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Abstract

One area of biomedical research where the replication crisis is most visible and consequential is clinical trials. Why
do outcomes of so many clinical trials contradict each other? Why is the effectiveness of many drugs and other
medical interventions so low? Why have prescription medications become the third leading cause of death in the
US and Europe after cardiovascular diseases and cancer? In answering these questions, the main culprits identified
so far have been various biases and conflicts of interest in planning, execution and analysis of clinical trials as well
as reporting their outcomes. In this work, we take an in-depth look at statistical methodology used in planning
clinical trials and analyzing trial data. We argue that this methodology is based on various questionable and
empirically untestable assumptions, dubious approximations and arbitrary thresholds, and that it is deficient in
many other respects. The most objectionable among these assumptions is that of distributional homogeneity of
subjects’ responses to medical interventions. We analyze this and other assumptions both theoretically and
through clinical examples. Our main conclusion is that even a totally unbiased, perfectly randomized, reliably
blinded, and faithfully executed clinical trial may still generate false and irreproducible results. We also formulate
a few recommendations for the improvement of the design and statistical methodology of clinical trials informed
by our analysis.
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Background
Over the past several decades, biomedical sciences have
made remarkable progress in understanding molecular
and genomic mechanisms of life and disease. However,
there remains an enormous gap between our under-
standing of life’s molecular machinery and our ability to
explain behavior of living organisms as a whole and their
responses to various interventions. In the medical arena,
clinical trials aim to fill this gap using empirical means.
One of the more dramatic manifestations of this gap is
unexpected catastrophic events in early clinical trials.
For example, a phase I trial of drug BIA 10-2474 aimed
at treating anxiety, motor disorders and chronic pain

that was conducted in 2015 in Rennes, France had unex-
pectedly led to the death of one volunteer and irreversible
brain damage in five others [1]. In a phase I trial con-
ducted in 2006 in London, a monoclonal antibody
TGN1412 intended for treating autoimmune diseases and
leukemia had caused multiple organ failure in six healthy
volunteers [2]. As yet another example, fialuridine, an
antiviral agent tested in 1993 by NIH for treatment of
hepatitis B in a phase II clinical trial, had resulted in
the death of five human volunteers due to severe hepatic
toxicity and lactic acidosis [3]. Remarkably, the dose given
to volunteers in the London trial was 500 times smaller
than the one found to be safe in animals [4].
Insufficient knowledge of biological mechanisms and

complex interactions associated with the action of drugs
and other medical interventions creates a considerable
uncertainty in predicting and interpreting trial outcomes.
In particular, we are still unable to predict whether a
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tested intervention will work for an individual patient or a
category of patients and what side effects it will produce.
This causes the samples of trial participants to be hetero-
geneous in numerous unpredictable ways. Further, ethical
considerations lead to recruitment of subjects that are
generally younger, healthier and less medicated than the
targeted population, which causes the sample of trial par-
ticipants be not representative of the population. These
uncertainties, combined with various biases and conflicts
of interest involved in funding, planning, analyzing and
reporting clinical trials, is a major reason behind surpris-
ingly low effectiveness of many drugs and high incidence
of severe side effects. As reported in [5], ten top-selling
drugs on the American market fail to improve the condi-
tions in 75% to 96% of patients who take them. Thus, lin-
gering question remain as to whether even some highly
prescribed drugs actually work. More ominously, prescrip-
tion medicines have become the third leading cause of
death in the US and Europe after cardiovascular diseases
and cancer ([6], p. 1). Doubts about utility of clinical trials
are not limited to the medical community; they are also
circulating in the media [7].
On the academic front, the validity and reproducibility

of biomedical research including clinical trials has been
a matter of grave concern for more than two decades [8, 9].
As one striking example, a meta-analysis study [10] found
that, out of 26 most highly cited reports of controlled
randomized clinical trials that appeared in top medical
journals, claimed positive effects of medical interventions
and were later retested on larger groups of patients, 9
studies (35%) were either refuted or their claims of effect
were found to be greatly exaggerated.
What are the root causes of falsity and irreproducibil-

ity of biomedical research findings? In an article titled
“Why Most Published Research Findings are False” [11],
John Ioannidis sought to explain this phenomenon. He
assumed the following model of scientific discovery:
several groups of investigators independently study a
number of research questions by performing statistical
analysis of empirical data. Each research finding has a
prior probability to be true; however, this probability is
modulated by random effects of statistical analysis with
certain rates of false positive and false negative discov-
eries. A key model parameter is “bias,” defined as the
probability to report as true a finding that was found
by a research team to be false. The model leads to a
Bayes-type formula for the probability of false discovery
as a function of model parameters. Sample computations
based on this formula have led the author of [11] to the
conclusion encapsulated in the title of his paper.
An in-depth look at various instances of deliberate bias

and institutional corruption in clinical trials conducted
or sponsored by industry was taken by Peter Gøtsche in
his remarkable book [6]. It documents numerous cases

of withholding and falsifying data, selective reporting,
suppressing information on adverse side effects, post
hoc changes of endpoints, manipulation of patient inclu-
sion criteria and study duration to achieve more favor-
able outcomes, intentional handicapping of comparators
as well as an assortment of other unethical profit-driven
activities. This has led to numerous major public health
calamities. As one example, concealment and fabrication
of trial data on cardiovascular side effects of COX-2 in-
hibitor Vioxx (rofecoxib), manufactured by Merck and
marketed primarily as a NSAID painkiller, has caused
about 120,000 deaths worldwide from 1999 to 2004 ([6],
p. 161). Based on his extensive study, Gøtsche concluded
that in the hands of Big Pharma clinical trials have be-
come nothing more than marketing tools in disguise.
While the above-mentioned explanations are valid and

instructive, they ignore perhaps the most critical compo-
nent of any research study – the scientific methodology
adopted by the research team. In this article, we focus
exclusively on statistical methodology used for planning
and analyzing phase III clinical trials. We show that stat-
istical inference from even a totally unbiased, properly
randomized, reliably blinded, perfectly executed and
faithfully reported controlled clinical trial is still likely to
generate false knowledge and irreproducible results. A
number of specific problems associated with the design
of clinical trials, statistical inference from trial data and
assessment of trial quality were discussed in [12].
As a reminder and point of reference, we review very

briefly the methodology of clinical trials, see e.g. [13].
Phase III clinical trials are conducted to make large-scale
empirical comparisons of medical interventions (one of
them normally being a placebo or standard treatment).
Two arms of a trial are compared by computing the differ-
ence between the average values of a certain measure of
effect over all subjects in the respective arm of the trial. A
typical measure of effect for an individual subject is either
the indicator of occurrence of certain event (response
to treatment, cure, death, etc.) or the value of some ob-
servable clinical variable (e.g. disease-free survival time,
systolic or diastolic blood pressure, count of some type
of blood cells, concentration of certain biomarker, and
so on). The normalized difference between the above
averages usually serves as a test statistic employed for
both trial planning and analysis of trial data.
Trials are designed in such a way that the null hypoth-

esis of the treatments’ equal performance can be rejected
with sufficiently low probability (called significance level)
if they in fact perform equally and with high enough
probability (called statistical power) if the alternative hy-
pothesis that one treatment performs sufficiently better
than the other is true. Normally, precautions against
various biases are taken. In particular, patients are ran-
domly assigned to treatments and, when feasible, patients
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and investigators are blinded to this assignment. After the
trial’s completion, statistical analysis of its results is
conducted to determine the actual significance level and
power, estimate parameters of interest and compute
confidence intervals, assess incidence and severity of
side effects, etc.
Inherent in clinical trials are four principal sources of

variation: (1) sampling of trial participants from a rele-
vant population; (2) intra-subject (individual) variation
in the effects of compared interventions; (3) between-
subject variation in these effects; and (4) random assign-
ment of trial participants to treatments. Only patients
who meet the study entry criteria and give informed
consent are enrolled in clinical trials. This and many
other reasons cause sampling of subjects from the popu-
lation to be non-random. This cannot be mitigated by
even the best statistical analysis of trial data and thus is
not a subject of this study. However, non-random sam-
pling represents a major obstruction to extrapolation of
trial findings to the population and their reproducibility.
Variation types 2, 3 and 4 will be addressed in subse-
quent sections.
Our critique of statistical methods used in clinical tri-

als proceeds along two dimensions. First, we identify
several basic assumptions and principles underlying stat-
istical methodology and argue that in the case of clinical
trials their validity is uncertain, questionable or very
likely false. Second, we address a few important tech-
nical aspects of statistical analysis commonly employed
in clinical trials and conclude that they too are likely
contributors to the generation of false and irreproducible
results. Specifically, we start with the randomness vs
determinism dilemma vis-à-vis individual response vari-
ables. Next, we discuss the averaging principle as a pref-
erence rule for selection of medical interventions. Then
we take a close look at the fundamental assumptions of
independence and homogeneity; we do so first by means
of an example (also discussed in [14]) and then approach
this topic from a more formal standpoint of statistical
analysis. Further, we discuss individual case studies as an
alternative to clinical trials. In the section Statistical
Analysis of Clinical Trials as a Ritual, we review several
statistical concepts and tools commonly employed in the
analysis of trial data and argue that ignoring underlying
assumptions, uncritical use of various approximations
and arbitrary thresholds, and disregarding
randomization may lead to false results. Finally, we
summarize our findings, frame them in historical and
philosophical perspectives, and formulate our conclu-
sions and specific recommendations.
The presence of serious deficiencies in statistical meth-

odology utilized in clinical trials does not mean that
clinical trials should be abandoned. When carefully
planned and properly conducted, they can produce a

wealth of empirical knowledge about the disease and pa-
tients’ responses to the compared treatments. This may
prove especially valuable when the disease and/or the
effects or side effects of the tested interventions are very
heterogeneous. However, for trials to be effective and
inference from their results valid, statistical methodology
should be considerably tightened, fortified with rigorous
mathematical and computational sensitivity analyses,
and combined with biomedical knowledge of the disease
as well as biological and/or pharmacological action of
the compared treatments.

Individual response to treatment: The
determinism vs chance dilemma
Nowadays, statistical analysis has become a mandatory
component of biomedical research. This compliance pres-
sure has caused biomedical scientists to adopt, mostly un-
wittingly, the assumption that every health-related event
occurring in a given subject depends in essential ways on
chance and that every measurable quantity is a random
variable. That this assumption is not merely philosophical
is clear: detection of the occurrence of a non-random
event over the duration of a study is a matter of single
observation while a random event occurs with certain
probability whose estimation requires a large number of
observations. It is an empirical fact that responses of dif-
ferent subjects to the same treatment display a wide vari-
ation. However, how strong is scientific evidence for the
involvement of chance in individual responses?
The deterministic side of the dilemma enjoys a strong

backing from basic science. The effects of drugs and
other medical interventions typically manifest through
the action of various biochemical systems that constitute
the molecular basis of life. What we know about their
functioning suggests that they essentially act as de-
terministic machines governed by differential equations
of biochemical kinetics. If the initial concentrations of
all molecular species, kinetic constants, and various ex-
ternal and internal conditions are known, then the fu-
ture states of a biochemical system can be predicted
with great accuracy. Such a predictable operation within
a wide range of internal and external conditions is the
reason why the genetic apparatus of a cell, which is
nothing more than an extremely complex, self-regulating
biochemical system, displays such a great fidelity in pres-
ervation and replication of the genome as well as in
transcription, translation, and adaptive regulation of
gene expression. Additional features of biochemical sys-
tems, such as activation thresholds and the presence of
inhibitors and feedback loops, ensure stable execution of
biological functions even in randomly changing environ-
ments, which contributes to physiologic homeostasis.
The deterministic behavior of biochemical systems is a

collective result of a very large number of random
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microevents governed by stochastic laws of quantum
mechanics. Therefore, before embarking on statistical
analysis of individual response data one has to envision
a mechanism by which stochasticity re-emerges, in the
particular setting at hand, at the level of whole-body
clinical effects. Or is this merely an illusion that masks
unknown mechanisms of deterministic causation?
The hypothesis of deterministic response can some-

times be tested empirically. For example, if repeated
occurrences of an acute illness in a given subject are
cured by the same dose of a drug then the patient’s re-
sponse to the drug is likely to be deterministic. Likewise,
our casual experience with various drugs and medical
procedures suggests that many of them have a stable,
well-defined patient-specific effect in terms of both mag-
nitude and timing. Why couldn’t this, then, be the case
for an experimental drug tested in a clinical trial?
On the other hand, individual effects of certain treat-

ments are undoubtedly stochastic. A classic example is
exposure to radiation that can cause observable effects
through cell killing, mutagenesis and carcinogenesis.
Here, lethal damage to a cell or a harmful mutation can
result from a random amount of energy deposited by a
single particle of ionizing radiation, or one of its secon-
dary particles, if the particle track happens to pass close
enough to the cell’s DNA.
The choice between deterministic and stochastic

approaches to mathematical or statistical modeling of
individual effects of treatment should be deliberate
and follow the preponderance of biomedical evidence
regarding the nature of the disease and treatment. If
such evidence is inconclusive then both approaches
can be pursued competitively and the results
compared.

The methodology of clinical trials: Does averaging
work?
The core methodological idea in clinical trials is the
comparison of averages. The power of averaging lies in
the combination of (1) essential cancellation of random
individual variation and (2) retention of systematic clin-
ical effects assumed to result from medical interventions.
This idea, however, hinges on a hidden assumption of
homogeneity, i.e. that the magnitude of the mean indi-
vidual responses to the assigned treatment is about the
same for most patients. The reality of most clinical trials,
however, is very different. Typically, a sizeable fraction
of subjects enrolled in a trial does not respond to the
assigned treatment while responses of other subjects
display a large variation in the magnitude and timing of
the effect. Additionally, a wide variety of side effects ran-
ging from minor and transient to permanent and life-
threatening are observed.

The seemingly appealing idea that the best interven-
tion is the one that works best on the average may be
true in the case of homogeneous responses. However, as
a general comparison principle, it represents a funda-
mental fallacy. What may appear best on the average
may not be the best intervention even for a single pa-
tient in the population of interest. As a simple schematic
example, suppose there are three competing drugs, A, B
and C, compared on a population of patients. Let the ef-
ficacy of drug A be 2 units on a certain scale on one half
of the population and 0 on the other half, and let drug B
have efficacy of 2 on the latter half of the population
and 0 on the former. Suppose drug C has efficacy of 1.1
across the board. Then drug C is superior to A and B on
the average but for each particular patient it is almost
twice less effective than the better of the drugs A or B!
To compare treatments based on their average re-

sponses, trialists have to minimize heterogeneity of the
anticipated arm-specific individual responses at the plan-
ning stage of the trial. To this end, they are advised to
use all available prior biomedical information about the
targeted disease and mechanisms of drug action and
adopt strict study entrance criteria.

The heterogeneity curse: An example
To see how unreasonable is our reliance on the homoge-
neity of responses to a given treatment in clinical trials,
consider a hypothetical randomized and appropriately
blinded clinical trial that compares survival or metastasis-
free survival of stage I-III breast cancer patients under
two treatment plans involving surgery and various com-
binations and regimens of adjuvant cytotoxic chemother-
apy, external beam radiation and hormonal therapy. What
are the leading factors that determine individual survival
outcomes? The single most important among them is the
presence or absence of subclinical metastases at the time
of surgery. Such metastases may be in three distinct states:
(1) solitary cancer cells that were released into the blood-
stream during surgery or were already present at the time
of surgery as circulating tumor cells or quiescent cancer
cells lodged at various secondary sites; (2) dormant or
slowly growing avascular micrometastases; and (3) aggres-
sively growing vascular secondary tumors that at the time
of diagnosis have not yet reached detectable size. If a pa-
tient was metastasis-free at surgery then, barring primary
tumor recurrence, she will be cured. If only state 1 and 2
metastases were present immediately after surgery then
the outcome depends critically on how long the state of
metastatic dormancy will be maintained. (For an extensive
discussion of the significance of metastatic dormancy in
breast cancer, see [15]; a quantitative assessment of the
contribution of the above-defined states 1-3 of the meta-
static cascade to the timing of metastatic relapse based on
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a mathematical model applied to real data can be found in
[16]). Whether or not metastases will escape from dor-
mancy in a particular patient depends not only on the ef-
fects of treatment, functioning of the immune system,
concentrations of circulating angiogenesis promoters and
inhibitors, and other internal factors; exacerbation of the
disease may also be triggered by intercurrent sporadic ex-
ternal events such as surgery unrelated to breast cancer,
infection, trauma, radiation, stress, etc. Another highly
significant prognostic factor is the intrinsic aggressiveness
of the disease; however, its reliable assessment at early
stages of the disease has proven so far to be elusive. Thus,
the most critical determinants of the trial outcome are
largely unobservable and/or unpredictable.
In practice, the above unobservable prognostic factors

are substituted with less informative observable surro-
gates such as (1) age at trial entry; (2) stage and histo-
logical grade of the disease at surgery; (3) localization
and size of the primary tumor; (4) whether or not the
tumor invaded surrounding tissues; (5) the extent of
nodal involvement; (6) menopausal status; (7) estrogen
and progesterone receptor status; (8) presence of specific
mutations in BRCA1 or BRCA2 genes; (9) family history
of breast cancer; and (10) individual history of other
malignancies. Even this rough and incomplete set of sur-
rogate clinical variables creates a large number of cat-
egories of women in both arms of the trial with
potentially very different characteristics of survival and
metastasis-free survival. Importantly, randomization
won’t eliminate the observable and hidden heterogeneity;
it will only reduce the difference in the extent of hetero-
geneity between the treatment and control arms.
The aforementioned inter-subject heterogeneity is

quite typical of clinical trials (as opposed to in vitro ex-
periments with cell lines or studies on animal models
with tightly controlled inter-subject variation). Thus, in-
dividual responses of subjects in both arms of a trial
cannot even approximately be viewed as homogeneous,
let alone distributionally identical.

Statistical inference from clinical trials: Are the
assumptions met?
Like all mathematical sciences, theoretical statistics is
based on theorems consisting of assumptions and con-
clusions. The validity of the arguments by which the
conclusions are derived from the assumptions is there
for anyone to verify. In applied statistics, including infer-
ence from clinical trials, statistical methods and tests
resulting from these theorems are employed to generate
new knowledge based on empirical data. But are the as-
sumptions behind the methods and tests valid?
The most fundamental assumption that underlies vir-

tually every application of statistics is that the set of ob-
servations, say x1, x2, …, xn, is a random sample from a

certain probability distribution. Informally, this means
that the observed values result from independent repli-
cations of the same random experiment, just like a se-
quence of “heads” and “tails” results from flips of a coin
or numbers 1-6 result from repeated rolls of a die. The
exact meaning of the “random sample” assumption is as
follows: there exist a sample space S with a probability
measure on it and jointly stochastically independent (i)
and identically distributed (id) random variables X1, X2,
…, Xn on S such that X1(s) = x1, X2(s) = x2, …, Xn(s) = xn
for some point s in S. Critically, the iid assumption can-
not be verified empirically, for each of these random var-
iables is represented in the data set by a single value.
The hypothesis that random variables X1, X2, …, Xn have
a given distribution (say, standard Gaussian) can only be
tested, with certain probability of error, under the iid as-
sumption. Beyond this premise, most statistical methods,
tests and tools fail; even measures as simple as the sam-
ple mean lose their inferential significance. Thus, the
most basic assumption underlying statistical inference
from data is necessarily and invariably taken on faith.
How strong is our faith in the iid hypothesis in the

case of clinical trials? Turning to the independence
property first, note that selection of trial participants is
associated with clinical characteristics of their disease
and other medical conditions and thereby constitutes a
systematic source of dependence between individual re-
sponse variables. The latter may also be induced by a
pre-randomization run-in period during which all partic-
ipants receive the same treatment [12]. Another factor is
the significance of family history for the incidence of
various health-related events, both sporadic and trig-
gered by a medical intervention. For identical twins, the
occurrence of such an event in one of them typically
sharply increases the probability of the same event hap-
pening to the other twin, thus making these events
highly dependent. The same effect, albeit possibly to a
lesser extent, is often observed in siblings and other rela-
tives. Furthermore, because in a relatively homogeneous
human population it is very likely that two given mem-
bers have a common ancestor, their disease states and
responses to treatment should, at least in principle, be
viewed as dependent random variables. Finally, sto-
chastic dependence between individual responses may
result from various post-randomization events such as
exchange of information between subjects participating
in a clinical trial, which may modify the placebo effect
and lead to partial unblinding of the study.
One may argue, of course, that the aforementioned

dependence is weak and therefore negligible. To
analyze claims about the strength of dependence, the
latter has to be quantified. A simple and almost uni-
versally used measure of dependence between two ran-
dom variables is their correlation coefficient. This
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measure, however, is inadequate because (1) zero cor-
relation does not imply independence; and (2) a collec-
tion of pairwise independent random variables may not
be jointly independent. Thus, even designing a practic-
able quantitative measure of the deviation from joint
independence represents a considerable challenge.
The central question in assessing the effects of sto-

chastic dependence between individual response vari-
ables is how much the deviation from independence
modifies the distribution of the test statistic under the
null (no relative effect of intervention) and alternative
(relative effect exceeding a given threshold) hypotheses.
The distributions of the test statistics typically used in
parametric analyses of clinical trial data (such as stand-
ard Gaussian, Student’s t and chi-squared) depend in
very essential ways on the independence postulate. Ab-
sent this assumption, one cannot rely on these standard
distributions anymore. An equally important question
is how to assess the impact of misspecification of the
distribution of the test statistic on the outcome of stat-
istical analysis (such as the p-value of the test statistic
under the null hypothesis, statistical power of the trial,
sample size, estimates and confidence intervals for pa-
rameters of interest, trial stopping time, etc.).
As we have argued in the previous section, along

with the possible lack of independence, statistical ana-
lysis of clinical trial data is bound to encounter an even
more consequential violation of the equidistribution
(id) assumption. As with stochastic dependence, to as-
sess the extent of the deviation from the id assumption
and its impact on the outcome of statistical analysis of
trial data quantitatively, one has to use certain distance,
d, between probability distributions. This can be done
by employing one of the well-known probability metrics
such as the total variation, Kantorovich, Kolmogorov-
Smirnov, Cramér-von Mises, Lévy and other distances
[17].
We emphasize once again that neither the absolute

value, r, of the correlation coefficient for a pair of indi-
vidual observations nor the distance, d, between their
distributions is estimable from the observations alone.
Suppose, however, for the purpose of our argument,
that we know the values of r and d for all pairs of
underlying random variables exactly and that they are
small, say, less than some positive number ε. Let y be
an output of statistical analysis. Computation of y is
based on the known distribution, P0, of a test statistic
under the null or alternative hypothesis provided the
iid assumption is met. Let P be the “true” distribution
of the same statistic under the hypothesis in question
without the iid assumption. How much does P deviate
from the “ideal” distribution P0? It can be envisioned
that in some cases distribution P0 is robust, i.e. the dis-
tance d(P, P0) will be small for small ε, while in other

cases d(P, P0) will be found to be large regardless of
how small ε is. Similarly, the dependence of the output
y on the “ideal” distribution P0 may be robust to the
perturbations of the latter or not at all. Finally, even
under the total robustness scenario, the utility of such a
sensitivity analysis depends on availability of tight and
relatively simple estimates for the deviation of the out-
put y as a function of ε. Obtaining such estimates in
most cases goes far beyond the reach of contemporary
probability theory and statistics.
The patients’ hidden and observable clinical variables

associated with the disease, responses to the compared
interventions and susceptibility to the placebo effect
partition the queried population into a large number of
categories with distinct distributional characteristics of
the response. Even if we assume that each category is
distributionally homogeneous, both trial arms will con-
tain a large yet unknown number of categories, each
containing an unknown number of subjects. Moreover,
the number of such categories in each arm and the
numbers of their representatives are dependent random
variables with unknown distributions. The unknown
population weights of these categories are nuisance var-
iables that will confound statistical analysis of trial out-
comes. Furthermore, variation in the number of
categories and subjects representing each category
between different trials will make their results poten-
tially irreproducible.
Theoretically, greater distributional homogeneity of

responses in a clinical trial could be achieved through
stratification with respect to observable clinical variables.
However, two impediments will most likely undermine
the feasibility of this approach. First, due to the large
number of strata the requisite sample size in many in-
dividual strata will be unachievable, thus making the trial
underpowered. Second, the presence of substantial
hidden variation of the type discussed in the above
breast cancer example will still leave individual strata
heterogeneous.
In summary, even for large-scale randomized con-

trolled clinical trials commonly viewed as the gold
standard of biomedical research, the “heterogeneity
curse” will likely make the results of statistical inference
from the collected data dubious and potentially lead to
false and irreproducible conclusions.

Optimal sample size? Try n = 1!
One of the primary design parameters in a clinical trial
is sample size. Large sample size is supposed to ensure
statistical power of the study when the knowledge of
causes and mechanisms of the underlying biomedical
processes and effects of the compared interventions is
insufficient for outcome prediction. As discussed above,
such lack of knowledge likely means that, in spite of all
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the effort, the queried population is still heterogeneous
and so is the sample of trial participants randomized
between two or more arms of the study.
There is one case, however, where the heterogeneity

and independence problems are non-existent, namely
when a sample consists of just one subject. A great ad-
vantage of individual case studies is that learning every-
thing that is there to know is quite feasible and that in
this case inference from the generated data is not con-
founded by inter-subject variation. If one believes that
biomedical processes are governed by natural laws and
have causes, mechanisms and effects, then studying a
single subject thoroughly should be very informative. It
can be expected that doing so for many individual pa-
tients will eventually reveal all major types and charac-
teristics of the disease and will enable evaluation, and
even prediction, of effects, and side effects, of various
interventions. However, in contrast to clinical trials, in-
dividual case studies is an open-ended process with un-
certain inferential value, which makes them unfit for
making expeditious public health decisions regarding
medical interventions.
Since time immemorial medical doctors used the

method of trial and error to find effective individual
treatments while minimizing the harm to the patient’s
health. In the cases where the attempted ineffective
treatments did not change significantly the natural his-
tory of the disease, the patients served as best-matching
self-controls. Multiple individual case studies, especially
those involving controls, is the way medicine accu-
mulated enormous empirical knowledge. Over the last
two centuries, this process has been greatly accelerated
by the advancement of basic biomedical sciences, and
there is no reason to believe that it won’t bear fruit in
the future. Focused on individual rather than population
dimension of medicine, individual case studies represent
a natural complement to clinical trials. Thus, before
starting a clinical trial on 1000 patients, it is reasonable
to ask if it would be more beneficial to science and
health care (as well as more cost-effective) to conduct a
more sophisticated, state-of-the-art individual case-
controlled study on 100 subjects randomly selected from
a larger pool of qualifying and consenting patients.

Statistical analysis of clinical trials as a ritual
Distributional heterogeneity of responses within the
queried population and potential lack of independence
are by no means the only factors that may call into
question the results of statistical inference from trial
data. Statistical analysis of clinical trials involves a
whole host of hidden and untestable assumptions, va-
rious approximations and arbitrarily selected thresholds
discussed below. They all require careful justification
and thorough theoretical, or at least numerical,

sensitivity analysis. Without this, statistical inference
from clinical trials would essentially be a ritual that
lacks rigorous scientific underpinnings and may have
disastrous effects on public health.

The mantra of large n and the invocation of normality
The distributions of the test statistics most widely used
in the analysis of clinical trials are the standard Gaussian
(normal) and closely related distributions (such as χ2

and Student’s t). Strictly speaking, their legitimacy is
contingent on the assumption that individual response
variables are iid with normal distribution. Recall that the
normality assumption is empirically untestable without
the iid hypothesis that, as we have argued above, can by
no means be taken for granted. The iid assumption is
also required if one employs asymptotic results such as
the Central Limit Theorem that allows one to conclude
that for large sample size the distribution of the sample
mean of the response variables over a trial arm is ap-
proximately normal. An important question is how large
the sample size should be for the true finite sample dis-
tribution be sufficiently close to the asymptotic distribu-
tion. Estimates of various distances between these
distributions as function of sample size are extremely
hard to obtain. Even for the Central Limit Theorem,
only a basic estimate of the Kolmogorov-Smirnov dis-
tance given by the Berry-Esseen theorem [18] is avai-
lable. Yet another difficult question concerns the effects
of such estimates on the accuracy of the outcomes of
statistical analysis.
Additional challenge to the normality assumption

comes from the obvious fact that individual response
variables, and hence their sample means, are bounded
above and below, so that their true distributions are
always confined to a finite interval; in particular, they
can never be exactly normal, a point eloquently made in
[12]. The correction to the assumed asymptotic distri-
bution with an infinite tail that arises from such a trun-
cation, as measured by some probability metric, may be
small; however, the downstream effects of this error on
the distribution of the test statistic and outcomes of sta-
tistical analysis may be significant.

Sample size: Fixed or random?
Although statistical analysis of trial data assumes fixed
sample size, it is often applied to sample size that is in
reality random. Variation of the sample size has several
sources. One is randomization of patients between the
trial arms; here, sample size variation in each arm may
be substantial unless block randomization or more ad-
vanced schemes [19, 20] are employed. Random sample
size also arises in trials that require a fixed number of
events of interest. Finally, many patients drop out of a
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trial due to the lack of benefit, severe side effects or
other reasons, which leads to a difficult dilemma: either
to perform “intent-to-treat” analysis with fixed sample
size under intractable informative censoring or to deal
with a random number of patients followed through
the entire study duration. Statistical methods intended
for fixed sample size lead to erroneous results if applied
to samples of random size. For example, even the Cen-
tral Limit Theorem that underpins many statistical
methods fails beyond a few special cases, e.g. when the
sample size has Poisson distribution ([21], p. 4699).

The idol of statistical significance
Statistical significance emerged as a means to account
for random variation in the context of hypothesis test-
ing. Let, for example, δ be the observed value of the dif-
ference Δ = A1 –A0 between the average measures of
effect for experimental and control arms of a clinical
trial. Is the observed relative effect due to the true dif-
ference between the compared interventions or to
chance, or perhaps both? A reasonable question to ask,
then, in order to distinguish between these two pos-
sibilities, is as follows: What is the probability to ob-
serve the value δ under the (strong) null hypothesis
that, for each trial participant, the effects of the com-
pared treatments are identical? In other words, what is
the probability that Δ = δ due to chance alone? If the
distribution, P, of the statistic Δ under the null hypoth-
esis were discrete, then the required probability would
be P(δ). The problem with this answer, still somewhat
popular among natural scientists, is that it does not
provide a clear way to separate two interrelated factors:
(1) the magnitude of P(δ) relative to the probabilities
P(x) of other admissible observations x; and (2) the
sample size n. (Note that as n increases all the probabi-
lities P(x) tend to become small). In the opposite case
of a continuous distribution P, the proposed answer is
utterly uninformative, for in this case P(x) = 0 for any
observation x.
A way to resolve this conundrum was proposed by

Sir Ronald Fisher in his famous book [22]. To quantify
significance of an observation δ, he suggested to use
the probability, under the null hypothesis, that Δ ≥ δ if
δ > 0 and Δ ≤ δ if δ < 0 (or the corresponding two-tail
probability if the sign of Δ is of no particular impor-
tance). This probability, termed the p-value, represents
the asymptotic fraction of hypothetical independent
identical trials, if one conducts them indefinitely, in
which the size of the observed effect will be at least as
extreme as that in the given trial. Thus, sufficiently
small p-values can be used for rejecting the null
hypothesis.
Fisher’s approach to significance is not without a

blemish. First, it employs, contrary to the empirical

nature of biomedical sciences, the values of statistic Δ
that were not observed in a given study and perhaps
will never be, even if the study were to be replicated in-
definitely; the sole basis for these counterfactual values
of Δ is its imputed distribution under the null hypoth-
esis. Second, Fisher’s idea is based on a tacit assump-
tion that the probability density function of statistic Δ
under the null hypothesis has a one- or two-sided bell-
shaped tail. For other shapes, it may lose its appeal
(think, for example, of Δ uniformly distributed on a
symmetric interval whose endpoints represent realistic
bounds for Δ). Furthermore, if the null distribution of
Δ is multimodal then the blanket definition of p-value
as tail probability is unequivocally wrong.
Normal distribution of Δ, almost universally assumed

in the parametric analyses of clinical trials, is merely an
approximation, based on the Central Limit Theorem, to
its true distribution (or perhaps not even an approxi-
mation if individual response variables are not iid). Be-
cause p-value is a tail probability, the resulting error in
its determination may be as large as the Kolmogorov-
Smirnov distance between the two distributions. The
latter can be estimated through the Kolmogorov-
Smirnov distances between the distributions of the
averages A1, A0 over trial arms and their normal ap-
proximations. Under the iid assumption, each of these
distances, according to the Berry-Esseen theorem [18],
does not exceed 0.5Cn-1/2, where n is the sample size
and C ≥ 1 is the ratio of the third absolute central mo-
ment of the distribution of individual response variables
to the cube of its standard deviation. Importantly, the
dependence of the Berry-Esseen bound on n cannot be
improved; specifically, with the upper bound of 0.4Cn-1/2,
it is in general not true anymore [23]. Therefore, for
sample sizes typically encountered in clinical trials
(from a few hundred to a few thousand subjects), the
maximum error in p-value determination may be
comparable to, or even exceed, the small p-values
used for rejecting the null hypothesis. Such sample
sizes can only guarantee the correctness of the first
decimal digit of the p-value! Thus, pursuit of small p-
values in parametric analysis of clinical trials is in-
defensible. A way to somewhat mitigate this problem
is discussed next.

Randomization ignored
The above-described parametric p-values ignore
randomization, an essential aspect of the design of ran-
domized controlled clinical trials [12]. Suppose that p-
values are computed under the (strong) null hypothesis.
Then, for a properly blinded trial, it is reasonable to ex-
pect the responses of all trial participants to be exactly
the same regardless of their allocation to treatment arms
(this claim is unequivocally true if individual responses
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are deterministic). This enables computation of the stat-
istic Δ for every possible allocation of subjects to treat-
ments that the employed randomization algorithm may
produce, not only the “real” one. This leads to the
permutation-based p-value of the observation δ [24, 25].
If individual responses are deterministic (in which case
stochastic dependence and heterogeneity are non-
issues), this is the only way to compute the effective sig-
nificance of the trial outcome. However, in general these
p-values are only partial in that they do not account for
the variation of individual response variables. This is
where parametric analysis, that capitalizes on the asymp-
totic normality of Δ, could be invoked. (Observe that
because the generalized Berry-Essen inequality [26] re-
quires only independence of individual response vari-
ables, the error in p-value determination can in
principle be controlled even if the assumption of distri-
butional homogeneity is lifted). The average of para-
metric p-values computed over all admissible outcomes
of the randomization process represents a permutation-
based parametric p-value that will most likely reduce
the error in the conventional parametric p-value
computation.

The magic 5% and other arbitrary thresholds
In the aforementioned book [22], Ronald Fisher also
proposed to use 0.05 as a p-value threshold for rejecting
the null hypothesis. Since then this low key suggestion
has become almost a religious commandment for adop-
tion of statistical significance levels and computation of
confidence intervals. For example, a recent massive
meta-analysis study [27] found that among almost 2 mil-
lion biomedical papers published over the last 25 years,
96% appealed to p-value ≤ 0.05 to claim significance of
their results. As discussed above, numerous factors may
lead to misspecification of the test statistic under the
null hypothesis, which may have a considerable impact
on the effective significance level of a clinical trial. As a
result, a trial may produce false results even if the p-
value happens to be < 0.05 and, conversely, true and
valuable results may be discarded or self-censored just
because their statistical significance falls short of the
magic 5%. The same is true for the deviation of the
effective statistical power of clinical trials under the al-
ternative hypothesis from the nominal value, typically
assumed at the planning stage to be 80 or 90%.

Discussion, conclusions and recommendations
That logic, including careful formulation of premises, is
critical for the correctness of all sorts of arguments, has
been recognized since Aristotle. However, it was Henri
Poincaré, a genius French mathematician, theoretical

physicist and philosopher of the 19th and early twenti-
eth century, who was the first to keenly understand the
fundamental importance of hypotheses and assum-
ptions for the validity of scientific research [28]. Appa-
rently, his ideas appeared so much ahead of their time
that even more than a century later they have not been
fully recognized and taken to heart by the scientific
community.
In this work, we focused on the following basic as-

sumptions that underpin statistical methodology used in
clinical trials and are critical to the validity of statistical
inference from trial data: (1) substantial role of intra-
subject variation in individual responses to the com-
pared interventions; (2) stochastic independence of indi-
vidual response variables; and (3) their distributional
homogeneity within each trial arm. We found that for
many health conditions and treatments assumption 1 is
unlikely to be true; assumption 2 is possibly approxi-
mately true with some exceptions and in general re-
quires careful analysis in each particular case; and
assumption 3 is likely to be false. The last point has two
important implications.

(a)The average response over a trial arm may prove to
be a poor preference function for selection of the
best intervention and likewise the normalized
difference between arm-specific averages may appear
to be a suboptimal test statistic under the null and
alternative hypotheses. As a historical note, the idea
that indiscriminant use of averages in biology and
medicine may lead to obfuscation of scientific truth
was passionately argued 150 years ago by Claude
Bernard, one of the greatest experimental
physiologists of all times. He also insisted that the
duty of a scientist is to find the unique immediate
cause behind every health-related event in an
individual patient, thus siding unequivocally
with the deterministic paradigm ([29], p. 137).

(b)Under the assumption of stochastic individual
responses, a key condition that makes or breaks
statistical analysis of clinical trial data is the
distributional homogeneity of individual response
variables. On the one end of the homogeneity
spectrum, one encounters the situation where
individual response variables in each arm of the trial
are iid. Here comparison of treatments by the value
of arm-specific averages and inference from their
difference, when made correctly and rigorously, is
well justified. Achieving a larger degree of
homogeneity requires tightening of the subject
recruitment criteria based on observable clinical
variables including genomic, molecular, cellular,
histologic and other markers of the disease and
responses to compared treatments. Nonetheless, it is
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quite possible that in spite of all the effort, responses
of trial participants are still extremely heterogeneous.
There we meet the other end of the homogeneity
spectrum where all individual responses have very
dissimilar distributions. Here each individual subject
represents a separate clinical case while population
approach has only descriptive utility. Each
combination of a disease, medical intervention and
targeted population falls somewhere in between
these extremes but its position within the
homogeneity spectrum is difficult to determine. A
practical way to address this uncertainty would
be to conduct clinical trials and controlled individual
case studies competitively and compare their
outcomes.

From its early beginnings medicine has been “person-
alized” in that physicians were primarily focused on
treating individual patients, one at a time, and their in-
terventions were tailored to the unique patient’s condi-
tion and specific course of the disease. The advent of
clinical trials with its focus on average population ef-
fects signified a dramatic departure from this paradigm.
One conclusion of this work is that perhaps the time
has come to expand the approach of personalized medi-
cine from treatment to drug development and other
medical innovations. Due to scientific and technological
breakthroughs in molecular biology and genomics com-
bined with increased computational power and modern
information technologies, such expansion may bring
about greater effectiveness and prognostic accuracy of
medical treatments than in the past, see e.g. [5].
In this work, we have also taken a close look at statis-

tical significance invoked for supporting the claim of
superiority of a tested intervention over a comparator.
Many factors, such as (1) violation of the iid assump-
tion for individual responses; (2) deviation from the
normality of the individual responses or their arm-
specific averages; (3) randomness of the sample size;
and (4) failure to take into account randomization of
trial participants between treatments, may cause the p-
value computed for the postulated distribution of the
test statistic to diverge considerably from the true sig-
nificance. For example, as we have argued in the previ-
ous section, to guarantee the nominal significance α =
0.05 (after rounding) in parametric analysis, a trial has
to be run with tens of thousands subjects! This casts a
serious doubt on the utility of parametric p-values for
planning and analyzing clinical trials, suggests that
small parametric p-values are likely meaningless, and
implies that reliance on fixed thresholds (typically 0.05)
for rejection of the null hypothesis is scientifically un-
founded. The last point is also true for statistical power.
Finally, the conventional sample size computation at

the planning stage of a clinical trial may also lead to er-
roneous results.
To make things even worse, in the vast majority of

biomedical studies (including reports on clinical trials),
p-values are deployed without even defining the measure
of effect, stating the null hypothesis or specifying the test
statistic, let alone verifying the assumptions under which
the test statistic has a postulated distribution. As a re-
sult, systematic misuse, overuse and misinterpretation of
p-values has become a major source of false and irrepro-
ducible results. Although these abuses have been exten-
sively criticized [30–33], p-values remain the single most
important numerical measure invoked to analyze the re-
sults of clinical trials, confirm the validity of biomedical
research, and make critical health care decisions. Yet all
too often they provide a convenient cover for poor data
quality, all sorts of biases and conflicts of interest per-
taining to the collection, analysis and reporting of clin-
ical trial data, and for outright fraud.
Throughout history the practice of medicine was

rooted in tradition, authoritative opinion, personal ex-
perience, and clinical intuition. Clinical trials emerged
as an attempt at a more “objective” and “evidence-
based” approach. If a treatment has invariably large ef-
fect then a small controlled trial would give a definitive
answer even without formal statistical analysis. A text-
book example is the finding that eating citrus fruits or
drinking their juice cures scurvy, a discovery made in
1747, long before it was found that scurvy is caused by
vitamin C deficiency, by Royal Navy surgeon James
Lind through the first controlled trial in history. As Sir
Austin Bradford Hill has forcefully stated in his classic
work [34], in cases where the observed effect is uni-
formly very large, very small or practically inconse-
quential, formal statistical analysis is unnecessary. It is
the case of heterogeneous effects of small or variable
size that calls for carefully designed large-scale con-
trolled randomized clinical trials and rigorous statistical
analysis of their outcomes. Paradoxically, as we have
argued in this work, this is precisely the situation where
distributional heterogeneity of individual responses and
numerous other factors may invalidate the basic as-
sumptions upon which statistical analysis of clinical
trial data rests and result in false and irreproducible
conclusions.
What should be done to restore the value and integrity

of statistical methods in clinical trials and beyond? I be-
lieve the answer lies in (1) resisting statistical orthodoxy
and creatively using a multitude of statistical methods
(while occasionally openly admitting that these methods
have failed); (2) rigorously validating all the assumptions
underlying statistical analysis; and (3) closely coordinat-
ing statistical analyses with biomedical research, which
provides statistical methods with both context and
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means of external validation. As an example of how
much enrichment, innovation and modification biomed-
ical research may bring to statistical methodology, the
reader is referred to the article [35], which represents a
twenty-first century version of the Bradford Hill’s 9 princi-
ples of inference from association to causation in epi-
demiological studies that he has formulated in 1965 [34].
Each clinical trial should be treated as a unique scientific
project that brings the full arsenal of knowledge of mecha-
nisms associated with the disease and its treatments to
bear on selection, or invention, of statistical methods.
Meanwhile, advanced mathematical and computational
methods could be used to validate the assumptions
behind statistical methods and estimate errors result-
ing from various approximations.
We conclude with a few specific recommendations in-

formed by the analysis undertaken in this work.

1. Clinical trials should be publicly funded and
conducted by biomedical researchers, medical
doctors and statisticians with no relation to
industry and no conflicts of interest.

2. Health care decisions based on outcomes of clinical
trials should rely on a combination of statistical and
biomedical evidence.

3. Scientific and health care benefits resulting from
clinical trials should be compared to those of state-
of-the-art controlled individual case studies
incurring comparable costs.

4. Trials should be populated in such a way that the
anticipated individual responses in all arms of the
trial are as homogeneous as possible given all the
available prior information.

5. Results of statistical analyses of randomized clinical
trial data should be compared with those based on
deterministic individual responses and permutation-
based p-values, unless there is strong scientific
evidence that individual responses are stochastic.

6. The use of fixed levels of significance and statistical
power as well as pursuit of small p-values in
parametric analyses of trial data should be discouraged.

7. Computation of parametric p-values for randomized
clinical trial data should involve averaging over the
set of permutations produced by the randomization
algorithm.
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