Bennett et al. BVIC Medical Research Methodology (2017) 17:146
DOI 10.1186/512874-017-0421-6

BMC Medical Research
Methodology

Systematic review of statistical approaches ® e
to quantify, or correct for, measurement

error in a continuous exposure in

nutritional epidemiology

Derrick A. Bennett'”, Denise Landry?, Julian Little* and Cosetta Minelli*

Abstract

Background: Several statistical approaches have been proposed to assess and correct for exposure measurement
error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology.

Methods: MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in
order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a
continuous exposure in nutritional epidemiology using a calibration study.

Results: We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods
to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify
the relationship between different dietary assessment instruments and “true intake”, which were mostly based on
correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease
associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches
(multiple imputation and moment reconstruction) were identified that can deal with differential measurement error.

Conclusions: For regression calibration, the most common approach to correct for measurement error used in
nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that
investigate the impact of departures from the classical measurement error model on regression calibration estimates
can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when
regression calibration is not appropriate, the choice of method should depend on the measurement error model
assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical
measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of
methods to assess and adjust for measurement error in nutritional epidemiology.
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Background

Many exposures investigated in epidemiological re-
search, such as physical activity, air pollution and dietary
intake, are challenging to measure and therefore prone
to measurement error. It has been suggested that efforts
should be devoted to improving the measurement of an
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individual’s environmental exposure, the “exposome”,
akin to the efforts that have been devoted to the “gen-
ome”, [1] and that international collaborations should be
formed in order to translate the “exposome” from a con-
cept to an approach that can be implemented in order
to address public health issues [2]. An exemplar is diet
and public health, about which there has been renewed
controversy recently [3, 4]. The controversy is due in
part to the difficulty of measuring nutritional and dietary
exposures, and disentangling their effects because both
specific exposures and their errors are inter-correlated.
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Measurement error in nutritional epidemiology

Two general types of measurement error are described
in the nutritional epidemiological literature: random er-
rors and systematic errors. Random errors are chance
fluctuations or random variations in dietary intake that
average out to the truth in the long run if many repeats
are taken (i.e. the law of large numbers applies) [5]. Sys-
tematic errors are more serious as they do not average
out to the true value even when a large number of re-
peats are taken. In epidemiological studies random or
systematic errors can occur at two different levels:
within a person or between persons. Thus at least four
types of measurement error can exist and these are de-
scribed in detail in Table 1.

The situation where the only measurement errors are
within-person random errors that are independent of
true exposure with a mean of zero and constant variance
is known as the “classical measurement error model”
(Table 2) and, in the case of a single mis-measured ex-
posure, its effect is always attenuation of the estimated
effect size toward the null [6]. Thus, the magnitude of
association is reduced but the statistical test used to esti-
mate the dietary effect is still valid (i.e. the Type I error
is unaffected), though its power is reduced. However, in
the presence of covariates in the disease model which
are also measured imprecisely, the effect of the main ex-
posure could be biased in any direction due to residual
confounding and, as a result, the statistical test becomes
invalid (7, 8].

Dietary assessment methods

Many large-scale epidemiological studies rely on self-
reported measures of dietary intake as this is the most
cost-effective way to collect the information, but these
are subject to error. Methods to assess dietary intake in-
clude i) food frequency questionnaires, that ask how
often certain foods are eaten over a designated period of
time; ii) 24-h recall are a memory based assessment
method that asks about dietary intake over the past
24 h; iii) food diaries which prospectively record dietary
data intake for a designated period; (iv) diet history and
(v) checklist questions that assess one specific aspect of
dietary intake.

The primary aim of many epidemiological studies is to
obtain the “true dietary exposure” (which is usually de-
fined as the habitual or long-term average dietary intake
over a designated period of time), and establish whether
this “true dietary exposure” is associated with a disease
of interest. In order to facilitate this process the semi-
quantitative food frequency questionnaire (FFQ) became
popular [9]. An FFQ consists of a structured food list
and a frequency response section on which participants
indicate his or her usual frequency of intake of each food
over a certain period of time in the past, usually the past
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Table 1 Types of measurement error

Within-person random error: This is the variation that is observed in
exposure using a specific instrument when it is repeatedly measured in
the same individual. A nutritional example would be the day-to-day
variation in dietary intake reported using multiple 24-h recalls for an
individual (assuming that it is possible to capture a single day’s dietary
intake perfectly). The day-to-day variation may be random and thus
results in an estimate of usual intake that is unbiased meaning that a
person’s true usual intake is estimated accurately on average with several
repeat measurements, although with some error.

Between-person random error: When error is random between
individuals it results in an unbiased estimate of the mean usual exposure
for the population of interest. Even with random measurement error within
a person, it is possible to calculate an unbiased estimate for the population,
by balancing out overestimation of some individuals with underestimation
for others. With between-person random error the mean is estimated
without bias, but the variance is inflated. In nutritional research this can be
the result of using a single or a few repeat measurements of dietary intake
per individual in the presence of within-person random error.

Within-person systematic error: Systematic errors are biases in the
measurement of an exposure that consistently depart from the “true
exposure” value in the same direction. Within-person systematic errors
are systematic errors that are specific to an individual that are manifested
as a positive or negative difference between an individual's reported
exposure. For example, some individuals may occasionally use dietary
supplements which may lead to “systematic additive error,” indicating that
a constant error is added to each person’s reported dietary intake. This
could lead to over- or underestimation for all participants by the same
amount. This directional difference (or intake-related bias) is usually
constant within an individual and would remain regardless of how many
repeat measurements are taken. Within-person systematic error may be
related to individual characteristics, such as social/cultural desirability, that
affects how a particular individual reports dietary intakes.

Between-person systematic error: Systematic errors in exposures can
be additive or multiplicative. Additive between-person systematic error can
occur when the dietary instrument of interest causes every measurement
to be too large or too small by a constant amount from the truth. For
example if the additive systematic error was negative each participants
reported intake would be lower than their true intake using the dietary
instrument of interest. Multiplicative between-person systematic error can
occur when instead of reporting their true intake all participants report a
fixed multiple of their true intake. This can be thought of as an intake-
related bias where there is a systematic deviation from the truth due to a
correlation between errors in the dietary instrument of interest and true
intake. The attenuation (or flattened slope phenomenon) happens when
both additive and multiplicative (intake-related bias) are present, which is
typical in nutritional epidemiology. Person-specific bias is another type of
between-person systematic error that may occur, if for example, a person
that takes a dietary supplement every day — their average intake will be
different from the predicted group-level flattened slope.

year. The FFQ has a low participant burden, and thus it
is possible to conduct repeated measures over time,
which is important to capture long-term variation in
diets. The FFQ usually has lower within-person variation
than other dietary assessment methods described above
because they are designed to assess long-term dietary
intake, the exposure of etiological interest for most dis-
eases [10].

Gold standards and alloyed gold standards

A gold standard dietary assessment instrument measures
the “true dietary exposure level” plus classical measure-
ment error [7]. Multiple week diet records which require
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Table 2 Classical Measurement error model

The classical measurement error model assumes additive error that is
unrelated to the targeted consumption, unrelated to other study subject
characteristics, and independent of the corresponding measurement
error in the dietary instrument of interest [103]. It is important that
nutritional epidemiologists are aware of what sort of impact
measurement error can have on diet-disease associations derived from
even generally well conducted large-scale epidemiological studies. If
there is a linear relationship between a single dietary exposure and the
disease of interest, as in a logistic regression model, and this is also the
case for a Cox regression or linear regression model, then the effect of
classical measurement error is to attenuate the diet-disease association
[37, 47]. This means that diet-disease associations such as log odds ratio,
log hazard ratios or linear regression coefficients will be biased towards
the null and a further consequence of classical measurement error in
linear models is a loss of power to detect diet-disease associations.
Classical measurement error in a multivariable exposure situation can
bias the diet-disease associations in any direction, even in a linear
regression model [47]. Other types of error that depend on the ‘true’
exposure (i.e. systematic error) or that depends on the outcome (i.e.
differential error), may result in biases either away or towards the null in
an unpredictable manner. [42, 47]

participants to record everything they eat or drink over
the course of several weeks, are considered to be the
“gold standard” for ascertaining self-report dietary infor-
mation because unlike other methods described they do
not rely on memory [10]. In some situations, biomarkers
can be used as objective measures of dietary intake;
these include recovery biomarkers which provide an esti-
mate of absolute intake over a fixed period of time. Ex-
amples of recovery biomarkers are doubly labelled water
for total energy intake and 24-h urinary nitrogen for
protein intake, which provide a measure of intake based
on a known direct quantitative relationship between in-
take and output [8].

Because multiple week diet records are seldom prac-
tical, and there are few available biomarkers, “alloyed
gold standard” diet assessment instruments have been
used to assess long-term dietary intake, such as multiple
24-h dietary recalls. Essentially, these are the best per-
forming instruments under reasonable conditions,
known to have some residual error but practical to use.
Repeated 24-h dietary recalls involve a participant
reporting all foods consumed in the previous 24-h or
calendar day to a trained interviewer either in person or
over the phone on multiple occasions over time. Al-
though reliance on a participant’s memory leaves room
for measurement error that is not necessarily classical, a
well-trained interviewer can elicit highly detailed and
potentially useful nutritional data. “Alloyed gold stand-
ard” biomarkers applied to the assessment of dietary
intake includes i) predictive biomarkers and ii) concen-
tration biomarkers. Predictive biomarkers are sensitive,
stable, time-dependent, and show a dose-response rela-
tionship with dietary intakes. However, they may be af-
fected by personal characteristics but their relationship
with diet generally outweighs those factors. Examples of
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predictive biomarkers are urinary fructose, sucrose and
dietary sugars. Concentration biomarkers are measured
concentrations of specific compounds in blood (e.g.
serum carotenoids, vitamin C and vitamin E) or other
tissues (e.g. adipose tissue fatty acids). Unlike recovery
biomarkers, concentration biomarkers do not have the
same quantitative relationship with intake over a specific
time period for all individuals in a given population due
to between-subject variation in digestion, absorption,
body distribution, synthesis, metabolism and excretion
[8]. Thus, an alloyed gold standard dietary assessment
instrument measures “dietary exposure level” plus non-
classical measurement error.

Reference instruments and calibration studies

As there is no universal method of assessing diet/nutri-
tional exposures, and because of technological innovation,
investigation of diet-disease relationships often have re-
quired, and increasingly require, the development of new
instruments that can be used in large-scale epidemio-
logical investigations. In principle, a measure of dietary ex-
posure is valid if the dietary instrument measures what it
purports to measure, which can be assessed if we can
compare it to a reference instrument [11]. In the ideal sce-
nario the new dietary instrument should be compared to a
perfect reference instrument (that is a gold standard diet-
ary instrument), that measures the “true dietary exposure”.
In most situations, however, it is not possible to have an
ideal or gold standard reference instrument and the new
instrument for assessing dietary exposure is usually com-
pared with an imperfect reference instrument (an alloyed
gold standard), which is considered from previous re-
search to be more accurate than the new dietary instru-
ment. Thus, the relative validity (Table 3) of the new
instrument compared with the reference instrument is
investigated [11].

Table 3 Relative validity

In general terms, a study of ‘relative validity’ is one that compares the
performance of two or more imperfect instruments, for example, food
frequency questionnaire (FFQ) relative to other self-reported instruments,
such as 24-h dietary recalls and food records [104]. The evaluation of a
dietary instrument can therefore involve both the assessment of its
measurement error structure and its correlation with the truth (ie. its
‘relative validity’).

Often researchers will aim to assess the "relative validity’ of a new dietary
instrument, such as a FFQ, by comparing its results with those obtained
with a more accurate measure of food or nutrient intake. This can be in
the context of the development of a new instrument, to test whether it
provides improvement over currently used instruments, or for the use
of an existing instrument in a different population from the one in
which it has been developed. The development of any given FFQ is
based on the dietary intake of a defined population during a specific
period in time, and when these instruments are to be used in other
populations, it is important to evaluate whether the instrument gives the
same results when repeated on several occasions (the reproducibility’) as
well as its relative validity’ in the new target population [11].
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To quantify or make corrections for the effects of
measurement error on estimated diet-disease associa-
tions, information is required additional to the main
study data. Generally, random error can be addressed
simply with replicate measurements of dietary intake
using a specific dietary instrument for a sample of par-
ticipants, while addressing systematic error requires an
additional instrument, assumed to be free of systematic
error, to be used as a reference. A smaller detailed study
(we use the term “calibration study” to describe these)
can be designed to obtain this additional information on
random or systematic error in the dietary instrument of
interest, in order for this information to be used to
quantify or adjust for measurement error (see Table 4).
The high participant burden and cost of keeping food
records has limited their use in large-scale epidemio-
logical studies. However, their ability to accurately ascer-
tain detailed dietary information makes them useful as
reference instruments for other dietary assessment
methods in a calibration study. Because of their reliance
on memory, FFQs may suffer from greater measurement
error relative to 24- h dietary recalls and food records.
Food records and 24-h recalls collected over several days
can be used as reference instruments to reflect longer-
term intakes (for certain nutrients, just a few days of diet
records or 24-h recalls in a calibration study might be
enough, provided the days are spread out over the entire
reference period of the FFQ) [10]. The choice of refer-
ence instrument is therefore important and must be
based on the judgement of the investigator and the re-
search question. Choosing a particular dietary instru-
ment as a reference means that the researcher is
implicitly assuming that this dietary instrument is an un-
biased estimate of the “true underlying dietary exposure”
that they wish to measure.

Data collected from different types of calibration stud-
ies can provide information on the measurement error
structure of the dietary instrument that can be incorpo-
rated in the analysis of the diet-disease association, to
mitigate the impact of measurement error.

Different statistical approaches have been proposed
to quantify and correct for measurement error, both
in general and specifically for continuous dietary ex-
posures. However, only one overview is available that
has summarized all of the main issues and implica-
tions for policy decisions based on dietary associa-
tions but this review did not give a detailed
description of the methods used [10]. We therefore
undertook a systematic review to identify and ap-
praise methods that have been applied in nutritional
epidemiology to assess “true dietary intake”(defined as
usual or habitual levels of a continuous dietary exposure),
to assess different types of measurement error and adjust
diet-disease associations for them.
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Methods

Studies were identified from the online databases Med-
line, Embase, BIOSIS and CINAHL, using the following
search strategy up to the end of May 2016: [(“diet” or
“diet records” or “diet surveys” or “food” or “food prefer-
ences” or “food habits” or “food analysis” or “nutrition as-
sessment” or  “nutrition surveys” or “nutritional
physiological phenomena”) in subject headings or (“food
frequency questionnaire” or “FFQ” or “diet questionnaire”
or “diet” or “24 h recall” or “24 h recall” or “24 h recall”
or “weighed record” or “unweighed record” or “diet diary”
or “food diary”) in abstract or title] and (“measurement
error” or “mismeasurement”) in abstract or title. We also
searched the Dietary Assessment Calibration/Validation
Register [12] and scrutinised the reference lists of rele-
vant study reports and review articles, and by enquiring
among collaborators and colleagues.

Study identification and data extraction

Reports were potentially eligible for inclusion in this
systematic review if they satisfied any of the following
criteria: (1) they reported the development of a new
method to investigate measurement error (2) they con-
sidered the issue of measurement error using some form
of calibration study; (3) one or more methods were
motivated by, and applied to, a real dataset. Using a pre-
designed piloted data extraction form, data were ex-
tracted on: the statistical assumptions of the method
[e.g. whether the method can deal with differential (error
structure differs between groups of subjects in the study)
or non-differential (error structure is the same between
groups of subjects in the study) measurement error]; the
reported increase in precision of the method compared
with other possible methods of correcting for measure-
ment error; the main and calibration study designs
reported to be most appropriate for implementation of
the method; whether the method can be implemented in
standard statistical software. Based on our search stra-
tegy a single reviewer reviewed the titles, abstracts and
keywords of every record retrieved. Full articles were
retrieved for further assessment of eligibility for inclu-
sion in the review by pairs of reviewers independently
using the pre-designed extraction form and any dis-
agreements were discussed with a third party. The full
study protocol for this systematic review has been previ-
ously published [13]. This systematic review is reported
according to the guidelines specified in the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [14].

Results

Of 1671 potentially eligible articles identified in the
search of the four databases, 126 studies met our eligi-
bility criteria and had data extracted (Fig. 1). Of these,



Bennett et al. BVIC Medical Research Methodology (2017) 17:146

Page 5 of 22

1671 references identified
from initial database search

A 4

301 abstracts retrieved for
review

N 1370 excluded after
screening title

A4

126 studies included (either methods
development paper or performed a
calibration study and applied a
method to nutritional exposure)

AN

175 excluded:

15 not fulfilling criteria

43 not applied to a nutritional exposure/not in
English

117 no calibration information reported

43 studies (new
method development
papers that were also

applied to a
nutritional exposure)

83 studies (existing
method applied to
nutritional exposure)

Fig. 1 Screening and selection of included studies

43 were methodological (reported the development of a
novel method and its application in a secondary analysis
of a previously published nutritional epidemiological
study) [Additional file 1: Table S1 gives the individual
studies]; 83 were applied reports (i.e. they reported the
application of an existing method) [Additional file 2:
Table S2 gives the individual studies].

We used a narrative approach for data synthesis and
broadly classified the primary statistical approaches used
in the 126 studies into two groups: a) approaches to
quantify or assess the relationship between different
dietary assessment instruments and “true intake”; b) ap-
proaches to adjust point and interval estimates of diet-
disease associations for measurement error (Fig. 2).

Approaches to quantify the relationship between different
dietary assessment instruments and “true intake”

The dietary assessment instrument used most often in
large-scale epidemiological studies is the Food Fre-
quency Questionnaire (FFQ), which suffers from ran-
dom measurement errors. The 50 studies included in
this group aimed to assess the ‘relative validity’ of FFQs
with alternative dietary assessment methods (e.g., 24-h
recalls or diet records) by reporting correlations. The
two main approaches identified were based on corre-
lation analysis (34 studies) and method of triads (10

studies) [see Fig. 2b]. Table 5 provides a summary of
the methods and their assumptions with reference to
the original manuscripts and each of the methods is
now described in more detail below.

Correlation analysis

Correlation analyses were used by 34 studies included
in this systematic review (Fig. 2b; Additional file 2:
Table S2) to quantify the amount of measurement
error. Correlation coefficients are commonly used to
assess relative validity as they allow the presentation of
the association between two continuous measurements
as a single number. For example, in some situations a
dietary questionnaire may be compared with a detailed
diet history interview (or some other superior ap-
proach) administered at some later interval. Errors in
the reference method should be uncorrelated with
those of the main study dietary instrument being
assessed; if these errors are uncorrelated then the cor-
relation coefficients between the dietary intake as
assessed by these two dietary instruments are usually
underestimated [15]. In order to obtain a better esti-
mate of the “true” correlation between the dietary in-
take as assessed by the two dietary instruments then a
de-attenuated correlation can be computed using the
approach summarized in Table 6.
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a Approach to correct for measurement error

Regression calibration
Multi-level intra class correlation
Estimating equations

Bayesian hierarchical model

Bayesian structural measurementmodel

b Approach to quantify measurement error

Correlation
Method of triads
One-way random effects ANOVA

Other

FREQ.

71

o

10 20 30 40 50 60 70 80
Number of studies

FREQ.

34

o —

Fig. 2 Summary of the main approaches used by studies included in the systematic review. a Approaches to correct for measurement error.
b Approaches to quantify measurement error. FREQ.: Represents the number of studies that reported using the particular approach

L e e
10 20 30 40

Number of studies

Two typical examples of analysis of correlations be-
tween two different instruments with subsequent calcu-
lation of de-attenuated correlation coefficients from
studies included in this review are now briefly described.
Horn-Ross et al. [16] measured four 24-h recalls in a
10 month study. The dietary recalls were spaced at
three-month intervals beginning in early 2000. Two self-
administered FFQs were completed. The first, covering
usual dietary intake during 1999, was left with the par-
ticipant following the first dietary recall and returned to
the study office by mail. At the end of the study, a sec-
ond FFQ, covering usual dietary intake during 2000, was
mailed to the participant. The authors then calculated
energy-adjusted de-attenuated Pearson correlations for
the FFQ with 24-h recalls but did not mention
performing any transformations prior to computing the
correlations. Generally, the de-attenuated Pearson corre-
lations ranged between 0.55 and 0.85 and the authors re-
ported that these were consistent with other cohort
studies [16]. Katsouyanni et al. [17] assessed the ‘relative
validity’ of a 190-item semi-quantitative FFQ to be used
in a large prospective study in Greece. Eighty partici-
pants completed two self-administered semi-quantitative
FFQ spaced approximately 1 year apart, and within this
1-year interval they visited the study centre monthly and
completed an interviewer-administered 24-h diet recall
questionnaire. The authors reported that mean and

standard deviations were calculated for all nutrient in-
takes from both FFQ and for the mean of the 24-h recall
interviews. In order to account for non-normality all
nutrient intakes were log-transformed prior to further
analysis. The average correlation between the energy-
adjusted nutrients measured by repeated 24-h recalls
and the semi-quantitative FFQ was 0.46 for men and
0.39 for women. De-attenuated Pearson correlations var-
ied for specific nutrients, ranging from 0.25 for beta-
carotene and polyunsaturated fats to > 0.50 for saturated
fats, cis-linoleic acid, calcium and phosphorus in both
sexes combined.

As dietary variables are usually skewed toward higher
values, transformations (such as logarithmic) to in-
crease normality should always be considered before
computing correlation coefficients. This has the advan-
tage of reducing the influence of extreme values and of
creating a correlation coefficient that is more interpret-
able. Alternatively, nonparametric correlation coeffi-
cients (e.g., Spearman) can be employed when one or
both variables are not normally distributed [18]. Two
studies in this review reported using Spearman’s cor-
relation to assess the relative validity of dietary ques-
tionnaires in the Netherlands [19] and South Africa
[20]. A similar study conducted in Germany performed
transformations for non-normally distributed nutrients
prior to analysis [21].
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Willet has noted that a disadvantage of the correlation
coefficient is that it is a function of the true between-
person variation in the population being studied as well
as of the accuracy of the dietary assessment method. Re-
searchers who use correlations to assess relative validity
of a FFQ with some other method should be aware that
the correlation coefficient obtained is only generalizable
to those populations with similar between-person vari-
ation as the test population, and the populations should
be similar in terms of food items included, portion size
and interpretation of the questions.

Method of triads

The method of triads (see Table 5), which has been pro-
posed to assess the relative validity of three dietary as-
sessment instruments and derive their validity
coefficients, was used in ten studies included in this re-
view [22-31]. The method of triads is often used with a
FFQ (Q), a 24-h recall (I;) and one or more biological
marker measurements (I,) [32]. The assumptions are
that the measurements from the three instruments are
linearly related to the true intake levels and that their
random errors are statistically independent [11]. The as-
sumption of independent random errors implies that
correlations between any pair of measurements are en-
tirely due to the fact that all measurements are related
to the unknown ‘true intake’. Under these assumptions,
the observed correlation between the three measure-
ments Q, I;, and I, can be written as products of the
correlations of each of these three measurements with
the “true” level of dietary intake of interest [33]. This
method allows the comparison of food or nutrient con-
sumption estimated by the three methods with the true
(but unknown) intake by calculating a validity coefficient
(the correlation between the dietary intake measured by
the three methods and the true [unknown] dietary
intake).

Table 4 Types of calibration study

For the purpose of this report, we collectively refer to “calibration studies”
to indicate studies that either (i) aim to assess systematic error by
comparing a dietary assessment instrument with “true exposure” (or “gold
standard” reference instrument) or with a known superior dietary
instrument which may also be prone to its own measurement error as
the reference instrument (an “alloyed gold standard”); (ii) aim to assess
random error by taking repeat measurements using the same dietary
instrument. Calibration studies can be “internal” if they are performed on
a subsample of the main study, or “external” otherwise [46]. Calibration
studies that use repeat measurements are common because under the
classical measurement error model the error prone measurements of
dietary intake are described as unbiased measures of ‘true’ exposure. This
is due to the fact that under the classical measurement error model (i.e.
errors in repeat measurements are uncorrelated) the average over a large
number of repeated measurements would provide a good estimate of
the ‘true’ exposure [7].
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One of the problems with the method of triads is
that implausible validity coefficients can occur. Valid-
ity coefficients typically lie between 0 and 1, but
negative correlations and high random variation in
the sample can lead to inestimable validity coefficients
or validity coefficients greater than unity, a condition
referred to as a Heywood case [25, 33]. The main
reasons for a Heywood case are either violation of
one or more assumptions of the method of triads, or
random sampling variation [32]. Violation of the as-
sumption of independence of random errors is more
common, particularly when 24-h recalls or food re-
cords are used as the reference method since their er-
rors are correlated with those of the FFQ.

Kaaks has suggested that using larger sample sizes
and more accurate reference methods and biomarkers
should reduce the chances of observing negative cor-
relations [32]. More recent evidence from Geelen et
al. [34] demonstrated that the method of triads can
give misleading results when there are correlated er-
rors between FFQ and 24-h recalls, because the
method of triads is not able to correct for systematic
errors (such as intake-related bias). Due to the correl-
ation of errors between FFQs and 24-h recalls, some
researchers have used the ‘validity coefficient’ for the
FFQ as the upper limit, and the correlation coefficient
of the FFQ with a biological marker as the lower
limit, of the validity coefficient between FFQ and true
intake [22, 23]. The ‘validity coefficients’ of a nutrient
are not always comparable between studies as they
may be estimated for different study populations or
subgroups using population- or subgroup- specific
reference methods [18].

Extensions to approaches based on method of triads

Three studies included in this systematic review were
extensions to approaches based on the method of triads.
Fraser and Shavlik [27] investigated how well data from
a FFQ, a reference method, and a biological marker cor-
relate with “true” dietary intake [referred to a MOTEX1
in Table 5]. They developed an error model that does
not assume the classical measurement error model for
either the reference method or the biomarker, and does
not assume that the correlation between errors in the
FFQ and reference method is zero. When they applied
their proposed model to a calibration study, they found
that correlations between reference method (24-h re-
calls) and true intake generally exceeded correlations be-
tween FFQ and true intake, which they suggested as
supporting evidence that the reference method had bet-
ter ‘relative validity’ than the FFQ. They also found that
estimated correlations between errors in the 24-h recalls
and FFQ were often much larger than zero, which vio-
late the assumptions of the classical measurement error
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Table 5 The method of triads and its extensions in the assessment of ‘relative validity’

Reference outlining Classical measurement  Requirements of calibration

Relationship between reference instrument
and dietary instrument of interest.

Aim of the approach

the method error model assumed  study

Method of Triads [105]  Yes Three methods of assessment
of dietary intake to be available
(e.g. FFQ, 24-h dietary recalls
and a biomarker)

Method of Triads No Superior or gold standard

Extension 1(MOTEXT) reference instrument

[2004] [27] available

Method of Triads No Multiple dietary assessment

Extension 2 (MOTEX2) methods required (e.g. self-

[2005] [36] reported instruments and
biomarkers).

Method of Triads No Multiple dietary assessment

Extension 3 (MOTEX3)
[2007] [35]

methods required (e.g. self-
reported instruments and
biomarkers).

The minimal statistical requirements are
that the measurements from the three
instruments are linearly related to the true
intake levels and their random errors are
statistically independent (i.e. uncorrelated).

To assess the ‘relative validity’ of
dietary intake when the quantitative
information was available for three
methods (usually FFQ, 24-h dietary
recalls and a biomarker).

The correlation between errors in the
dietary instrument of interest and
reference instrument can be non-zero
(i.e. the errors are not statistically
independent).

Aim to estimate the magnitude of
correlations between errors in
reference and the dietary
instrument of interest (e.g. a FFQ).

To estimate the correlation between
a dietary instrument of interest (Q)
and true intake (T).

Three surrogate variables questionnaire
(Q); M, and P where M and P are both
instrumental (often biological) variables.
No conventional reference instrument is
required. M and P can be concentration
biomarkers rather than recovery biomarkers.

No conventional reference instrument is
required. Requires that error correlations
between dietary estimates and biomarkers
or between biomarkers be close to zero.
M, and P are biomarkers with M being a
direct measure of dietary intake and M
and P are chose so that one has a long
half-life and the other a short half-life.

Aimed to produce corrected
estimates of the effects on an
outcome variable of changing the
true exposure variables by one
standard deviation, a standardized
regression calibration.

model. Generally for this approach to be applied a bio-
marker is needed in addition to dietary data (from two
different dietary assessment methods) are required to
allow calculation of correlations between estimated and
‘true’ dietary intakes [27]. In practice, however, sensitiv-
ity analyses are required in order to estimate the correl-
ation due to the violation of these classical measurement
error assumptions.

Two other methods that extend the originally pro-
posed method of triads were proposed by Fraser et al.
[35, 36] and incorporate two concentration biomarkers
as well as a multiple 24-h recall or a FFQ [denoted by
MOTEX2 and MOTEX3 in Table 5]. The authors ana-
lysed information from a calibration study that had used
a FFQ, and collected biological data (biomarkers mea-
sured in blood or subcutaneous fat). They proposed
using two biomarkers, of which the first was considered
to provide an estimate of the unknown true intake of a
specific nutrient, while the second was a biologic correl-
ate only and did not directly measure the nutrient of
interest [35, 36]. Thus, one of their examples used
erythrocyte folate (considered to be a concentration
measure) and vitamin E measured in the blood (a bio-
logic correlate) in order to assess the relative validity of
questionnaire measurements of folate intake [35]. The
authors acknowledge that there are several limitations to
their approach. First, there are few concentration bio-
markers of nutritional intake, and even fewer recovery
biomarkers. The available concentration biomarkers
show a variety of half-lives and may require estimation

in a variety of body fluids. Second, it is difficult to select
an additional dietary biomarker that is a biological cor-
relate of the intake of a given food or nutrient [35].
Third, it must be assumed that correlations between the
errors of different dietary biomarkers are close to zero
and the effect estimation must be in standard deviation
units of the “true” variable. Fourth, the sample size of
calibration studies needs to be large enough to ensure
adequate precision of the validity coefficient using this
approach - the authors recommend between 2000 and
3000 individuals representative of the main study popu-
lation [35].

Table 6 De-attenuated Correlation

When two measures are correlated, measurement error can lower the
correlation coefficient below the level it would have reached if the
measures had been free from measurement error. A de-attenuated
correlation coefficient can be computed to correct for attenuation due
to within-person variation if repeat measurements are available on the
reference method. If for example, the dietary instrument was a FFQ and
the reference instrument were multiple food diaries the de-attenuated
correlation (p), under the assumption of a classical measurement error
model, could be obtained by the formula:

o =r[1 + (wpv/bpv)*n]

Where r is the observed correlation; wpv is the within-person variance
of the reference method; bpv is the between-person variance of the
reference method; and n is the number of repeat measurements of the
reference method [18]. Often variation due to daily energy intake is
removed by adjusting for total energy using the residual method [106]
prior to accounting for within-person variation in order to produce
energy-adjusted de-attenuated correlations.
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Approaches to adjust estimates in diet-disease associations
for measurement error

Two main approaches, one correlation-based and the
other regression-based, have been used to adjust
(“calibrate”) estimates in diet-disease associations as-
suming a classical measurement error model. The
details of assumptions and implementation of these
methods are summarized in Table 7 and are now de-
scribed below.

Intra-class correlation

Two studies used the intra-class correlation as the main
method of adjusting diet-disease associations for meas-
urement error (Fig. 2a, Additional file 2: Table S2). In
the situation where the measurement error is assumed
to be strictly due to random within-person error, the
intra-class correlation coefficient (ICC) can be computed
based on replicate measures of the dietary exposure
instrument, [37] and then the diet-disease association
can be adjusted for it. The ICC represents the attenu-
ation factor under the assumption of a classical meas-
urement error model. When using repeat measurement
data to compute ICCs to correct for measurement error,
it is important to ensure that the calibration study is
large enough to estimate ICC with reasonable precision
[38, 39]. An example of the application of this method is
the study of Horn-Ross et al. [40] that aimed to assess
the association of alcohol intake with breast cancer. Par-
ticipants were asked about alcohol intake in the year
prior to the study start date, and at the end of the study
one-year later asked about intake over the past year
using an FFQ. The report found that ICCs for alcohol
for pre- and post- FFQ ranged from 0.63 to 0.87. They
reported that the corrected relative risk (per 20 g/
1000 kcal/d) was 1.36 (1.03 to 1.51) compared to the un-
corrected estimate of 1.25 (1.10 to 1.42) [16] for the as-
sociation of alcohol intake with breast cancer. Another
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example is a study that aimed to assess the association
of calcium intake with bone mineral content and bone
mineral density. The study used repeat administrations
of a youth specific FFQ in a multi-ethnic sample of chil-
dren and adolescents and the ICC for calcium intake on
a log-scale was found to be 0.61 [41].

Regression calibration
In this systematic review 71 studies used a linear regres-
sion calibration approach (referred to as standard regres-
sion calibration) in order to correct for measurement
error or some variant of classical regression calibration
(Fig. 2a; Additional file 1: Table S1; Additional file 2:
Table S2; Table 7). Rosner’s linear regression calibration
involves a regression of the reference measurement
against main study measurement [37, 42]. The fitted
values from the regression of the reference method
against the main study dietary method should be a good
estimate of the expected “true dietary” intake. Using
these fitted values in place of the measured dietary in-
take in the main study should produce the “regression
dilution” corrected estimate. This linear approximation
approach is equivalent to the estimation of the regres-
sion coefficient of disease outcome on true dietary in-
take. The regression dilution correction factor bpc is
obtained by dividing the ‘naive’ regression coefficient ob-
tained by regressing the disease-outcome on the mea-
sured exposure in the main study by the regression
coefficient obtained from a regression of true exposure
measurements (reference method) on crude exposure
measurements (based on the main dietary instrument)
in the calibration study [7]. This is the classical linear re-
gression calibration approach but it has also been argued
that it may be more appropriate to regress the crude
measurement on the more precise (i.e. the reference
measurement) [43].

Linear regression calibration is by far the most common
approach to correct for measurement error in dietary

Table 7 Intra-class correlation and regression calibration approaches to correct point and interval estimates assuming a classical

measurement error model

Reference outlining the
method

Requirements of the calibration study

Relationship between reference instrument
and dietary instrument of interest.

Aim of the approach

Intra-class correlation Repeat measurements are available on
[107] the same individuals on the error prone
dietary instrument.

Standard regression
calibration [37, 42, 45]

External sample with gold standard

of the error prone dietary instrument of
interest measure.

Multivariable regression
calibration (MVRC) [42]

External sample with gold standard

of the error prone dietary instrument of
interest measure.

No correlation between the measurement
reference instrument or repeat measures errors in reference instrument and dietary
instrument of interest.

No correlation between the measurement
reference instrument or repeat measures errors in reference instrument and dietary
instrument of interest.

No reference instrument is required just repeats To be able to correct relative risk estimates
of the dietary instrument of interest. However,
the measurement errors in the repeated
measures should be uncorrelated.

and other regression slopes for bias. This
approach can also be used to assess the
reproducibility of a dietary instrument
where a higher value indicates lower
within-person variation.

To be able to correct relative risk estimates
and other regression slopes for bias.

To be able to correct relative risk estimates
and other regression slopes for bias.
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studies (Fig. 2a). In addition to the assumption of the
classical measurement error model, linear regression cali-
bration also assumes a linear relationship between disease
outcome and true exposure, between reference method
and main study method, and between disease outcome
and main study method. These assumptions are only valid
when the distributions of true exposure and measurement
errors are normal. The method is tolerant to a modest de-
gree of non-normality, but it would not be expected to
perform well with grossly non-normal distributions such
as those that may arise, for example, for intakes of some
micronutrients (such as dietary carotenoids and tocoph-
erols) [11]. Often, to get a better approximation for linear-
ity, normality, or non-constant error variance, the dietary
data are transformed, e.g. by taking logarithms. For ex-
ample, the study of Prentice et al. [44] used urinary recov-
ery biomarkers to correct FFQ assessments for
measurement error, and examined absolute energy and
protein consumption in relation to cardiovascular disease.
Urinary recovery biomarkers of energy and protein were
obtained from a subsample of 544 women, with concur-
rent FFQ information. The authors used simple linear re-
gressions with log-transformed values for both the
biomarker and the FFQ assessments in order to obtain an
estimate of the correction factor bgc. The authors applied
similar approaches to a more extensive series of dietary as-
sociations with chronic disease endpoints in a subsequent
report [44].

Linear regression calibration also assumes that er-
rors are non-differential with respect to outcome,
which is a reasonable assumption in most prospective
cohort studies but less secure in case-control studies
that are not nested within a cohort. As mentioned
earlier it also assumes uncorrelated errors between
the dietary assessment method under investigation
and the reference method.

For a binary outcome, where logistic regression ana-
lyses may be used the conditions for regression calibra-
tion are satisfied if the disease is relatively rare (< 10%),
the odds ratio small (the odds ratio is a good estimate of
the relative risk for rare diseases), and the measurement
error small [2]. Rosner and colleagues have extended the
regression calibration method to multiple logistic regres-
sion that accounts for both random and systematic
within-person measurement error. Furthermore these
methods provides tests and confidence limits for the as-
sociation of interest that incorporate both the uncer-
tainty in the estimate of the odds ratio (relative risk)
from the main study and the uncertainty in the estima-
tion of the correction factor [37]. The latter component
is important because when calibration studies are small
the degree of correction applied to the observed relative
risk itself has error. As this method is based on a mul-
tiple logistic regression model, measurement error can
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be accounted for while simultaneously adjusting for con-
founding by other variables [18].

As an extension of the standard linear regression cali-
bration method, again in the framework of the classical
measurement error model, to deal with multiple cova-
riates measured with error, Rosner and colleagues de-
veloped multivariable regression calibration (MVRC,
Table 7), assuming either strictly random within-person
error [45] or combinations of random and systematic
error [42]. The latter approach is a multivariable exten-
sion of the linear approximation approach and requires
a calibration study with all of the important covariates
measured simultaneously. The method aims to take
into account not only the error in the measured vari-
ables but also the correlation between the errors. This
approach has also been applied to multiple linear re-
gression and Cox regression models [46].

Rosner’s linear regression calibration approach is an
indirect method of correction for measurement error. In
an alternative direct approach to regression calibration
first described by Carroll [47], the reported dietary in-
takes used as explanatory variables in the risk model are
directly replaced by the expected values of the true usual
intake predicted from the reported intakes and other im-
portant factors (such as confounders) that are included
in the risk model. This expected value of true usual in-
take is usually obtained from a calibration study and
produces an approximately unbiased estimate of the true
relative risk for a dietary intake under the assumption of
a classical measurement error model. In Carroll’s ap-
proach there does not have to be a linear relationship
between the expected value of the true usual intake and
the outcome of interest [47]. This is an important exten-
sion to Rosner’s method as sometimes linear regression
calibration may not be able to obtain the optimal predic-
tion of usual intake and a nonlinear model may be more
appropriate [6].

Extensions to linear regression calibration to address
departures from the main assumptions

Using “correct” reference instruments (“gold stan-
dards”) in regression calibration provides an unbiased
estimate of the correction factor bgc, but using im-
perfect reference instruments will produce biased es-
timates of brc. Several reports in this systematic review
have conducted sensitivity analyses to assess and quan-
tify the impact of the use of imperfect reference ins-
truments and/or departures from the classical
measurement error model on regression calibration. It
should be recognised that some of the assumptions
made in these approaches, as described below, are diffi-
cult or impossible to test directly, so investigators have
suggested using sensitivity analyses or simulation-based
analyses to approach these issues. Table 8 provides a
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Table 8 Regression calibration based methods that do not assume a classical measurement error model

Reference outlining
the method

Requirements of the
calibration study

Relationship between reference instrument
and dietary instrument of interest.

Aim of the approach

Person-specific bias
adjusted regression
calibration (PSBRC) [52]

Flawed reference
instrument adjusted
regression calibration
(FRIRO) [50]

Biomarker and alloyed
gold standard regression
calibration (BAGSRC) [51]

Auxiliary Information
regression calibration
(AIRQ) [53, 54]

Episodically consumed
foods regression
calibration (ECFRC) [59]

Never and episodic
consumers (NEC)
model [88]

Superior or gold standard
reference instrument available.

Internal or external sample
with superior or gold standard
reference instrument available.

Internal or external sample with
superior or gold standard
reference instrument available

Internal or external sample with
superior or gold standard
reference instrument available
(if a biomarker —then replicates)

External sample with superior or
gold standard reference
instrument available

A subset of the population has
repeat measurements of dietary
instrument of interest.

An estimate of the person-specific bias in the
reference measure and its correlation with
systematic error in the FFQ is required.

Extension of PSBRC where the model assumes
for both the FFQ and the dietary report
reference instrument, group-specific biases
related to true intake and correlated person-
specific biases can be estimated.

Model assumes that there is a correlation
between the “alloyed gold standard” and the
level of exposure using dietary instrument of
interest.

If a third method of exposure assessment
(biomarker) is available and it is reasonable to
assume that the errors in this method are
uncorrelated with the errors in the other two
exposure assessment methods.

The models account for correlated errors in
the FFQ and the 24-h diet recall and random
within-person variation in the biomarkers.

Model assumed that a food is reported on the
24HR as consumed on a certain day if and
only if it was consumed on that day. Also that
the 24HR is unbiased for true usual intake on
consumption days.

Assumes that food record measurements are
subject only to random within-person variability.
The observed food record measurements are
unbiased estimates of “true intake”. Nonzero
food records measurements to be normally
distributed on a transformed scale.

To be used as sensitivity analysis in order to
assess the impact of varying pre-specified ratios
of the variance of the person-specific biases in a
reference instrument and FFQ and the
correlation between these biases.

To be used as a sensitivity analysis in order to
assess the impact of additional complexity of
both group and person-specific biases.

Estimate the bias in the standard regression
calibration due to the correlation between alloyed
gold standard and the level of exposure using
dietary instrument of interest.

Derive estimates of the correlation between the
errors in alloyed gold standard and exposure
assessment using biomarker data.

To be used as a sensitivity analysis in order to
assess the impact of correlated subject-specific
error on correction factor.

To predict an individual’s usual intake of an
episodically consumed food and relating it to a
health outcome.

To predict an individual's usual intake of an
episodically consumed food whilst incorporating
never consumers and relating it to a health
outcome.

summary of the methods that aim to address depar-
tures from the main assumptions of regression calibra-
tion and the key points are now described.

Departures from assumptions of classical measurement
error in the reference instrument
There is abundant evidence that food record measure-
ments are biased estimates of ‘true intake) and that the
error in food record measurements depends on both
the level of ‘true’ exposure and person-specific errors.
[48, 49] Kipnis et al. [50] define these sources of error
as “group-specific bias”, common to all persons with
the same “true dietary intake”, and person-specific bias,
the group-specific bias together with the effects of per-
sonality, social and cultural influences on the reporting
of dietary intake. Both are specific forms of systematic
error and result in violation of the assumptions of the
classical measurement error model. They also point out
that these biases are part of within-person systematic
error and will be reproduced in repeated measurements
on the same individual.

Estimates of group-specific biases are affected by the
choice of reference instrument. If the reference ins-
trument is flawed (e.g. an alloyed gold standard with

measurement errors related to true intake and not inde-
pendent from the errors in the instrument under investi-
gation), then this can bias the estimate of the correction
factor. Kipnis et al. [50] investigated the impact of using
a flawed reference instrument in standard regression
calibration (FRIRC). Their results suggested that group-
and person-specific biases existed in both the FFQ (in-
strument under investigation) and the weighed food rec-
ord (flawed or imperfect reference instrument), and that
the person-specific biases of the two measurements were
correlated. They also suggested that the use of an imper-
fect reference instrument could lead to underestimation
of the true effect by about 50%, with an approximately
2-fold inflation of the sample size required to detect the
‘true’ effect.

Use of biomarkers in addition to dietary instruments in
regression calibration

Both recovery and concentration biomarkers have been
used as reference instruments in four studies included in
this report [51-54], and the implications of their inclu-
sion have been explored via sensitivity analyses. An ap-
proach proposed by Speigelman et al. [51], described
here as biomarker and alloyed gold standard regression
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calibration (BAGSRC), uses an imperfect reference in-
strument, a cruder dietary instrument and a biomarker.
An additional assumption is that the errors in the bio-
marker are uncorrelated with the errors in both imper-
fect reference instrument and cruder instrument. These
authors presented an example that assesses the measure-
ment of dietary intakes of vitamins A and E. The semi-
quantitative FFQ was the cruder instrument, the imper-
fect reference instrument was based on two diet records,
and a biomarker for each of vitamins A and E intake
were plasma concentrations of total carotene and «o-
tocopherol respectively. The findings of their study sug-
gest that this approach is robust when the errors in the
biomarker are uncorrelated with the self-reported mea-
sures, and can be used as an extension to standard
regression calibration when a suitable biomarker is avai-
lable [51].

Kipnis et al. [52] considered a measurement error
model which takes into account both correlated person-
specific biases and with-person measurement errors.
This model incorporates the models of Freedman et al.
[55] and Speigelman et al. [51] as special cases. However,
when using a calibration study with an imperfect refer-
ence instrument the correction factor cannot be esti-
mated as there are too many parameters in the statistical
model, and therefore Kipnis et al. [52] had to assign
fixed values to some parameters in order to make their
models statistically identifiable. In the hypothetical sce-
narios considered, these authors found that the esti-
mated relative risk using standard regression calibration
could be dramatically underestimated when person-
specific biases are highly correlated.

A more general version of BAGSRC was also described
by Spiegelman et al. [53] and Preis et al. [54], here re-
ferred to as Auxiliary Information Regression Calibration
(AIRC) (Table 7). The paper by Speigelman et al. [53]
derived an explicit expression for the bias in the correc-
tion factor, and describes the magnitude and direction of
bias in the relative risk estimate obtained through stand-
ard regression calibration as a function of the correla-
tions of subject-specific biases and within-subject errors
in the two measures being compared in the calibration
study. To make the application of the Kipnis et al. [52]
model feasible, they proposed two minimally sufficient
external calibration study designs, each of which fully
identifies the correction factor and other parameters of
interest. They proposed a “replicated biomarker design”
that includes information on dietary instrument of inter-
est (Z), alloyed gold standard measure of exposure (G)
and biomarker (W). They also proposed an augmented
design that uses both a biomarker and an instrumental
variable (a variable that is correlated with the true ex-
posure X, and uncorrelated with the random and sys-
tematic error components in G and Z). They considered
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the impact of missing data on these new study designs.
This was because more than two methods of exposure
measurement are needed, some of which must be repli-
cated, and there may be variable numbers of replicates
within participants, and different patterns of missingness
of the multiple modes of measurement among the study
participants. Pries et al. [54] sought to estimate the correc-
tion factor for total energy intake, protein and protein
density in the calibration and main studies. They used
repeat-biomarker measurement error models, which
account for both correlated errors in the FFQ and 24-h re-
calls and random within-person variation in the bio-
markers. They further assumed that the diet records or
the 24-h recalls were unbiased, while the biomarker was
assumed to be biased in order to accommodate the fact
that most biomarkers available to nutritional epidemiolo-
gists are of concentration rather than of recovery [54].
The authors concluded that under certain measurement
error models failure to adequately account for within-
person variability in the assessment method that is as-
sumed to be unbiased (i.e. the reference method) can
falsely lead to an appearance of correlated errors and to
underestimation of the FFQ’s ‘relative validity’ [54]. How-
ever, it was later argued that the authors had erroneously
concluded that within-person variation was underesti-
mated as their model had assumed that the recovery bio-
markers used (doubly labelled water and urinary nitrogen)
were biased which in fact is more likely to be the case for
concentration biomarkers, where this model had been
previously applied [56]. Keogh, White and Rodwell [57]
used a concentration biomarker to assess the levels of fruit
and vegetable intake, and their findings were that the esti-
mated effects of error in self-reported measurements was
highly sensitive to model assumptions. They concluded
that making the incorrect assumption of a classical meas-
urement error could result in a large overcorrection for
the effects of measurement error [57].

Incorporating episodically consumed foods in regression
calibration

Four reports included in this systematic review attempted
to assess the impact of episodically consumed foods on
linear regression calibration estimates [58—61]. Willet has
suggested that systematic between-person errors in dietary
intake are likely to be frequent and can have many sources
[18]. One source is episodically consumed foods, defined
as foods not consumed every day by most people. Dietary
assessment of episodically consumed foods gives rise to
non-negative data that have excess zeroes (due to infre-
quent consumption) and measurement error [58]. Often,
within-person random error in the 24-h recalls intake of
episodically consumed foods is dependent on the individ-
ual mean and has a skewed distribution, violating the clas-
sical measurement error model assumptions. The most
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common technique has been to transform the data, so
that the dietary intake measures more closely follow the
classical measurement model with normally distributed
errors. Kipnis et al. [59] incorporated episodically con-
sumed dietary components (see ECFRC, Table 8) and
assessed the impact using a nonlinear regression calibra-
tion approach. In their model, the probability of consump-
tion for an individual may be arbitrarily small but always
positive, thus allowing for any finite number of days with
zero intakes, but not incorporating never-consumers (if
they existed). Their model was in two parts: in the first
part, consumption probability is modelled using mixed ef-
fects logistic regression; in the second part, the measure-
ment error for the non-zero reported intake is modelled
using a nonlinear mixed effects approach [59]. In addition,
Kipnis et al. [59] proposed an extension to the method de-
scribed by Tooze et al. [58] to predict individual usual in-
take of such foods and to evaluate the relationships of
usual intakes with disease. One feature of their proposed
method is that additional covariates that are potentially re-
lated to usual intake may be incorporated in order to im-
prove the estimates of usual intake and of diet-disease
associations. Due to measurement error, the naive ap-
proach (using simple individual means of several 24-h re-
calls) grossly underestimates the true value, as expected
theoretically. In their simulations, however, although the
bias of their proposed method was smaller, the precision
was poorer (i.e. wider confidence intervals which is a fea-
ture of correcting for attenuation) than using the naive ap-
proach [59]. Agogo et al. [60] used a simulation study to
assess a two-part model with part 1 assuming a logistic
distribution and part II assuming a gamma distribution
and required a single replicate of the dietary assessment
instrument (a 24-h recall). This model was closely related
to those already described by Tooze [62] and Kipnis [59]
and the authors report that transforming the dietary as-
sessment data to an appropriate scale was found to have
the largest influence on model performance [60].

Keogh and White [61] describe a three part measure-
ment error model that extends the two-part models de-
scribed by Kipnis [59] and Tooze [58] above, with the
third-part accounting for never consumers. They call their
model the “never and episodic consumers (NEC, Table 8)
model” that allows for both real zeros (never consumers),
and excess zeros (episodic consumers of some foods), and
requires repeat measurements. In the most realistic situ-
ation, where repeat measurements are available on only a
subset of participants, the authors found via simulation
that the NEC model appeared to be superior to classical
regression calibration in terms of reduced bias [61].

Other approaches
In this systematic review there were several other ap-
proaches that were identified in the literature to deal with
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measurement error and these are summarized in Table 9
and an overview of these methods is now briefly given.

One report [63] used Simulation Extrapolation
(SIMEX), which is similar to regression calibration
but uses a simulation-based approach rather than a
classical regression approach. The algorithm performs
multiple iterations whilst adding a small known
amount of error at each successive iteration, and re-
estimates the parameters each time. A trend in the
effect of the measurement error is then estimated,
and extrapolation made to the case where there is no
measurement error. However, SIMEX can only be
applied if the measurement error is classical and
additive or multiplicative (Table 9). Two reports dem-
onstrate that the four main types of measurement
error (see Table 1) can also be incorporated in Struc-
tural Equation Modelling (SEM) [63, 64]. SEM con-
siders the measurement error process as a latent
variable problem, with the unknown “true exposure”
estimated on the basis of a calibration study. The
SEM approach is a method for estimating the mea-
surement error structure using additional instruments,
with at least one dietary instrument assumed to have
no systematic error. However, the approaches of
Speigelman et al. [53] and Preis et al. [54] require
only that the model is correctly specified, whereas the
SEM approach is more restrictive as it requires full
multivariate normality of all random variables in the
model.

All of the approaches considered in the review so far
have assumed that the measurement error in non-
differential (i.e. the error is the same for those with and
without the outcome). Two other approaches, moment
reconstruction and imputation, may have an advantage
over standard regression calibration when there is differ-
ential measurement error (error whose magnitude or
direction is different for individuals who have the out-
come), such as in a case-control study where cases and
controls may recall their dietary intake differently [65].
First, the moment reconstruction (MR) method was pro-
posed by Freedman et al. [66] as a method for correcting
error in univariate continuous exposures, and requires
an internal calibration study where the ‘true’ exposure is
measured for some individuals where their disease (or
outcome status) is known. The estimates of the true
exposure derived from the MR method can be used dir-
ectly in the diet-disease model, and it has been found
that this results in unbiased estimates of linear
exposure-disease associations [65]. Second, as measure-
ment error can also be conceptualised as a missing data
problem in that the “true exposures” are missing, imput-
ation methods have sometimes been used. Multiple im-
putation (MI) was first introduced by Rubin and has
become a widely used approach for dealing with missing
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Table 10 Bias/sensitivity analyses for measurement error correction

A. When should measurement error bias/sensitivity analyses be
conducted?

1. When assessment of the observed diet-disease associations was
estimated using a crude instrument of dietary intake such as a FFQ.

2. Essential when the study report aims to translate their findings into
policy decision-making actions for a variety of stakeholders.

B. How does one select a method to conduct a model measurement
error bias/sensitivity analysis?

1. Aim to balance realistic modelling with practicality of conducting
the modelling (e.g. availability of software).

2. Report the measurement error bias/sensitivity analyses as
transparently as possible, giving clear details of what was done and
the assumptions made.

3. Make the statistical analysis code used to conduct these
measurement error bias/sensitivity analyses available either as
supplementary web material or by publishing it as an appendix to
the main report.

C. How does one assign values to the parameters of the model?

1. Assign values based on the latest information from available data
such as internal calibration sub-studies or external calibration
studies with a similar design.

2. Choose a range of plausible values in order to assess the impact on
the overall findings of a range of scenarios.

3. Evaluate the impact of departures from the assumptions of the
classical measurement error model (such as correlated errors
between the dietary instruments used or non-differential
measurement error).

D. How does one present and interpret the measurement error
bias/sensitivity analysis?

1. Present the results in the form of a table or figure where it is
possible for the reader to see the complete set of analyses
performed.

2. Quantify the direction of the bias based on departures from the
classical measurement error model on the overall study findings
(e.g. are the observed diet-disease associations likely to be over-
estimated or under-estimated?).

3. Describe the implications in light of the measurement error bias/
sensitivity analysis (are the policy decisions changed or toned-
down in light of these findings?).

data for a variety of epidemiological study designs [67].
Freedman et al. [65] suggested using MI to correct for
measurement error in continuous exposures, by treating
the true continuous exposure data as missing. The key
idea is that values of the true exposure are imputed by
drawing a random value from the distribution of the true
exposure conditional on all observed data, including the
outcome (or disease status). Multiple imputation
methods involve creating a number of imputed datasets
that would then be available for standard statistical ana-
lyses that correct for measurement error, before combin-
ing the estimates from each analysis into a final result,
using an approach first developed by Rubin [67]. If a
calibration study within which the true exposure was
available, (via a “gold standard reference instrument”),
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estimation of the true exposure distribution would fol-
low a similar process to a standard missing data analysis
procedure. If the calibration study was based on repeat
measurements, then the procedure requires the esti-
mation of the true exposure conditionally on repeat
measurements of the error-prone exposure, and the
covariates measured without error. The authors demon-
strate that if MR and MI are used when the measure-
ment error is in fact non-differential, then these
methods will in general result in a loss in efficiency rela-
tive to standard regression calibration [65].

Impact of departures from classical measurement error
model on statistical power

All of the approaches identified in the systematic review
were generally developed and employed to assess the im-
pact when the assumptions of standard regression cali-
bration are not satisfied. In addition to the bias that may
ensue in the estimation of diet-disease association,
Fraser and Stram [68] demonstrate via simulation that
correlated errors can lead to an added loss of statistical
power (reduced to as low as 11% in their simulations) if
small (< 100 participants) calibration studies are used to
adjust point and interval estimates using standard re-
gression calibration and there are few events (for ex-
ample <250) in the main cohort. Fraser and Stram [68]
conclude that if there are modest correlations (< 0.5) be-
tween the reference instrument and the cruder instru-
ment, useful gains in power accrue (up to 5-fold) with
calibration study size up to 1000 participants with a rea-
sonable number of events (for example >2500) in the
main study. More recently, Fraser and Stram [69] con-
sidered the impact of non-Gaussian distributed dietary
intake data on standard regression calibration, and they
reported that poor fit in the calibration model: a) does
not produce biased calibrated estimates when the
“disease” model is linear; b) it produces little bias in a
nonlinear “disease” model if the model is approximately
linear; and c) will adversely affect statistical power, but
this could be alleviated by attempting some of the more
complex sensitivity analysis models for dealing with
departures from the classical measurement error model
outlined in this report [69].

Discussion

Most of the literature addressing the issue of measure-
ment error in nutritional epidemiology is based on the
assumption of random within-person error. This is due
to the fact that a) systematic error is much more difficult
to measure and b) most of the statistical theory and
methodological developments have been based around
the assumption of random error. In this systematic re-
view, we found that the most commonly reported



Bennett et al. BVIC Medical Research Methodology (2017) 17:146

statistical methods in nutritional epidemiological studies
to quantify measurement error were correlation-based
methods. With regard to assessing and correcting for
measurement error, by far the most commonly used
method was linear regression calibration. A key issue is
that the assumptions of the method are satisfied.

Based on the evidence identified in this systematic re-
view, we now propose useful points to consider when
the intention is to use a calibration study to either assess
a new dietary instrument, quantify measurement error
or implement measurement error corrections of diet-
disease associations.

General design of a calibration study

A key design issue, which has been addressed by most
papers reviewed, is that the calibration study has to be
representative of the main study, and this is most likely
to be achieved using an internal calibration study based
on a random sample of the main study. Depending on
the type and purpose of the calibration study, Caroll et
al. has suggested that one may use large sample sizes
and few food records per individual or smaller samples
and more records per subject [70].

Calibration studies to assess and correct for measurement
error

In the vast majority of the studies reviewed, a dietary
questionnaire measurement was compared to a more de-
tailed and reliable reference instrument, such as multiple
24-h recalls or food diaries [71]. The utility of comparing
a crude dietary instrument with a reference instrument
depends on the important statistical assumption that the
reference instrument follows the classical measurement
error structure, i.e. within-person errors for the refer-
ence instrument are strictly random. When errors in the
crude and reference instrument are dependent, standard
regression calibration will under-correct the diet-disease
association. Thompson et al. [72] report that, due to cor-
relation of errors in FFQs and self-reported reference in-
struments such as the 24-h recalls, the correlations and
correction factors observed in most calibration studies
tend to overestimate FFQ performance. Other re-
searchers have quantified the direction and magnitude
of the bias, and have concluded that bias appears to lead
to small overestimation in realistic examples [48, 54].

It has been recommended that, when possible, bio-
markers should be incorporated into the calibration
study as objective measures of intake [73], under the as-
sumption that the measurement errors in biomarkers
are independent of the measurement errors from self-
reported dietary measurements, [74] although this has
never been verified in practice. Keogh et al. [57] used re-
peated biomarkers to quantify the bias due to measure-
ment error for a self-reported dietary intake from FFQs
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and food records. They caution that the magnitude of
the correction factor is highly sensitive to the model as-
sumptions and that sensitivity analyses that assess the
impact of varying these assumptions are essential [57].
In theory additional types of biomarkers, for example
metabolomic profiling, may also be incorporated into
the calibration study [73]. Unfortunately, only a limited
number of recovery biomarkers have so far been identi-
fied as able to reflect an individual’s intake with a high
degree of accuracy.

Careful consideration of the assessment period and the
use of updated dietary information are necessary, par-
ticularly if the interest is long-term usual dietary intake
since diet-disease relationships may change over time. It
is therefore important that the comparison method
employed is able to reflect the longer time frame. If
there is likely to be medium term variation due to sea-
sonality, then it would be sensible to have multiple mea-
surements throughout the year. Biomarkers can also
change over time, so it is important to obtain repeat as-
sessment of these too if possible. It has been demon-
strated that if a FFQ is being used with a diet record as
the reference instrument and a suitable biomarker exists,
and the error in the biomarker is independent of the
error in the FFQ and the diet record, then the methods
of triads can produce an estimate of the correction
factor that is unbiased provided that there are replicate
biomarker data on at least a subsample of calibration
study subjects [31].

Calibration studies to assess the ‘relative validity’ of a
new dietary instrument

Calibration studies can also be used in the development
of a new measurement instrument to test whether it
provides improvement over currently used methods, and
several studies in this report were of this type. In this
context, the ‘relative validity’ between the current and
the new measurement instrument would be of primary
interest [75]. However, the use of correlations may not
be the optimal approach in order to assess ‘relative valid-
ity. An improvement is to assess the level of agreement
(between say a FFQ and 24-h dietary recalls), as pro-
posed by Bland and Altman [76]. In this approach, the
difference between mean intakes estimated by the FFQ
and 24-h dietary recalls is plotted against the average of
mean intakes by the two methods for each participant
and nutritional measure. The Bland-Altman approach of
plotting difference against average only works if the
average is an unbiased estimate of the truth. In our ex-
ample it may be better to plot the difference of FFQ and
24-h recalls against the average of several 24-h recalls
(the reference instrument and our best estimate of the
truth). If the data follow a normal (Gaussian) distribu-
tion it would be expected that the mean difference (bias)
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lies between +2 standard deviations, and a lack of het-
eroscedasticity (or non-constant variability) indicates
that the magnitude of error does not vary with the range
of measurement [76]. These analyses would need to be
performed for all nutritional measures (such as macro-
and micro-nutrients). Willett has suggested that the
Bland-Altman method may be too cumbersome as it re-
quires considerable knowledge about the typical absolute
values and between-person variation, which differ from nu-
trient to nutrient [18]. He suggests an alternative, but re-
lated method, that involves the calculation of the standard
deviation of the “residual” from the regression of the true
measure (estimated using the reference method) against
the dietary assessment instrument. This “residual” would
then represent the variation in true intake that is not
accounted for by the dietary assessment instrument [18].

For an assessment of ‘relative validity, there is always the
decision as to whether or not the new dietary instrument is
considered to be a satisfactory. Nelson and Margetts note
that there are no hard or fast rules as to what constitutes
‘satisfactory’ correlation, as it is usually dependent on the
sample size of the study [11]. As Willett has suggested, and
we concur, because no single method for relating dietary in-
take to a measure of true intake conveys all the available in-
formation, it is probably best to present the data in several
ways. At a minimum, the means and standard deviations of
the reference method and dietary instrument of interest
plus their correlations should be provided [18]. These may
be supplemented with other data such as Bland-Altman
plots or the residual regression approach.

Number of replicate measures and sample size of the
calibration study under the assumption of random
within-person measurement error

Many of the methods considered in this report assume
that the errors in dietary intake are due to random
within-person variation, If the aim of the calibration
study is to correct for measurement error rather than to
assess relative validity then to minimize the correlation
between errors on the different occasions, the repeated
measurements should be well separated in time. In
addition, the measurement of dietary intake via more
than one instrument (as different instruments have dif-
ferent strengths and weakness) [77] in a subsample, is
essential [7]. It has been recommended that fewer
repeats on more individuals provide greater statistical
efficiency [78, 79]. Some have argued that in most
settings, cost-efficient designs of FFQ calibration studies
do not require more than four or five 1-day diet records
per participant in order to estimate the true long-term
dietary intake, particularly when the costs of collecting
any subsequent measure is the same as for the initial
dietary measure [79]. Rosner and Willett [80] also con-
sidered the cost of collecting replicate information, and
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found that generally there was no justification for more
than two to five measurements per participant, assuming
that the total cost of the study was proportional to the
total number of observations. Taking the average of mul-
tiple reference instrument measurements per participant
(e.g., multiple food records or multiple 24-h recalls) can
increase the correlation (i.e. the relative validity’) between
the reference instrument and the questionnaire [74]. How-
ever, multiple 24-h recalls per participant can lead to high
burden on the participant and poor quality information.
Moreover, averages over a few days are not an adequate
representation of a participant’s usual intake [81]. Thus
computing the de-attenuated correlation will also increase
the correlation coefficient under the assumption of a clas-
sical measurement error model. Wong et al. [82] provide
examples of sample size calculations for the design of such
calibration studies based on the within-person correlation
of the reference instrument. Park and Stram [83] noted that
the percentage of individuals from the main study that are
required to participate in the calibration sub-study de-
creases in size as the correlation between true and observed
exposure increases, that is as measurement error becomes
smaller. However, others have suggested that optimal bal-
ance of repeats and individuals depends on the primary aim
of the calibration sub-study (either to compare a new with
an old instrument for ‘relative validity, or specifically to cor-
rect for measurement error in the main study), as well as
the within-person variation of the repeated measurements
[75]. The effect of measurement error is also reduced when
the variance of the true exposure is large relative to the
variance of the error [84, 85], since this brings the correc-
tion factor closer to 1 and therefore reduces bias on aver-
age. The easiest way to do this is to ensure sampling of a
wide range of exposures. Even though several studies in this
systematic review wanted to use the calibration study infor-
mation to correct for measurement error, none of these
studies reported details of any formal sample size calcula-
tions for the size of the calibration study. Kaaks and col-
leagues have presented some more formal approaches
based on the precision required, the cost of conducting the
calibration study [78], and Carroll et al. have also made
some sample size recommendations that take into account
the instrument used (e.g. 24-h recalls or multiple-day food
records) [70]. Willet has suggested that because the most
important use of a calibration study is to correct observed
diet-disease associations for measurement error, an ap-
proach for choosing an appropriate sample size would be
to consider the implications of various sample sizes on the
corrected effect size estimates and their corrected confi-
dence intervals [18]. In particular calibration studies with
too few participants (<30 participants) would lead to a
major increase in the width of the corrected confidence in-
tervals due to having to incorporate the imprecision in the
estimated correction factor.
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Generalizability of the calibration study information
under the assumption of random within-person
measurement error

A reproducible instrument will give consistent answers
with repeat administration, while a valid instrument
measures what it was designed to measure. A valid in-
strument is reproducible, but a reproducible instrument
is not necessarily valid. Information from calibration
studies designed to compare a new instrument with a
gold-standard or a reference measure (i.e. to assess ‘rela-
tive wvalidity’) wusually are not considered to be
generalizable because an FFQ developed for one popula-
tion cannot readily be used in another population, as dif-
ferent groups of people eat different foods. As such,
FFQs tend to be developed and assessed for ‘relative val-
idity’ within specific populations. Indeed, many of the
calibration studies designed to correct for measurement
error described in this systematic review were based on
the selection of a subsample of individuals from the
main cohort study. In epidemiological studies in which
there is a need to correct for measurement error, but in
which no calibration study data are available, investiga-
tors could incorporate information from an external
study provided that there is transportability. Transport-
ability is satisfied when the measurement error model in
the external calibration study can reasonably be assumed
to be the same as the one that generated the cruder diet-
ary assessment measurement (e.g. FFQ) in the main
study [86]. In this situation, the measurement error
model parameters estimated can be used for measure-
ment error correction [6, 37, 87]. However, correction
factors derived from linear or nonlinear regression
calibration should include information from all relevant
covariates in the disease model, whilst bearing in mind
that the calibration study should have sufficient partici-
pants to be able to accommodate all covariates and thus
reduce the potential for model over fitting [88].
Buonaccorsi et al. investigated the impact of possible
transportability problems (such as the assumed measure-
ment error model is incorrect or the population involved
in the calibration study differs from those participants in
the main study) and found that this could result in over-
or under-estimation of the correction factor in an unpre-
dictable manner [89].

Rather than try to apply the correction factor to the
data directly, Caroll et al. [47] have suggested that it is
more sensible to extract from the second study the
measurement error variance itself, and use this in con-
junction with the distribution of mis-measured expos-
ure in the study needing correction for the effects of
measurement error [47]. Geelen et al. [34] have recom-
mended that if the research goal is to compare results
between studies or populations, calibration to a refer-
ence method that performs similarly in different
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populations, e.g. a 24-h recall, is preferred. Even if the
chosen superior dietary instrument does not fulfil all
the criteria for a valid reference method, comparability
between the associations obtained from different popu-
lations would be improved. They argue that this is
more relevant for the generalizability of study results,
and is a crucial argument for designing a calibration
study to supplement dietary information gathered from
large epidemiological studies, even with an imperfect
reference instrument [34].

The most robust approach to correct point and interval
estimates for measurement error

Linear regression calibration is the most popular and
well understood method to correct associations for
measurement error in the nutritional literature, and its
application is usually (in the case of the assumption of
random error) supported by the collection of repeated
measurements of the dietary instrument of interest in a
sub-sample of individuals from the main epidemiological
study. If systematic error is assumed then dietary intake
will also need to be measured on a sub-sample using a
reference instrument (which may be imperfect). How-
ever, we caution that the key assumptions of this ap-
proach must be satisfied. This also means that all
important covariates should be included in the linear re-
gression calibration model (whilst guarding against over
fitting), in order to avoid bias. Second, linear regression
calibration requires that the measures obtained by
chosen reference instruments (e.g. dietary records) be
linearly related to those obtained by the dietary instru-
ment of interest (e.g. FFQ-reported intakes), and that
the residuals of these regressions have constant variance.
Often it is necessary to apply a transformation (such as a
natural logarithm) to the dietary intake variables in
order to meet these conditions. Third, linear regression
calibration that is based on an imperfect reference in-
strument (such as 24-h recalls), should always be supple-
mented by sensitivity analyses (see Table 10) in order to
assess and quantify the magnitude of bias that may re-
sult from the correlation between the imperfect refer-
ence instrument and the FFQ. Fourth, the assessment of
episodically consumed foods and the use of concentra-
tion biomarkers (or other imperfect reference methods)
that are correlated with dietary intakes also require de-
tailed sensitivity analyses in order to assess the effects
on diet-disease associations.

Biased correction factors and therefore biased correc-
tions can occur when the errors in true and measured
exposure are correlated. For example, if the same erro-
neous database is used to calculate nutrient intakes for
the reference instrument and the dietary instrument of
interest, the regression coefficient relating the two
methods could be overstated. Willet has suggested that
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although the potential for correlations in errors between
dietary instruments used for regression calibration
should always be considered, and should be assessed
whenever possible, even moderate correlations in these
errors do not appear (on the evidence of methodological
studies using simulation) to result in much bias if they
are ignored when using standard regression calibration
correction procedures [18]. The Strengthening Analyt-
ical Thinking for Observational Studies (STRATOS) ini-
tiative is developing guidance documents on a variety of
topics (including addressing measurement error) to help
the research community at large to conduct appropriate
statistical analyses of observational studies [90].

Software availability

There are several implementations of regression cali-
bration using SAS software, including user-friendly
publicly available implementations (with documenta-
tion) of standard regression calibration [37, 42] at
[https://www.hsph.harvard.edu/donna-spiegelman/soft-
ware/blinplus-macro/ (accessed 8 June 2017)] and
MVRC [42, 45] at [https://www.hsph.harvard.edu/donna-
spiegelman/software/relibpls8/] (accessed 8 June 2017).
There is also software that implements the method of Liao
[91] for the Cox model that addresses the rare disease
assumption, available at [https://www.hsph.harvar-
d.edu/donna-spiegelman/software/rrc-macro/ (accessed
8 June 2017)]. The National Cancer Institute has pro-
duced several SAS macros that can be used to
analyze data on regular and episodically consumed
foods [https://epi.grants.cancer.gov/diet/usualintakes/
macros_single.html (accessed 8 June 2017)]. These
SAS macros are accompanied by a user guide and
other documentation, as well as example datasets and
output.

With regard to other software for implementing these
approaches, the standard regression calibration ap-
proach, the multivariable regression calibration ap-
proach, and the simulation extrapolation approach
(SIMEX) are all available as part of the merror routines
in Stata [92] and there is also a merror package in R stat-
istical software [93]. For some of the non-standard ap-
proaches, the authors provide statistical code for the
implementation for their methods in the original publi-
cations (e.g. structural equation modelling (64) and aux-
iliary information regression calibration [59]). Pérez et
al. [94] provide details of an R function that can imple-
ment an extension to the two-part method of Kipnis et
al. [59] for episodically consumed foods into a three-part
method that also incorporates the estimation of amount
of energy intake per day. In addition Stata [92], SAS
[95], and R [96] have the capability to conduct user de-
fined structural equation modelling analyses and imput-
ation methods.

Page 19 of 22

Conclusions

The findings of this systematic review provide insights
into how to perform calibration studies to quantify and
correct for measurement error. Calibration studies of
sufficient size and representative of the main study can
be very useful in assessing the ‘relative validity’ of dietary
instruments as well as the measurement error structure
of the dietary instrument being used in the main study.
While previous reviews of measurement error correction
methods have concentrated on the more technical statis-
tical details of the methods, [97—102], our aim was to re-
view the approaches used to quantify or correct for
measurement error in the context of their application to
a continuous dietary exposure measurement for a nutri-
tional epidemiological audience. As a consequence, we
may not have included some methods that have been de-
scribed elsewhere if they were not applied to nutritional
data. Regression calibration is the most widely used ap-
proach to correct for measurement error in nutritional
epidemiology; however, it is crucial to ensure that the re-
gression calibration assumptions are fully met. We have
discussed other methods proposed to address situations
in which the assumptions and requirements of regres-
sion calibration are not met. The choice of method
should depend on: a) what measurement error model is
assumed; b) whether the correct type of calibration study
data are available for valid and appropriate correction;
and c) if there is potential for bias due to violation of the
classical measurement error model assumptions. We
propose that sensitivity analyses be conducted in order
to assess the impact on diet-disease associations of de-
partures from the classical measurement error model as-
sumptions, and that these be documented and reported
in published manuscripts.

Additional files

Additional file 1: Table S1. Reports that described the development of
a method to quantify, or correct for measurement error (RTF 268 kb)

Additional file 2: Table S2. Reports that applied an existing method to
quantify, or correct for measurement error (RTF 578 kb)
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