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Abstract

Background: Estimating correlation coefficients among outcomes is one of the most important analytical tasks in
epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to
assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard
to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous
population where the individual trajectories are distributed smoothly around population average.

Methods: Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment
Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in
the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was
calculated to describe how the association between longitudinal outcomes evolved over time within specific
subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data.

Results: There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121–0.420) and
random slopes (ρ = 0.579, 95% CI: 0.349–0.810) between longitudinal MD and VA, and the strength of correlation
constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was
induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples.

Conclusion: Conditional correlation given random effects provides a robust estimate to describe the correlation
between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125).
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Background
Estimating the correlation coefficients between outcome
variables is one of the most important analytical tasks in
epidemiological and clinical research. When independent
observations are available for each outcome variable,
Pearson’s correlation coefficients are often used. In many
epidemiological and clinical studies, however, the same
individuals are also followed repeatedly over time for a
series of measurements with regarding to the collection of
outcome variables. Such multivariate longitudinal data
provide a unique opportunity to study the joint evolution

of these outcomes over time. A simple Pearson’s correl-
ation coefficient is no longer applicable for assessing cor-
relation because a multivariate longitudinal model has to
account for two types of correlations simultaneously,
namely the serial correlation between observations at
different time points within a subjects and the cross
correlation between observations on different outcome
variables at each time point [1].
During the last few decades, many statistical models have

been proposed in statistical literature for the analysis of
multivariate longitudinal data and the most popular one is
the joint mixed model which links separate linear mixed
models by allowing their model-specific random effects to
be correlated [2]. The advantages of this approach include
well-established theory [1], efficiency gains [3], and com-
mercially available software packages for model fit [4, 5].
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More importantly, a joint random-effect model allows
assessing correlation between different outcomes. It can
provide a succinct summary for not only how the evolution
of one outcome variable is correlated to the evolution of
another outcome (“association of evolution”), but also how
the correlation between outcomes changes over time
(“evolution of association”) [6].
Various extensions have been made in recent years in

joint mixed models for a wide range of research fields
[2, 7]. A typical joint mixed model often consists very
few (usually 2 or 3) continuous outcome variables, takes
a linear parametric functional form over time, holds a
multivariate normality distribution for the vector of ran-
dom effects, and assumes that the outcome variables are
mutually independent given random effects. Fieuws and
Verbeke [6] relaxed the conditional independence as-
sumption by allowing the error components of the out-
comes to be correlated. Gueorguieva and Sanacora [3]
developed a joint mixed model to incorporate different
types of longitudinal outcomes and analyzed repeated
measurements on ordinal and continuous variables meas-
uring the same underlying disease severity over time.
Fieuws and Verbeke [8] took a pairwise fitting approach
to construct the variance-covariance matrix for the joint
distribution of random effects and assessed the hearing
threshold profiles (22 outcomes) in a nature aging study.
Putter et al. [9] proposed a latent class joint model (e.g.,
assuming the vector of random effects following a multi-
nomial rather than normal distribution) to identify lung
cancer patients with distinct patterns regarding their
evolvement of denial over time and to assess the as-
sociation between denial patterns and the trajectories
of other physical and emotional longitudinal measure-
ments. Recently Luo et al. [10] extended the model to
non-longitudinal setting and proposed a bivariate lin-
ear mixed model to estimate correlation coefficients
in cross-sectional data from a family-type clustered
design. For other approaches in the analysis of multi-
variate longitudinal data as well as for more details in
recent development, see the comprehensive reviews by
McCulloch [7], Bandyopadhyay et al. [11], Verbeke et al.
[2] and the references therein.
Almost all of the aforementioned joint mixed models

(except Putter et al. [9]) also assume that subjects are
drawn from a single homogenous population and that
the individual trajectories are smoothly distributed
around the population average. In this article, we
intended to address the issue when such a one-size-fit-
all assumption is violated, using participants with newly
diagnosed primary open angle glaucoma (POAG) from
the Ocular Hypertension Treatment Study (OHTS).
POAG is a chronic progressive optic neuropathy and
the rate of vision deterioration can vary substantially
from patient to patient. For example, a natural history

study on a cohort of patients newly diagnosed with
glaucoma found out that the mean deviation (MD)
index, a global summary measure for visual field test, in
some patients can deteriorate at an alarming rate of
10 dB (dB) per year, while in others the MD virtually
did not change in 6 years without any treatment [12]. It
is therefore important to take potential heterogeneity
into consideration when correlation is assessed.
In this article, we demonstrated strategies to assess the

correlation between multivariate longitudinal data in the
presence of potential heterogeneity. Specifically, bivariate
linear mixed model (BLMM) was fitted to assess both
the “association of evolution” (i.e., correlation between
random effects) and “evolution of association” (i.e., mar-
ginal correlation over time), and then conditional correl-
ation (i.e., marginal correlation given random effects)
was calculated to describe how the association between
longitudinal outcomes evolved over time within a “true”
but unobserved subset of individuals. The disease hetero-
geneity was also approximated by subgroups (latent clas-
ses) from latent class analysis (LCA) where population
variability is captured by differences across subgroups in
the shape and level of their trajectories [13]. These sub-
groups were incorporated into BLMMs to further under-
stand the impact of heterogeneity on correlation. Our
method was similar to the latent class joint model by
Putter et al. [9] except that our primary goal focused on
correlations rather than trajectories. The remainder of this
paper was structured as follows. Section 2 described the
OHTS data in more detail. Section 3 specified the bivari-
ate linear mixed model (BLMM) model to assess correl-
ation among multivariate longitudinal data. The method
was applied to data from OHTS in Section 4 and a simple
simulation study was also performed to assess the impact
of heterogeneity on correlation in Section 5. Finally, we
concluded with a discussion in Section 6.

Study cohort: Ocular hypertension treatment study
(OHTS)
Between 1994 and 2009, the OHTS enrolled 1636 partic-
ipants with ocular hypertension but with no evidence of
glaucomatous damage and randomized to either obser-
vation or treatment with ocular hypotensive medication.
The participants were followed for a median of 13 years
and the disease progression was monitored regularly
every 6 months. In OHTS, 362 eyes from 279 partici-
pants developed POAG during study and constituted the
largest cohort of POAG with known date of diagnosis,
with a median pre-diagnosis follow-up of 8 years and
median post-diagnosis follow-up of 4.8 years. The design
and methods of the OHTS have been described in detail
elsewhere [14].
This paper only considered data measured during post-

diagnosis period. As in many clinical trials on chronic
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diseases, multiple longitudinal outcomes were collected in
OHTS to fully explore the multidimensional impairment
caused by POAG. Our analysis restricted to 2 longitudinal
outcomes, namely mean deviation (MD) and clinical vis-
ual acuity (VA). MD is a global index from Humphrey
30–2 visual field (VF) tests and reflects functional damage.
VA is measured by the standard ETDRS acuity testing
(ETDRS ranged 0 to 110, with the conventional 20/20
vision corresponding to ETDRS score of 100) and a low
ETDRS score indicates a poor visual ability. MD was mea-
sured every 6 months while VA was measured annually.
This study has been approved by Washington University
Institutional Review Board. Our analysis cohort consisted
the first eye of 269 OHTS participants who developed
POAG and had at least 2 post-diagnosis measurements in
both MD and VA. To reduce the potential influence of
cases with greater attrition rates, we excluded all the mea-
sures taken 7.5 years after diagnosis and ended up with at
least 30 observations in each outcome at any given time
points. Figure 1 showed the raw data of 50 randomly
selected participants and there was a considerable variabil-
ity in the trajectories for both MD and VA. Besides these
two longitudinal outcomes, following demographic and
clinical characteristics were also included in the data: age
at diagnosis (years), gender, race (African American vs.
Others), randomization groups (Observation vs. Treat-
ment), intraocular pressure (IOP, mmHg), central corneal
thickness (CCT, μm), and horizontal cup/disc ratio (HCD).

Methods
Since MD is arguably the most important index for
monitoring POAG progression in clinical practice, in
this article we focused on the heterogeneity of this
pivotal variable and its impact on the correlation
between MD and VA.

Bivariate linear mixed model (BLMM) between MD and VA
Let Y1i(t) and Y2i(t) denote the MD and VA for ith par-
ticipant at time t, Zi = {AGE, Gender, Race, Observation
group, CCT, IOP, HCD} be the vector of baseline covari-
ates of ith participant, then each outcome can be
described by a linear mixed model,

Y1i tð Þ ¼ ZiαZ þ α0 þ α0ið Þ þ α1 þ α1ið Þtij þ ε1i tð Þ;
Y2i tð Þ ¼ ZiβZ þ β0 þ β0i

� �þ β1 þ β1i
� �

tij þ ε2i tð Þ:
Where {α0, β0} is the vector of intercepts, {α1, β1}is the

vector of slopes during post-diagnosis period, while
{αZ, βZ} is the vector of fixed effects for all other co-
variates at diagnosis. {a0i, a1i}and{b0i, b1i, b2i}represent
random intercept and slope for longitudinal MD and
VA respectively, and the BLMM is constructed by
linking the two outcomes via a joint distribution of
the random effects,"
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Estimated correlations between longitudinal MD and VA
Once the BLMM has been fitted and the variance-
covariance matrix is obtained, the correlation between
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Fig. 1 Individual trajectories of 50 randomly selected OHTS participants for mean deviation (MD) and visual acuity (VA), where time 0 represents
the date of diagnosis
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MD and VA can be calculated analytically and following 3
different types of correlations are estimated in this paper.

Association of evolution (correlation between random
effects)
The correlation between random effects (intercepts and
post-diagnosis slopes) summarizes how the evolution of
MD is associated with the evolution of VA [6],

ρintercept ¼
σa0b0ffiffiffiffiffiffiffi
σ2a0

q ffiffiffiffiffiffiffi
σ2b0

q ; and ρslope ¼
σa1b1ffiffiffiffiffiffiffi
σ2a1

q ffiffiffiffiffiffiffi
σ2b1

q :

Evolution of association (marginal correlation)
The marginal correlation during post-diagnosis period
allows answering the question how the association
between MD and VA evolves over time [6],

ρmarginal tð Þ ¼ σa0b0 þ tσa0b1 þ tσa1b0 þ t2σa1b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
a0 þ 2tσa0a1 þ t2σ2

a1 þ σ21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b0
þ 2tσb0b1 þ t2σ2b1 þ σ22

q :

Conditional correlation (marginal correlation given random
effects)
The conditional marginal correlation given specific ran-
dom effects allows us to assess how the association be-
tween MD and VA evolves over time within certain
clinically relevant subgroups. Since a majority of POAG
participants tends to have a relatively stable vision func-
tion for a long period over time after initial diagnosis,
the correlation between MD and VA in the participants
with stable vision would provide a useful tool to assess
the impact of heterogeneity. Let γ0i = ZiαZ + α0 + a0i and
γ1i = α1 + a1i denote the random intercept and slope of
MD for ith participant, let Y1i(t) and Y2i(t) denote MD
and VA for ith participant at time t, then the joint distri-
bution of {Y1i(t), Y2i(t), γ0i, γ1i} at given time t also
follows a normal distribution,

Y1i tð Þ
Y2i tð Þ
γ0i
γ1i

0
BB@

1
CCAeN

ZiαZ þ α0 þ α1t

ZiβZ þ β0 þ β1t
ZiαZ þ α0

α1

0
BB@

1
CCA;

ν11 tð Þ ν12 tð Þ ν13 tð Þ ν14 tð Þ
ν22 tð Þ ν23 tð Þ ν24 tð Þ

ν33 ν34
ν44

0
BB@

1
CCA

0
BB@

1
CCA ,

with
υ11 tð Þ ¼ σ2

a0 þ t2σ2a1 þ 2tσa0a1 þ σ21;

υ22 tð Þ ¼ σ2b0 þ t2σ2
b1 þ 2tσb0b1 þ σ2

2;

υ12 tð Þ ¼ σa0b0 þ tσa0b1 þ tσa1b0 þ t2σa1b1 ;

υ13 tð Þ ¼ σ2a0 þ tσa0a1 ; υ14 tð Þ ¼ σa0a1 þ tσ2a1 ;

υ23 tð Þ ¼ σa0b0 þ tσa0b1 ; υ24 tð Þ ¼ σa1b0 þ tσa1b1 ;

υ33 ¼ σ2a0 ; υ34 ¼ σa0a1 ; and υ44 ¼ σ2a1 :

Once the bivariate linear mixed model has been fitted
and its variance-covariance matrix is obtained, the joint

distribution of {Y1i(t), Y2i(t), γ0i, γ1i} at given time t can
be obtained by plugging in the estimated parameters.
The conditional correlation at a given time t is denoted
as ρ(Y1i(t), Y2i(t)| γ0i > c1, γ1i > c2), where c1 and c2 rep-
resent clinical relevant thresholds for the intercept and
slope of MD respectively. In the clinical practice of
POAG management, an MD level of -5 dB or above
marks a mild damage and MD < −5 dB is deemed as
moderate/advanced damage. An MD slope of −1 dB/year
is often regarded as clinically significant deterioration.
Since this paper only includes participants with newly
diagnosed POAG, it is believed that a change of
−0.5 dB/year is also worthy close attention [15]. We
therefore choose c1 = −5 dB and c2 = −0.5 dB/years
throughout the remainder of this paper. Once the pa-
rameters from bivariate mixed models have been deter-
mined, the conditional correlation ρ(Y1i(t), Y2i(t)|
γ0i > c1, γ1i > c2) can be estimated using parametric
bootstrap resampling method with the following 4 steps.

1. At a given time t, a random sample of N = 269
subjects is generated from the above multivariate
normal distributions, N(μi(t), ∑(t)), with i = 1, 2, …,
269. Each dataset includes 4 variables, MD (Y1i), VA
(Y2i), intercept of MD (γ0i), and slope of MD (γ1i).

2. Pearson’s correlation coefficient between MD and
VA is calculated among these subjects who satisfy
the conditions (i.e., with MD at diagnosis > −5 dB
and slope of MD > −0.5 dB/year).

3. The above 2 steps are repeated 10,000 times to
obtain the average conditional correlation at time t.
The 95% confidence interval is also estimated as the
2.5 and 97.5 percentiles of the resultant correlations.

4. The above steps are repeated over different time
points to describe the change of marginal
correlations over time.

The assumption of independent errors in the above
model could be relaxed if necessary [6]. In the case of

correlated errors,
ε1i

ε2i

 !
∼N

0
0

� �
;

σ21 σ12

σ12 σ22

 ! !
, the

formula for correlations between random effects remain
unchanged, but the marginal correlation over time is cal-
culated as follows and the term v12(t) for conditional
marginal correlation also needs to be updated
accordingly,

ρmarginal tð Þ ¼ σa0b0 þ tσa0b1 þ tσa1b0þt2σa1b1þσ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a0þ2tσa0a1þt2σ2a1þσ21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2b0

þ2tσb0b1þt2σ2b1
þσ22

p ;

and υ12 tð Þ ¼ σa0b0 þ tσa0b2 þ tσa2b0 þ t2σa2b2 þ σ12:

In this article, the 95% confidence interval (CI) of con-
ditional marginal correlation was estimated using 10,000
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parametric bootstrap samples, while the 95% CIs of
other correlations were obtained from 500 empirical
bootstrap samples using participants as resampling units.
All the BLMMs were fitted using the MIXED procedure
in SAS statistical package 9.4 (SAS Institutes, Cary, NC).

Results
Application to ocular hypertension treatment study
(OHTS)
Table 1 showed the summary statistics for baseline
demographic characteristics, the estimated regression
coefficients, and the estimated parameters of the
variance-covariance from univariate mixed model to
each outcome. Among these baseline covariates, age was
significantly associated with both outcomes and these
elderly participants had poor outcomes. Those partici-
pants with higher intraocular pressure (IOP) at diagnosis
or with lower central corneal thickness (CCT) had sig-
nificantly worse MD. Participants self-identified as
African-American also tended to be worse in both out-
comes though the difference was only significant in VA.
Note that all the continuous variables (Age, CCT, IOP,
and HCD) were standardized to have mean 0 and

variance 1 in all the models throughout this paper and
hence the regression coefficients actually represented the
effect per 1-SD change.

Primary analysis for the correlation between longitudinal
MD and VA
Two bivariate linear mixed models (BLMM) were fitted
to describe the relationship between MD and VA, one
assuming correlated error terms and the other with in-
dependent errors. The likelihood ratio test showed that
the model with independent errors would provide an ad-
equate fit (X2 = 2.9, df = 1, p = 0.09). Hence, the BLMM
with independent error terms was selected as the final
model. The estimated fixed and random effects from this
BLMM were presented in Table 1. The results showed
that the univariate and bivariate mixed models produced
very close estimates, especially the fixed effects. Follow-
ing Fieuws et al. [6], the correlation between longitudinal
MD and VA was summarized in terms of the association
between subject-specific evolutions (as measured by ran-
dom intercepts and slopes) as well as the evolution of
association (as measured by marginal correlation over
time). Table 2 presented the estimated correlation

Table 1 Summary statistics of baseline covariates, the estimated regression coefficients, and the estimated parameters of variance (Var)
and covariance (Cov) from the univariate and bivariate mixed models for longitudinal mean deviation (MD) and visual acuity (VA)

Variables Mean ± SD
or N (%)

Estimated fixed and random effects ± standard errors

Univariate mixed model Bivariate mixed model

MD VA MD VA

Fixed effects:

Intercept - −2.26 ± 0.34# 50.75 ± 1.03# −2.23 ± 0.34# 50.88 ± 1.00#

Slope - −0.35 ± 0.04# −0.60 ± 0.11# −0.35 ± 0.04# −0.69 ± 0.11#

Age (years) 65.7 ± 9.5 −0.49 ± 0.15# −3.45 ± 0.43# −0.43 ± 0.14# −3.07 ± 0.42#

IOP (mmHg) 22.3 ± 6.2 −0.55 ± 0.16# −0.55 ± 0.47 −0.55 ± 0.16# −0.40 ± 0.45

CCT (μm) 558.4 ± 37.8 0.35 ± 0.15* −0.07 ± 0.45 0.35 ± 0.15* −0.22 ± 0.44

HCD 0.53 ± 0.19 0.20 ± 0.15 0.12 ± 0.44 0.20 ± 0.15 0.12 ± 0.44

Male 150 (56%) 0.11 ± 0.29 0.77 ± 0.87 0.06 ± 0.29 1.01 ± 0.84

African American 89 (33%) −0.57 ± 0.31 −2.13 ± 0.94* −0.58 ± 0.31 −2.15 ± 0.91*

Observation group 158 (59%) −0.08 ± 0.32 −0.26 ± 0.94 −0.10 ± 0.32 −0.69 ± 0.92

Random effects:&

Var(Ek) 2.03 ± 0.06# 19.15 ± 0.96# 2.02 ± 0.06# 19.19 ± 0.96#

Var(Ik) 5.05 ± 0.51# 39.25 ± 4.69# 5.09 ± 0.51# 38.77 ± 4.63#

Var(Sk) 0.29 ± 0.04# 1.35 ± 0.25# 0.29 ± 0.04# 1.35 ± 0.24#

Cov(Ik, Sk) 0.62 ± 0.10# −1.23 ± 0.83 0.63 ± 0.10# −0.73 ± 0.79

Cov(I1, I2) - - - 3.88 ± 1.17#

Cov(S1, S2) - - - 0.37 ± 0.08#

Cov(I1, S2) - - - 1.16 ± 0.27#

Cov(I2, S1) - - - 0.67 ± 0.31*

IOP intraocular pressure, CCT central corneal thickness, HCD horizontal cup-to-disc ratio
&Ek, Ik, Sk: error term, random intercept, and random slope for MD (k = 1) and VA (k = 2)
*p < 0.05, #p < 0.01
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coefficients for random intercepts and slopes and their
95% confidence intervals (CI). There was a significant
positive correlation in both random intercepts (ρ =
0.278, 95% CI: 0.121–0.420) and random slopes (ρ =
0.579, 95% CI: 0.349–0.810).
Figure 2 plotted the marginal correlations (solid lines)

and the corresponding 95% confidence intervals (broken
lines). Pearson correlation coefficient estimated at each
time point was also used as a naïve approximation to the
marginal correlation over time. In general, the marginal
correlation at diagnosis (time 0) approximated the correl-
ation between random intercepts, and the marginal correl-
ation converged to the correlation between random slopes
as the time departures from 0 [6]. As comparing to the
unconditional correlation, the conditional correlation in
participants with stable vision function (i.e., given MD at
diagnosis above −5 dB and MD slope > −0.5 dB/year) re-
duced substantially, indicating that the observed correl-
ation between MD and VA was mainly induced by these
participants with more deteriorating conditions. Figure 2
also revealed a considerable variation from time to time in
the pointwise Pearson correlation, even after we had im-
posed the restriction so that the analysis cohort contained
at least 30 participants at any given time point.

Sensitivity analyses
Several sensitivity analyses were further performed to
better understand the impact of heterogeneity on asses-
sing correlations. The disease heterogeneity was approxi-
mated by 4 subpopulations from a previous study using
the same OHTS dataset [16]. Briefly, the trajectories of
MD and pattern standard deviation (PSD, another global
index of visual field tests) were summarized by a non-
parametric functional principal component (FPC)
analysis [17], and a latent class analysis (LCA) was
performed to the first FPC scores to identify subgroups
(latent classes) of individuals with distinct patterns of
MD and PSD trajectories. Unlike a linear mixed model
that described the individual trajectories by assuming
them as random effects following a continuous distribu-
tion, the LCA approach used latent classes (unobserved
trajectory groups) as an approximation of the unknown
distribution. In the other words, the latent classes could
be thought of as longitudinal strata where population

variability was captured by differences across groups in
the shape and level of their trajectories [13].
Table 4 summarized the class-specific intercepts and

slopes for MD and VA respectively, after adjusting the
baseline covariates. It showed that the profiles in the 4th-
class were substantially different from the other classes.
Since MD < −5 dB marks a moderate/advanced vision
damage and a deteriorating rate of −0.5 dB/year is deemed
clinically significant in newly diagnosed POAG [15], we
therefore labeled Classes 1 to 4 as “Stable, High MD”,
“Stable, Low MD”, “Progression”, and “Rapid Progression”,
respectively. Following 3 BLMMs were fitted as sensitivity
analyses. The average correlation coefficients between ran-
dom effects and their 95% confidence intervals from each
model were presented in Table 2. The estimated parame-
ters of variance and covariance from each model were also
presented in Table 3.

� Sensitivity Analysis #1: adjusting the severity of
vision damage at diagnosis. The first BLMM
incorporated an indicator for moderate/advanced
glaucoma (MD < −5 dB) into the primary analysis.
The model lead to similar estimates as these from
primary analysis, though the strength of estimated
correlation in the sensitivity analysis decreased
slightly towards null.

� Sensitivity Analysis #2: excluding those participants
who are labeled as “Rapid Progression”. The 2nd

BLMM was fitted after excluding these 16
participants who were labeled as “Rapid
Progression”. Although these participants only
accounted for 6% of total sample size, excluding
them lead to a substantial decrease in the estimated
correlation, especially between random slopes.

� Sensitivity Analysis #3: full adjustment of
heterogeneity. The 3rd sensitivity analysis fit a BLMM
including both class-specific intercepts and class-
specific slopes. The results showed that none of the
correlation was significantly different from 0, indi-
cating a conditional independence between MD and
VA given the heterogeneity of MD trajectory.

In summary, the results revealed that the assumption of
homogeneous population in BLMM is important for

Table 2 Estimated correlation coefficients and their 95% confidence intervals in the random intercepts and random slopes, from the
primary analysis and three sensitivity analyses using bivariate linear mixed models

Models Correlations between random intercepts Correlations between random slopes

Primary analyses: without adjusting heterogeneity 0.278 (0.121, 0.420) 0.579 (0.349, 0.810)

Sensitivity #1: adjusting the severity of vision damage
at diagnosis (MD < −5 dB vs. MD ≥ −5 dB)

0.267 (0.090, 0.452) 0.519 (0.285, 0.753)

Sensitivity #2: excluding those who labelled as “Rapid Progression”. 0.217 (0.077, 0.354) 0.289 (0.010, 0.593)

Sensitivity #3: estimating class-specific intercepts and slopes 0.145 (−0.037, 0.324) 0.106 (−0.255, 0.490)
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assessing correlation between multivariate longitudinal
data. As illustrated in different sensitivity analyses, the es-
timated correlations could be substantially distorted in the
presence of unobserved heterogeneity. In general, the ad-
justment of heterogeneity tended to reduce the strength
of correlations, but all the estimates had a relatively wide
range of 95% confidence interval, especially between ran-
dom slopes. In such a real-world data analysis, however,
we do not know the “true” population parameters and the
estimates could be influenced by sampling errors. In the
section follows, simulated data were used to quantify to

what extent the “true” correlation between longitudinal
outcomes could be distorted due to heterogeneity.

Simulation study
The simulated data were a mixture of stable and
progressive subjects, generated from following bivariate
linear mixed models,

 
Yg
1i tð Þ

Yg
2i tð Þ

!
¼ αg0 þ αg1t

βg0 þ βg1t

 !
þ a0 þ a1t

b0 þ b1t

� �
þ ε1i tð Þ

ε2i tð Þ
� �

;

Fig. 2 Estimated unconditional marginal correlation and conditional marginal correlation (given MD at diagnosis > −5 dB and slope of
MD > −0.5 dB/year) in the OHTS data, where solid lines and broken lines represented the estimated correlation and its 95% confidence intervals
respectively. Pointwise Pearson correlation at each time was also presented

Table 3 Estimated parameters of variance (Var) and covariance (Cov) from the primary analysis and the three sensitivity analyses
using bivariate linear mixed models

Parameters for variance-covariance& Primary analysis Sensitivity analysis #1 Sensitivity analysis #2 Sensitivity analysis #3

Var(E1) 2.02 ± 0.06# 1.99 ± 0.06# 1.44 ± 0.05# 2.03 ± 0.06#

Var(E2) 19.19 ± 0.96# 19.21 ± 0.96# 17.03 ± 0.86# 19.30 ± 0.96#

Var(I1) 5.09 ± 0.51# 2.98 ± 0.34# 2.69 ± 0.28# 1.65 ± 0.20#

Var(I2) 38.77 ± 4.63# 39.26 ± 4.78# 36.12 ± 4.33# 36.50 ± 4.41#

Var(S1) 0.29 ± 0.04# 0.19 ± 0.03# 0.12 ± 0.02# 0.09 ± 0.02#

Var(S2) 1.35 ± 0.24# 1.31 ± 0.24# 0.73 ± 0.16# 0.81 ± 0.18#

Cov(I1, S1) 0.63 ± 0.10# 0.14 ± 0.07* 0.02 ± 0.05 −0.11 ± 0.04#

Cov(I2, S2) −0.73 ± 0.79 −1.11 ± 0.81 −1.11 ± 0.63 −1.13 ± 0.69

Cov(I1, I2) 3.88 ± 1.17# 3.01 ± 0.98# 2.14 ± 0.79# 1.13 ± 0.69

Cov(S1, S2) 0.37 ± 0.08# 0.26 ± 0.06# 0.09 ± 0.04* 0.03 ± 0.04

Cov(I1, S2) 1.16 ± 0.27# 0.53 ± 0.21* 0.13 ± 0.15 0.13 ± 0.14

Cov(I2, S1) 0.67 ± 0.31* 0.44 ± 0.27 0.28 ± 0.19 0.40 ± 0.19*

&Ek, Ik, Sk: error term, random intercept, and random slope for MD (k = 1) and VA (k = 2)
*p < 0.05, #p < 0.01
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 ¼{‐8, 48, ‐2.0, ‐3.0} respectively.
� The parameters for random effects Σ and Σe were

obtained from BLMM in the 3rd sensitivity analysis
and assumed common across the two mixture groups.

� t = {0, 0.5, …, 5} denoted the semi-annual measuring
times and we assumed that all individuals had
exactly the same follow-up time in this simulation.

� Unless otherwise specified, we assumed independent
error terms (i.e.,ρ = 0) in all the simulations.

Each simulation generated 500 random samples and
each sample consisted 300 subjects. In each simulation,
the average correlation coefficients were calculated for
both marginal correlation (unconditional and condi-
tional) and correlation between random effects. Three
scenarios were considered to assess to what extent the
true correlation could be distorted in the presence of
heterogeneity or model misspecification.

1. Scenarios A: Impact of size of heterogeneity. In the
simulated data, the progressive subjects (i.e., those
with g = 2) accounted for 5%, 10%, 15% and 20% of
total sample size respectively. Figure 3 A1 showed
the estimated average marginal correlation over time
under different proportions of progressive cases. We
saw that even the presence of a small fraction of
heterogeneity could dramatically distort the
estimated correlation and, as expected, greater
proportion of progressive cases imposed stranger
influence. In contrast, the influence of heterogeneity
on the conditional correlation was much smaller,
and the impact was almost ignorable in the presence
of only small fraction of progressive cases (Fig. 3
A2). The results also showed that the presence of
heterogeneity could lead to substantial
overestimation of correlations between random
effects, especially in the random slopes (Table 5).

2. Scenarios B: Impact of magnitude of heterogeneity.
In each simulation, the progressive subjects
accounted for only 5% of the total sample size, but
the slopes in the progressive subjects varied as 50%,
75%, 125% and 150% of what were used under
Scenario A. Figure 3 B1 showed that a higher
magnitude of deterioration (like that of 4th-class in
the OHTS data) could substantially distort the mar-
ginal correlations over time while a lower deterior-
ation (like that of 3rd-class in the OHTS data)
would have little impact on the estimated correl-
ation. Again, the estimated conditional correlation
was relatively robust to the presence of rapid pro-
gressive cases (Fig. 3 B2). The results also showed
that higher deteriorating rate could lead to substan-
tial overestimation of correlations between random
slopes (Table 5).

3. Scenarios C: Impact of correlation between error
terms. Since a candidate BLMM in the primary
analysis showed a weak correlation between error
terms (ρ = 0.07) with a trend towards significance
(p = 0.09), we also assessed the potential impact of
independence assumption of error terms on
correlation. In each simulated dataset, the
progressive subjects accounted for only 5% of the
total sample size and the slopes of progressive
subjects were the same as those under Scenario A.
The data were generated under a variety degree of
correlations (ρ = 0.2, 0.4, 0.6, 0.8) between error
terms, but analyzed assuming independent errors.
The result showed that both the unconditional and
conditional marginal correlations were rather
insensitive to the degree of correlation between
error terms (Fig. 3 C1 and C2). However, ignoring
the correlation between error terms could lead to a
substantial overestimation of correlations between

Table 4 The trajectory profiles of longitudinal mean deviation
(MD) and visual acuity (VA) across latent classes, after
accounting for other baseline demographic and clinical
characteristics

Parameters N (%) MD VA

Intercept:

Class1 (reference) 83 (31%) 0.08 ± 0.21 54.66 ± 0.97

Class2 117 (43%) −1.73 ± 0.23# 52.94 ± 1.08

Class3 53 (20%) −3.11 ± 0.28# 52.89 ± 1.33

Class4 16 (6%) −8.42 ± 0.45# 48.15 ± 2.17#

Slope:

Class1 (reference) 83 (31%) −0.08 ± 0.05 −0.33 ± 0.17

Class2 117 (43%) −0.15 ± 0.06 −0.35 ± 0.23

Class3 53 (20%) −0.54 ± 0.07# −0.86 ± 0.26*

Class4 16 (6%) −2.04 ± 0.13# −3.37 ± 0.47#

*p < 0.05; #p < 0.01
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random effects, especially in the random slopes.
The impact was trivial when there was only a weak
correlation between error terms, but became much
strong in the presence of moderate/high between-
error correlations (Table 5).

In summary, the simulated data confirmed the relative
robustness of conditional correlation to potential hetero-
geneity and indicated that these participants in the Class
4 were more likely strong influential cases for assessing
the correlation between longitudinal MD and VA. The
sensitivity analysis excluding these 16 participants (who
only account for 6% of the total samples) resulted in
substantial decrease of correlation.

Discussion
In clinical trials and epidemiologic studies, it is quite
common to have two or more outcomes measured re-
peatedly over time. These multivariate outcomes are
likely to be correlated and the statistical analysis often
requires taking such associations into account. A

number of approaches for analyzing multivariate longi-
tudinal data have been proposed in the statistical litera-
ture, ranging from the most naïve approach of ignoring
the association to the full joint model that specifies the
joint distribution and correlation structure among differ-
ent outcomes [1]. The choice for a specific type of model
is often guided by the specific characteristics of data
such as the structure of data (balance or unbalanced),
the scale of outcome measures (continuous, ordinal, or
binary), as well as the research questions of interest (the
average evolution over time or the association structure)
[11]. When the average evolution over time (fixed ef-
fects) is of primary interest, for example, specification of
the full joint distribution may be avoided by using a gen-
eralized estimating equation (GEE) approach where as-
sociation structure is treated as a nuisance, and a valid
inference regarding fixed effects can still be obtained
even when the within-subject associations are mis-
specified. When the primary interests focus on the asso-
ciation structure itself, a full joint model of outcomes is
often preferred [2]. Among various joint models,
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Fig. 3 Estimated unconditional marginal correlation and conditional marginal correlation (given MD at diagnosis > −5 dB and slope of
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multivariate random-effect mixed models provide a ver-
satile tool in estimating the association among different
outcomes as well as how the association evolves over
time. These models do not require a balanced data
structure and thus allow each subject to have different
number of observations taken at different time points.
They also enable reducing the effect of measurement
error attenuation in estimating the correlation between
the rates of change over time in different growth curves
[1]. However, as illustrated by the OHTS data and simu-
lated data, the assumption of homogeneous population
in such a multivariate random-effect mixed model is im-
portant for estimation and inference about correlation.
The estimated correlation could be substantially dis-
torted even in the presence of a small proportion of
heterogeneity.
In this paper, we demonstrated various strategies to

relax the rather restrictive one-size-fit-all assumption in
the bivariate linear mixed models. We showed that condi-
tional correlation given random effects provides a robust
estimate to describe the correlation over time in the pres-
ence of unobserved heterogeneity. The conditional correl-
ation works better when there is only small fraction of
strong influential cases and/or when the difference in tra-
jectories is not so massive among heterogeneous cases.
The study also revealed that latent class analysis approach

provides a useful tool to explore disease heterogeneity
and to assess whether the individual trajectories are
smoothly distributed around the population average.
Since the existence of latent classes can be because of real
heterogeneity (mixture of distinct subpopulations) or sim-
ply due to non-normality distribution [13], we therefore
expect that the incorporation of latent classes into mixed
model could also improve normality assumption. In the
presence of massive heterogeneity, however, the assump-
tion of multivariate normality distribution in BLMM is vi-
olated and all the estimated correlations including
conditional ones will be substantially distorted. In such a
case, the dual-trajectory model [18] may provide a better
alternative to describe the connections between develop-
mental trajectories of two longitudinal outcomes. It al-
lows the trajectories to evolve contemporaneously or over
different non-overlapping time periods. The correlation
between different outcomes is represented by the condi-
tional probabilities (i.e., the chance of a given trajectory
in one outcome conditional on the trajectory of another)
or the joint probabilities (i.e., the chance for a given co-
trajectory).
Substantively, our study showed that there is a signifi-

cant positive correlation between longitudinal MD and
VA, and that the correlation constantly strengthens as
the time increased. However, further analysis revealed

Table 5 Averages and 95% confidence intervals for correlations between random intercepts and correlation between random
slopes based on simulated data, where data were generated under 3 different scenarios (Scenarios A: different proportions of
progressive cases; Scenarios B: different magnitudes of deteriorating rates in progressive cases; Scenarios C: various strength of
between-error correlations)

Simulation Scenarios Correlation between random intercepts Correlation between random slopes

True correlation (no heterogeneity) 0.145 0.111

Scenario A:

5% 0.199 (0.070, 0.329) 0.522 (0.390, 0.654)a

10% 0.246 (0.118, 0.373) 0.657 (0.562, 0.753)a

15% 0.268 (0.153, 0.383)a 0.727 (0.651, 0.804)a

20% 0.296 (0.178, 0.413)a 0.769 (0.698, 0.840)a

Scenario B:

50% 0.200 (0.070, 0.329) 0.240 (0.051, 0.429)

75% 0.207 (0.077, 0.336) 0.382 (0.223, 0.542)a

100% 0.199 (0.070, 0.329) 0.522 (0.390, 0.654)a

125% 0.205 (0.078, 0.332) 0.634 (0.532, 0.734)a

150% 0.202 (0.078, 0.327) 0.706 (0.616, 0.795)a

Scenario C:

0.0 0.199 (0.070, 0.329) 0.522 (0.390, 0.654)a

0.2 0.232 (0.104, 0.361) 0.603 (0.479, 0.727)a

0.4 0.273 (0.147, 0.398)a 0.686 (0.574, 0.797)a

0.6 0.303 (0.180, 0.425)a 0.769 (0.664, 0.873)a

0.8 0.334 (0.218, 0.450)a 0.853 (0.756, 0.949)a

a95% confidence interval does not contain the true value
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that the correlation is induced primarily by participants
with rapid deteriorating MD who only accounted for a
small fraction of the total sample size. This finding was
consistent to the recent observation that the overall aver-
age of VA in participants with newly diagnosis POAG was
not significantly different from those without POAG [19].
Our study had some limitations. In this study we only

assessed the potential impact of heterogeneity. As long
as the estimation and inference on correlation are of
primary interest, the results can also be influenced by a
variety of other assumptions such as linearity and homo-
scedasticity. For this consideration, our analysis cohort
was only restricted to the post-diagnosis data to better
fulfil the linearity assumption, and the baseline demo-
graphic and clinical characteristics were included in the
mixed models to reduce the unexplained variance.
Another potential issue is the influence of missing data.
Although these joint mixed models do not require a
balanced data structure, they assume that data are miss-
ing at random. Inclusion of cases with greater attrition
rates may weaken statistical precision and potentially
introduce bias if such an assumption is incorrect. To re-
duce the potential influence of cases with greater attri-
tion rates, in this study we only included data from
these visits with at least 30 subjects.

Conclusion
Bivariate linear mixed model (BLMM) is a versatile tool
with regard to assessing correlation between multivariate
longitudinal data and the conditional correlation given
random effects provides a robust estimate to describe the
correlation in the presence of unobserved heterogeneity.

Abbreviations
BLMM: bivariate linear mixed model; CCT: central corneal thickness;;
FPC: functional principal component; GEE: generalized estimating equation;;
HCD: horizontal cup/disc ratio; IOP: intraocular pressure;; LCA: latent class
analysis; MD: mean deviation;; OHTS: Ocular Hypertension Treatment Study;
POAG: primary open angle glaucoma; VA: visual acuity

Acknowledgements
Not applicable.

Funding
This study is partially supported by grants from the National Eye Institute
National Institute of Health, Bethesda, MD (EY023452 and EY09341) and NCI
Cancer Center Support Grant P30 CA091842.

Availability of data and materials
The datasets used/analyzed and SAS codes during the current study are
available from the corresponding author on reasonable request and with
permission of Ocular Hypertension Treatment Study (OHTS).

Authors’ contributions
All authors conceived the study. FG and JAB carried out the data analysis. FG
and MOG drafted the first version of the manuscript. All authors contributed
to the critical review and approved the final version.

Ethics approval and consent to participate
This study has been approved by Washington University Institutional Review
Board.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Surgery, Division of Public Health Sciences, Washington
University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
2Division of Biostatistics, Washington University School of Medicine, 660 S.
Euclid Ave., St. Louis, MO 63110, USA. 3Department of Ophthalmology &
Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave.,
St. Louis, MO 63110, USA.

Received: 6 March 2017 Accepted: 2 August 2017

References
1. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New

York: Springer-Verlag; 2000.
2. Verbeke G, Fieuws S, Molenberghs G, Davidian M. The analysis of multivariate

longitudinal data: a review. Stat Methods Med Res. 2014;23:42–59.
3. Gueorguieva R, Sanacora G. Joint analysis of repeatedly observed continuous

and ordinal measures of disease severity. Stat Med. 2006;25:1307–22.
4. Thiebaut R, Jacqmin-Gadda H, Chene G, Leport C, Commenges D. Bivariate

linear mixed models using SAS proc MIXED. Comput Methods Prog
Biomed. 2002;69:249–56.

5. Gao F, Thompson P, Xiong C, and Miller JP. Analyzing Multivariate
Longitudinal Data Using SAS. Proceedings of the SAS® Users Group
International (SUGI 31) Conference. San Francisco, 2006.

6. Fieuws S, Verbeke G. Joint modeling of multivariate longitudinal profiles:
pitfalls of the random effect approach. Stat Med. 2004;23:3093–104.

7. McCulloch C. Joint modelling of mixed outcome types using latent
variables. Stat Methods Med Res. 2008;17:53–73.

8. Fieuws S, Verbeke G. Pairwise fitting of mixed models for the joint
modeling of multivariate longitudinal profiles. Biometrics. 2006;62:424–31.

9. Putter H, Vos T, Haes H, Houwelingen H. Joint analysis of multiple longitudinal
outcomes: application of a latent class model. Stat Med. 2008;27:6228–49.

10. Luo J, D’Angela G, Gao F, Ding J, Xiong C. Bivariate correlation coefficients
in family-type clustered studies. The Biometrical Journal. 2015;57:1084–109.

11. Bandyopadhyay S, Ganguli B, Chatterjee A. A review of multivariate
longitudinal data analysis. Stat Methods Med Res. 2011;20:299–330.

12. Heijl A, Bengtsson B, Hyman L, and Leske MC. Early manifest glaucoma trial
group. Natural history of open-angle glaucoma. Ophthalmology 2009; 116:
2271-2276.

13. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research.
Annu Rev Clin Psychol. 2010;6:109–38.

14. Gordon M, Beiser J, Brandt J, Heuer D, Higginbotham E, Johnson C, et al.
The ocular hypertension treatment study: baseline factors that predict the
onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–20.

15. De Moraes CG, Demirel S, Gardiner SK, Liebmann JM, Cioffi GA, Ritch R,
Gordon MO, Kass MA. Effect of treatment on the rate of visual field change
in the ocular hypertension treatment study observation group. Invest
Ophthalmol Vis Sci. 2012;53:1704–9.

16. Gao F, Miller JP, Beiser JA, Xiong C, Gordon MO. Predicting clinical binary
outcome using multivariate longitudinal data: application to patients with
newly diagnosed primary open-angle glaucoma. Journal of Biometrics and
Biostatistics. 2015;6:254.

17. Yao F, Muller HG, Wang JL. Functional data analysis for sparse longitudinal
data. J Am Stat Assoc. 2005;100:577–90.

18. Nagin DS. Group-based modeling of development. Chapter 8: dual
trajectory analysis. Cambridge: Harvard University Press; 2005.

19. Gordon MO, Miller JP, Beiser JA, Kass MA, Gao F, Ocular Hypertension
Treatment Study. The ocular hypertension treatment study (OHTS):
longitudinal analyses of mean deviation (MD) loss and its association with
visual acuity (VA) and contrast sensitivity (CS) in eyes newly diagnosed with
primary-open angle glaucoma (POAG). Invest Ophthalmol Vis Sci. 2014;55:5647.

Gao et al. BMC Medical Research Methodology  (2017) 17:124 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Study cohort: Ocular hypertension treatment study (OHTS)

	Methods
	Bivariate linear mixed model (BLMM) between MD and VA
	Estimated correlations between longitudinal MD and VA
	Association of evolution (correlation between random effects)
	Evolution of association (marginal correlation)
	Conditional correlation (marginal correlation given random effects)


	Results
	Application to ocular hypertension treatment study (OHTS)
	Primary analysis for the correlation between longitudinal MD and VA
	Sensitivity analyses

	Simulation study

	Discussion
	Conclusion
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

