-Bayesian network meta-analysis usually assumes a
common variance for the random effect estimation; for in-
stance, our analysis of the example data in the previous
section assumed that the random effect variances for the
comparisons between treatment A and B and between A
and C are identical. This assumption effectively reduces
the number of parameters to be estimated in the model,
rendering it more likely to converge, and saves the
computation time. However, it also makes a strong as-
sumption about the distribution of heterogeneity within
the network meta-analysis and sometimes may yield
ambiguous results. For instance, suppose in a network
meta-analysis involving treatment A, B, C, D and E, only
one trial that compares A and E was found. If the hete-
rogeneity is large in other parts of the network, the
estimated common variance for random effect is likely to
be large but the estimated confidence interval for A-E
comparison would become greater than that reported by
the single trial, even if the evidence within the network is
consistent. This is because the confidence interval for A-E
comparison reported by the random effect network meta-
analysis is the one given under the assumption that A-E
comparison has the same degree of heterogeneity as other
pairwise comparisons in the network.
The standard random effect network meta-analysis

therefore gives rise to a few issues with regard to the as-
sessment of inconsistency between direct and indirect
evidence. For treatment contrasts with few head-to-head
trials, their confidence interval estimated by traditional
pairwise meta-analysis is very likely to be smaller than
that given by the random effect network meta-analysis
assuming a common random effect variance. Conse-
quently, methods for evaluation of inconsistency be-
tween direct and indirect evidence may yield different

results under different assumptions with regard to the
random effect variance [50, 51].
The UWLS approach provides an alternative way to

address the heterogeneity. The parameter ϕ in UWLS
approach can be interpreted from two perspectives: one
is to view ϕ as the dispersion parameter to provide a
correction to the known with-study standard error σ2j .

For a common ϕ, this can be implemented in most stat-
istical packages. However, if ϕ is unique to different
treatment contrasts, it will be far more straightforward
to fit this type of models in SEM. The other way to in-
terpret ϕ is to consider UWLS as a multiplicative ran-
dom effect model, while the traditional random effect
model is additive in the structure of random effect com-
ponents. In other words, ϕ can be viewed as the random
effect τ2 in Eqs. (6) and (7), where the total variance
is ϕ + σ2, but in UWLS the total variance is ϕσ2. Con-
sequently, UWLS is to add ϕ into a fixed effect
model, making it behave similarly to a random effect

model, and a large ϕ̂ indicates large treatment effect
heterogeneity.
For different pairwise comparisons within the network

meta-analysis, we may estimate different ϕ in Eq. (8) for
different pairwise comparisons. We now extend the
UWLS approach to network meta-analysis involving
treatment A, B, C, …, K with p treatment pairs:

Δc:j ¼ dAB þ dAC þ…þ dAK þ vc:j

vc:j ∼ N 0;ϕcσ
2
c:j

� �
ð9Þ

The variable Δc . j is the treatment contrast c, c = 1 to
p, reported by study j, dAk, k = B to K, are the basic pa-
rameters for the comparison between A and k, σ2c:j is the

variance of Δc . j and ϕc is the variance adjustment factor
for treatment contrast c within the network meta-
analysis.

UWLS for SEM network meta-analysis
To implement such a model in SEM requires re-
arrangement of data. Using the example data for illus-
tration, its UWLS model can be written as:

Δc:j ¼ dAB þ dAC þ v1:j þ v2:j; c ¼ 1 or 2

v1:j ∼ N 0;ϕ1σ
2
1:j

� �
v2:j ∼ N 0;ϕ2σ

2
2:j

� �
ð10Þ

where Δ1 . j is the log odds ratio reported by study j that
compared treatment A to B and Δ2 . j the log odds ratio
for study j that compared treatment A to C; dAB is the
average treatment difference between A and B; dAC is
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the average treatment difference between A and C; σ21:j is
the variance of Δ1 . j; σ22:j is the variance of Δ2 . j; and ϕ1

and ϕ2 are the variance adjustment factors for treatment
contrasts A-B and A-C, respectively.
We used SEM software package Mplus (version 7.11,

Muthen & Muthen, Los Angeles, USA) to undertake all
the analyses throughout our study, as Mplus is very fle-
xible in making constraints on parameters estimation.
All the data and Mplus codes in this article can be found
in the Additional file 1.

Results
Contrast-based SEM network meta-analysis for example
data
SEM fits simultaneously a group of regression equations,
which specify the relationships between observed and
latent variables. Latent variables in SEM represent some
hidden constructs that cannot be observed or measured
directly but have to be estimated from a group of ob-
served (also known as manifest) variables. One special
feature of SEM is that the statistical model can be visua-
lized by using a path diagram, and most SEM software
packages allow users to draw their path diagrams and
undertake the analysis directly. In a path diagram, ob-
served variables are in squares, while latent variables are
in circles. A single arrow represents a prediction or
causal relationship, e.g. X→ Y dipicts that X predicts Y
or X causes Y. A double arrow represents a correlation
or covariance, e.g. X↔ Y depicts that X and Y are
correlated. Results show that the log odds ratio for
treatment A and B is −0.485 (95% Confidence Inter-
val [CI]: −0.717 to −0.254) and for A and C is −0.600
(95% CI: -0.932 to −0.268).
Figures 1 and 2 show the path diagrams for Eqs. (6)

and (7) with fixed and random effects, respectively, dem-
onstrating how to use the multilevel SEM to undertake
the random effect network meta-analysis for example

data. In the level-1 model (the Within-level in Fig. 2), y
is the transformed log odds ratio, and xAB and xAC are
the transformed tAB and tAC, respectively. The filled cir-
cle on the arrow from xAB to y represents random slope
that is referred to as s1 in the level-2 model (the
Between-level in Fig. 2). The filled circle on the arrow
from xAC to y represents random slope that is referred
to as s2 in the level-2 model. The variance of s1 and s2
is τ2 in Eq. (7), and their covariance is constrained to
be 1

2 τ
2. Note that in Fig. 2 there is no random intercept,

and the intercept of y is fixed at 0. The arrows from the
variable in triangle to s1 and s2 indicate that the means of
s1 and s2 are estimated, which give rise to βAB and βAC in
Eq. (7). The variance of the residual error term ey is fixed
at unity. Results show that the log odds ratio for treatment
A and B is −0.585 (95% CI: -1.087 to −0.082) and for A
and C is −0.711 (95% CI: -1.438 to 0.016).

UWLS for SEM network meta-analysis for example data
To estimate UWLS model with common variance ad-
justment factors ϕ1 = ϕ2 in Eq. (10), we only need to re-
move the constraint on the variance of ey in the fixed
effect network meta-analysis model shown in Fig. 1.
Table 1 showed results from Mplus for the fixed effect,
random effect, and the two UWLS models. Results from
Mplus show that ϕ is 3.563, and the log odds ratio for
treatment A and B is −0.485 (95% CI: -0.922 to −0.049)
and for A and C is −0.600 (95% CI: -1.227 to 0.027). The

Fig. 1 Path diagram for the fixed effect network meta-analysis model

Fig. 2 Path diagram for the random effect network meta-analysis model
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point estimates are identical to those in the fixed effect
model but the confidence intervals are greater. To esti-
mate the UWLS model with unique variance adjustment
factors in Eq. (10), we need to create two residual error
terms for y: one for studies reporting treatment con-
trasts A-B and the other for those reporting treatment
contrast A-C. Figure 3 shows the path diagram, where y
is the transformed log odds ratios and is regressed on
xAB and xAC, which are the transformed variables tAB
and tAC, respectively. Variables gAB and gAC are dummy
variables for studies reporting treatment contrasts A-B
and A-C, respectively. The filled circle on the arrow
from gAB to y represents random slope that is labelled as
s1, and the filled circle on the arrow from gAC to y repre-
sents random slope that is labelled as s2. The means of
s1 and s2 are fixed at zero, and the variances of s1 and s2
are ϕ1 and ϕ2 in Eq. 8, respectively, with their covariance
being fixed at zero. In this model, the residual error for
y is split into two independent random variables s1 and
s2, and their variances are estimated separately. Results
from Mplus show that the log odds ratio for treatment
A and B is −0.484 (95% CI: -0.958 to −0.010) and for A
and C is −0.600 (95% CI: -1.075 to −0.125). The point
estimates are almost identical to those given by the fixed

effect model, but the confidence intervals are greater.
Compared to the confidence intervals reported by the
UWLS model with common ϕ, the confidence interval
for xAB is greater but that for xAC is smaller. This is be-
cause the variance adjustment factors ϕ1 and ϕ2 are
4.288 and 2.031, respectively, indicating a greater degree
of heterogeneity within A-B head-to-head trials. This is
consistent with results from the traditional pairwise
meta-analyses in which the degree of heterogeneity in
studies reporting treatment contrast A-B is greater than
that of studies reporting contrast A-C.

Discussion
In this article, we demonstrate how to undertake net-
work meta-analysis within the statistical framework of
structural equation modeling. While issues such as the
evaluation of inconsistency between direct and indirect
evidence are important and can be integrated into SEM
framework, it is beyond the scope of the present study
to discuss these issues. Standard statistical software
packages for generalized linear mixed modeling may be
used to analyze the fixed and random effect models dis-
cussed in this article, but SEM software packages are
more flexible in specifying complex covariance structure
and imposing constraints on parameter estimation. Our
results are very close to those reported in previous pub-
lications using the command mvmeta for the statistical
software package Stata [25, 52]. The estimated random
effect variance τ2 is 0.877, which is slightly smaller than
that given by mvmeta in Stata. Mplus only implements
maximum likelihood estimation rather than restricted
maximum likelihood estimation [53], but maximum like-
lihood estimation tends to under-estimate the variance
component in multilevel models [43]. However, metaSEM
package in R has implemented restricted maximum likeli-
hood estimation and can be used to fit multivariate meta-
analysis and network meta-analysis [43, 53].
It is quite straightforward to implement UWLS ap-

proach to network meta-analysis with heteroscedastic er-
rors in SEM. In the UWLS approach, the between and
within-study heterogeneities are considered multiplicative

Table 1 Results of four SEM models for the example data

Fixed effect model Random effect model UWLS model with common ϕ UWLS model with unique ϕ

Fixed effect coefficients

bAB −0.485 (−0.717 to −0.254) −0.585 (−1.087 to −0.082) −0.485 (−0.922 to −0.049) −0.485 (−0.958 to −0.010)

bAC −0.600 (−0.932 to −0.268) −0.711 (−1.438 to 0.016) −0.600 (−1.227 to 0.027) −0.600 (−1.075 to −0.125)

Random effect coefficients

τ2 0.877

ϕ

AB 3.563 4.288

AC 3.563 2.031

Fig. 3 Path diagram for the unrestricted weighted least squares
(UWLS) network meta-analysis model
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(ϕσ2), and this is different from the traditional random ef-
fect model, where they are considered additive (σ2 + τ2).
The additive random effect assumes that the between and
within-study heterogeneities are independent, while the
multiplicative random effect assumes that the between
and within-study heterogeneities are related. As within-
study heterogeneity σ2 is a known quantity, it can then be
viewed as the weight for the between-study heterogeneity
ϕ. Two recent studies compare the performance of addi-
tive or multiplicative heterogeneity in traditional pairwise
meta-analyses and found that results of these two models
tend to agree but multiplicative model produces narrower
confidence intervals [48, 49]. Further research is warranted
to compare their performance in network meta-analyses.

Conclusion
SEM provides a useful framework for univariate and
multivariate meta-analysis, and its potential as a powerful
tool for advanced meta-analysis is still to be explored.

Additional file

Additional file 1: The dataset and Mplus scripts used for statistical
analysis. (DOCX 110 kb)
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