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Background: Randomization is considered to be a key feature to protect against bias in randomized clinical trials.
Randomization induces comparability with respect to known and unknown covariates, mitigates selection bias, and
provides a basis for inference. Although various randomization procedures have been proposed, no single procedure
performs uniformly best. In the design phase of a clinical trial, the scientist has to decide which randomization
procedure to use, taking into account the practical setting of the trial with respect to the potential of bias. Less
emphasis has been placed on this important design decision than on analysis, and less support has been available to

guide the scientist in making this decision.

Methods: \We propose a framework that weights the properties of the randomization procedure with respect to
practical needs of the research question to be answered by the clinical trial. In particular, the framework assesses the
impact of chronological and selection bias on the probability of a type | error. The framework is applied to a case study
with a 2-arm parallel group, single center randomized clinical trial with continuous endpoint, with no-interim analysis,
1:1 allocation and no adaptation in the randomization process.

Results: In so doing, we derive scientific arguments for the selection of an appropriate randomization procedure and
develop a template which is illustrated in parallel by a case study. Possible extensions are discussed.

Conclusion: The proposed ERDO framework guides the investigator through a template for the choice of a
randomization procedure, and provides easy to use tools for the assessment. The barriers for the thorough reporting
and assessment of randomization procedures could be further reduced in the future when regulators and
pharmaceutical companies employ similar, standardized frameworks for the choice of a randomization procedure.

Keywords: Design, Restricted randomization, Selection bias, Chronological bias, Type | error probability

Background

Randomization is considered to be the most important
tools to protect against bias and ensure the internal valid-
ity of a clinical trial, although this is intensively discussed,
see [1]. The important objective of randomization is to
have two groups that are as equal as possible, i.e., not
favoring one side or the other. Many randomization pro-
cedures have been introduced to help mitigate bias, and
their theoretical properties have been analyzed exten-
sively [2]. Yet, most reports of clinical trials fail to indicate
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the randomization procedure used, and presumably have
not considered its properties.

For example, the popular permuted block design is gen-
erally considered to reduce possible bias resulting from an
unobserved time trend in the data. The toss of a fair coin
on the other hand, also known as complete randomiza-
tion, is assumed to mitigate bias resulting from conscious
or unconscious selection of patients to the treatment
groups. Clearly, both these randomization procedures
have their advantages, but also their disadvantages.

During the planning stage of a clinical trial a scientist
has to select one from a variety of possible randomization
procedure as part of the design. Ideally, the choice is based
on scientific arguments reflecting the special aspects of
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the trial setting. The ICH E9 guideline [3] recommends
studying the potential contribution of bias to the p-value.
In spite of this recommendation, neither the ICH guide-
lines nor the CONSORT statement [4] yield instructions
to reach a scientifically guided decision on a particular
randomization procedure.

It therefore appears that the selection of a randomiza-
tion procedure is left to the scientist’s preference rather
than on scientific arguments. This strengthens the mis-
conception that any randomization, regardless of how it
is conducted, is enough to reach validity. Consequently
the reporting standard for randomization procedures in
the literature is low [5]. Often one sees comments such
as “randomization was done by Excel" or “randomization
was done using a set of sealed envelopes”, not recog-
nizing the importance of the randomization procedure
itself.

The deficit of a scientifically guided choice of a ran-
domization procedure in the planning phase of a clinical
trial may also be due to the fact that no standardly avail-
able software tools for a comparison study have been
available—until now. Recent work has been published
describing models [6-9] and a software tool [10] that
facilitates comparisons of randomization procedures with
respect to bias on the test decision.

The aim of this paper is to propose a structured
template for the selection of a randomization proce-
dure considering the impact of bias on the p-value.
Focusing on two specific types of bias, we demon-
strate that the influence of bias may be mitigated to a
large extent by selecting an appropriate randomization
procedure.

The first type of bias we consider arises from unob-
served time trends due to heterogeneity across the
chronology in patient responses [14]. Such time trends
may bias the results of clinical trials; the resulting bias is
referred to as chronological bias [15]. It can be shown that
certain types of randomization procedures are less sen-
sitive to chronological bias, and consequently hypothesis
testing can be conducted with less concern about type I
error rate inflation or deflation.

The second type is selection bias. Historically, selection
bias has been interpreted as the intentional or uninten-
tional selection of patients who may have a higher prob-
ability of responding to treatment. The first approach to
quantify this bias goes back to Blackwell and Hodges [11].
Their model has been shown to be equivalent to a metric
of the predictability of the randomization procedure [2],
where predictability is defined as the difference between
the conditional and unconditional allocation probabili-
ties. As stated by Rosenberger and Lachin [2], all other
considerations being equal a randomization procedure
should be selected that is as unpredictable as possible to
avoid selection bias. While some have argued that today’s
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multi-center clinical trials with centralized randomization
are unlikely to suffer from selection bias, Berger [12] gives
a number of examples where selection bias has had an
important influence in a clinical trial. He further states
that selection bias can lead to covariate imbalances and
inflation of the type I error rate. This is particularly true in
unmasked studies. Observing that one third of the orphan
drug legislation in the European Union consist of open
label studies [13], selection bias could likely to be an issue.
Several authors specify a selection bias model that uses the
size of the test as a measure of assessment of the impact of
selection bias [6-9].

In this paper, a linked bias effect is introduced that
incorporates both selection and chronological bias in the
statistical model. The model is applicable to a contin-
uous normal endpoint within a two arm parallel group
design. The test distribution under model misspecifica-
tion for no treatment effect is derived and two metrics
are proposed to make decisions about the appropriate-
ness of specific randomization procedures. Recently the
randomizeR software [10] was released, facilitating these
decisions by enabling the researcher to perform a scien-
tific evaluation of randomization procedures. A classifica-
tion of restricted randomization procedures is proposed
resulting in a reasonably wide class of procedures to be
considered.

For the Evaluation of Randomization procedures for
Design Optimization, the template “ERDQO" is introduced.
The template makes use of these new tools taking into
account the specific aspects of the clinical trial under
investigation, such as type of treatments connected to
diseases, outcomes, designs, etc. The template follows
Benda’s [16] more general template “clinical scenario eval-
uation". We illustrate the ERDO template using a case
study that assesses the influence of potential selection bias
and chronological bias on the type one error probability,
enabling a scientifically informed choice of an appropriate
randomization procedure.

The paper is organized as follows. First the theoretical
background based on the study layout under considera-
tion, i.e. a 2-arm parallel group, single center randomized
clinical trial with continuous endpoint, with no-interim
analysis, 1:1 allocation and no adaptation in the ran-
domization process is introduced. This includes as main
aspects the derivation of the distribution of the usual
t-test statistic under misspecification as well as a new
metric to reflect regulators “go-no-go” decision, i.e. the
probability of sequences exhibiting a type I error proba-
bility less than or equal to 0.05. In the next section, the
statistical model will be used to propose the ERDO, by
introducing the corresponding template. We apply the
ERDO template in parallel to a case study. In the last
section we will draw some conclusions and discuss further
aspects.
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Theoretical background

In this section the statistical model to plan and analyze
a single center randomized clinical trial with a two arm
parallel group design is introduced. The corresponding
subsections refer to the statistical model, the model for
selection bias as well as for chronological bias, the joint
bias model and the metric.

Statistical model

Let y; be a continuous normal response of a patient i, 1 <
i < N, within the two arm parallel group randomized
clinical trial with total sample size N. Let the number of
patients randomized to the experimental group (E) and to
the control group (C), respectively, be denoted Ng and N¢,
so that N = Ng + Nc. The allocation is denoted by 7; = 1
if patient i is allocated to E and T; = 0 if patient i is allo-
cated to C. Further 7;,1 < i < N, constitutes the fixed
unobserved bias effect acting on the response of patient
i. Several mechanisms leading to an unobserved bias
effect are imaginable. The corresponding model can be
written as

yi=peli+pcA—=T) + 1 +¢€, (1)

where the errors are independent and identically dis-
tributed with common unknown variance o2 ie. ¢ ~
N(0,06%),1<i<N.

Model for selection bias

Selection bias can result from different mechanisms that
depend on the practical circumstances of a clinical trial,
see Berger [19]. We now specify the unobserved bias effect
7 by a selection bias model relating the response to the
allocation sequence. Randomization is supposed to miti-
gate the potential for selection bias in randomized clinical
trials. Proschan [6] introduced a biasing policy based on
the convergence strategy [11] and studied the impact of
selection bias on the test decision based on the z-test; see
also Kennes [7]. In a simulation study, Tamm [8] consid-
ered a more general biasing policy under the assumption
of final balance, ie. Nt = N¢ = N/2, and used the
t-test assuming homoscedasticity. To be more specific,
let Ne(i — 1), Nc(i — 1) be the number of past treat-
ment assignments to E or C after (i — 1) assignments and
pe(i —1) = (Ng — Ng(i — 1))/ (N — (i — 1)) be the por-
tion of remaining allocations to the experimental group
E to the total number of remaining allocations to E or C.
Then the biasing effect 7; in model (1) takes the form

T =n[Lgu@ei—1) — Lpi—p@ei—1)], (2)

where 14 (x) denotes the indicator function taking values
1ifx € A and 0 otherwise. The selection bias effect n is the
amount of increase or decrease in the expected response.
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In other words, a patient with elevated expected response
is allocated to the next treatment, which is supposed to be
the preferred treatment 1 if the portion of remaining allo-
cations to that treatment exceed a threshold g €[1/2,1].
In the case ¢ = 0.5 the selection biasing policy can be
rewritten as

7 =1 (sgn(Ng(i — 1) — Nc(i — 1)), 3)

where the recruiting person introduces selection bias in
the study results by selecting the allocation of the next
patient based on knowledge or guessing of the previous
assignments. The function sgn(x) takes the values 1,0, —1
depending on the sign of x. Tamm [8] showed by simula-
tion, that ¢ = 0.5 in (2) is the worst case when permuted
block randomization is used.

In practice, the specification of n might be a point of
discussion. One technique is to define 7 as a of the treat-
ment effect from the published data of a clinical trial.
This technique can be used more frequently when clini-
cal trials data become more readily available [20]. Another
approach is to use an estimate of 1, which can be derived
from clinical trial data from a similar study. In the simple
two arm parallel group design with continuous endpoint,
where the main analysis can be conducted using a ¢-test,
an additional linear regression variable can be included in
the statistical model describing the selection bias policy.
This results in a two way ANOVA model with main effects
(treatment and selection bias) only. However, a similar
approach can be used with more complicated models like
ANCOVA by including an additional factor as main effect.
Otherwise it may be sensible to choose 1 as a fraction of
the effect size that was used in the sample size calculation.

Model for chronological bias

Chronological bias may impact the results of clinical tri-
als, in particular in rare diseases, where a long recruitment
time may be related for example to changes in population
characteristics, changes in diagnostic ability, or learning
effects due to surgeon experience [18]. Tamm [15] pro-
posed to use linear, stepwise or logarithmic shapes of the
time trend. Using the notation above, the bias in model (1)
can take one of the forms

linear time trend,
stepwise trend, (4)

NN
;=04 Lizc(d)
log (m) logarithmic trend,

where the time trend effect 6 is a positive number. It seems
sensible to choose 0 as a fraction of the variation in the
data, i.e., the standard deviation or range.
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Model for joint additive bias

If both chronological and selection biases act together,
a joint bias model is necessary. We propose an additive
model to introduce both biases in (1) with

=0 v
Ng + N¢
———

linear time trend

+ nsign(Ne(i —1) =Nc(i—1) . (5)

selection bias with g=0.5

Note that a multiplicative formulation can be used as
well. Further, weighting of selection and chronological
bias can be implemented via formulation of 6 and 7. As
implied above, different formulations of time trend and
selection bias can be incorporated, or a relaxed version of
the selection biasing policy can be used.

Metric

The ICH E9 guidance [3] states that “the interpretation of
statistical measures of uncertainty of the treatment effect
and treatment comparisons should involve consideration
of the potential contribution of bias to the p-value, the
confidence interval, or to inference” It results the ques-
tion how the “potential contribution of bias to the p-value”
is measured for a randomization procedure. Usually, the
type I error rate, i.e., the proportion of false positive
test decisions, is considered, mostly by simulation. How-
ever, the contribution may vary from allocation sequence
to allocation sequence, and the variability of the effect
is worth consideration. We propose the new metric the
probability of sequences of a randomization procedure RP
exhibiting a type I error probability w less than or equal
to 0.05 (Prp(w < 0.05)). This is a quantity summarizing
the impact over all randomization sequences and demon-
strates the clinical consequences as well as the go-no-go
decision of the regulator directly. We therefore propose to
select the randomization procedure from a set of suitable
randomization procedures showing the minimum value of
the new metric Prp(w < 0.05).

t-Test under Misspecification

An analytical expression to calculate the type I error prob-
ability for each sequence under model (1) can be derived
in the case of a two-arm parallel group design with con-
tinuous normal endpoint. Langer [31] derived a formula
in the presence of selection bias only. This approach can
be applied where only selection bias or only time trend
bias or both are included in the evaluation study. Assume
we are interested in testing the hypothesis of population
means Hy : ug = pc using a t-test. With the notation
above yr = NLE ZﬁlyiTi and yc = Nic Zf\il yi(1 = Ty),
the test statistic
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NeNe (no s
S— NNe OF —¥o)

N 2 N 2
= (Z T (i —ye)* + Y. (1 — T) (i — 5c) )
i=1 i=1
(6)

follows a doubly non-central ¢ distribution with non-
centrality parameters

1 NegNc ( 43 2)
= — —_— — Tr — T
pm NE+NC ME — MC E C

N
1 2 ~2 ~2
A= (Z t? — Nptk - thc>

i=1

under Hy : ug = uc, where 7 = NLE Zi\il 7;T; and
Tc = Nic Zﬁil 7;(1 — T;). The unusual form of the model
and test statistic is necessary to express the dependence
on the allocation vector T = (T7,..., Tny)". The expec-
tation of yg — yc for a given allocation vector T is ug —
¢ + Te — Tc. Further, observing that the expectation of y;
is ugT; + nc(1 — T;) + t; and under the normal assump-
tion of the error, the distribution "N | T;(y;— )+ YN,
(1 — T;)(y; — 7c)? is a non-central x? with Ng + N¢ — 2
degrees of freedom and non-centrality parameter

N N
1 ~ -
h== (Z Ti(ri— %)+ Y (1 —T) (i - TC)Z)

i=1 i=1
A
== (Z 1} — Ngtf — chg) :
o
i=1

Thus, according to Johnson, Kotz, Balakrishnan (1995)
[32], the statistic (6) follows a doubly non central ¢ distri-
bution with the above mentioned non centrality parame-
ters. Using this distributional result, the two sided type I
error probability under the null hypothesis Hy : ug = pc
can be calculated from

P(IS| > tnpne—2 (1 —/2) |T)
o

=F (tNE+NC—2 <§> ;NE+ Nc — 2; 6, K) )

o
+F (tNE+NC—2 (5) ;NE+ Nc — 2; —8,)») ,

where F(x;n + m — 2;8, 1) denotes the distribution func-
tion of the doubly non-central ¢-distribution with n+m—2
degrees of freedom and non centrality parameters § and
A and f,4,,—2(y) denotes the y-quantile of the central
t-distribution (A = § = 0). In case of the biasing pol-
icy 7, = n (sign(Ng(i — 1) — Nc (i — 1)) the symmetry of
the non-centrality parameters can be used to gain com-
putational efficiency while evaluating the possible set of
allocation vectors T of a particular randomization proce-
dure. Formula (7) can be used to either calculate the two
sided type I error probability for a specific allocation vec-
tor T or the expected two-sided type I error probability for
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a specific randomization procedure by summing over the
whole range of allocation vectors T, weighted by the prob-
abilities implied by the randomization procedure for the
specific sequences. Obviously, giving the distribution of
the type I error probabilities depending on the sequences
induced by the randomization procedure provides more
information than any summary measure. Consequently,
this approach is recommended.

The ERDO template

In this section, the concept of Evaluation of
Randomization procedures for Design Optimization
(ERDO) is introduced. It is illustrated by a case study for
the design of a particular randomized clinical trial. The
steps of the evaluation process are given in the template
(Table 1).

We now describe the six steps of the template in detail
illustrated by the EnBand case study. In any clinical trial
for which this template is implemented, an appropriate
section in the statistical analysis plan of the study protocol
should be added.

Step 1. Introduction and Objective

For the first step, the problem of selecting the appropri-
ate randomization procedure should be described, taking
into account the particular situations unique to the clini-
cal trial. At the end of the step, a clearly defined objective
should be stated. Of course, the objective in our particular
setting is the selection of a randomization procedure for
a particular clinical trial. Reference to the specifications
of the study and to the objective of the evaluation of the
randomization procedure should be given accurately.

Case Study (EnBand-Study) An international multi-
centre clinical trial (SPR-Study) [17] compared scleral
buckling (SB) with primary pars plana vitrectomy (PPV) in
rhegmatogenous retinal detachment. The study could not
answer whether an encircling band improves one year best
corrected visual acuity in pseudophakic eyes of the scle-
ral buckling group. Thus we would like to design a new

Table 1 ERDO template

1 Introduction and objective

2 Framework

(a)Assumptions

(b)Options
(c)Metrics
3 Evaluation methods
4 Software
5 Results
6

Discussion and conclusion
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clinical trial to investigate the effect of an additional use of
an encircling band on one year best corrected visual acu-
ity, called the “EnBand-Study” We recognize that in almost
all surgical trials learning effects can be assumed, which
may induce chronological bias [18]. Of course, open label
treatment allocation is related to the comparison of two
surgical procedures, which may introduce selection bias.
Thus both biases should be considered in the selection of a
randomization procedure.

The evaluation of randomization procedures for clinical
trial design ‘optimization” has as its objective determining
an appropriate randomization procedure for the EnBand-
Study with respect to selection and chronological bias. To
this end, we will use the supporting information provided
by the SPR-Study.

Step 2: Framework

2(a) Assumptions In this subsection, we recommend
describing the study layout, the statistical model, the types
of bias and the metric to measure these biases in detail.
Usually, there are many design aspects which have to
be taken into account, such as the result of the sam-
ple size calculation including the defined effect size, the
desired allocation ratio, the type of endpoint, the layout
of the study, the number of treatment arms, stratifica-
tion factors, and the number and the timing of interim
inspections.

Case Study (EnBand-Study) (continued). The EnBand-
Study will be designed as a two arm parallel group single
centre randomized clinical trial with continuous endpoint,
no interim analysis and a 1:1 allocation ratio as well as no
adaptation in the randomization process. The study end-
point best corrected visual acuity is measured as the log
of the minimal angle of resolution (MAR), which may be
considered continuous. The treatments cannot be masked
since it is a surgical procedure. Based on the results of the
SPR-Study in the SB group, a mean change in visual acuity
of 0.52 (SD 0.77) was observed in the encircling band and
0.90 (SD 0.73) was observed in the group without encircling
band. The resulting effect size is 0.497. To show this differ-
ence using a two-sided t-test at a significance level of 0.05
and a power of 80% with the pooled standard deviation
0.765, at least 65 patients per group are necessary.

It is decided to use an 1:1 allocation ratio, with a fixed
sample design. Further, although the study will be con-
ducted as a multicentre clinical trial, the treatment differ-
ence and the effect size are assumed to be homogeneous in
all centres. The null hypothesis of no difference in the best
corrected visual acuity after one year between the groups
PPV with encircling band and PPV alone, will be tested
with a t-test assuming equal variances.

We used the data of the pseudophakic sub-trial of the
SPR-study to estimate the potential magnitude of selection
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bias. Based on the experience of the SPR-study selection
bias may occur for various reasons in the EnBand-stud)y.
Although during the setup of the SPR-study a lot of empha-
sis was given to a unique interpretation of the inclusion
criteria it shows up that this was in practice difficult to
achieve. This weakness in the formulation of the inclu-
sion criteria, e.g. “medium severity” may cause the poten-
tial for selection bias to a certain amount. Further, this
is supported by the fact, that the surgeon decide about
enrollment of the patient intra operatively, when some
of the inclusion criteria are determined. Randomization
was implemented by sealed opaque envelops. As a conse-
quence, in 10 cases intra operative treatment crossovers
were observed. We estimated an selection effect n = 0.09 as
described above. Further, from the residual sum of squares
we derived the corresponding standard deviation o = 0.73
using the 243 uncorrected total degrees of freedom. It is
convenient to standardize the selection bias effect, which
yields y = n/o = 0.12. Another approach for calculation
of n,o and y is presented by Kennes et al. [21] using a bias-
corrected test based on the maximum likelihood estimates.
This leads to the same results.

We used the data of of the pseudophakic patients treated
with scleral buckling of the SPR-study to predict the time
trend of the EnBand-study and detected to a linear time
trend of the magnitude 0.26 i/n, see Fig. 1.

In summary, to determine the best practice randomiza-
tion procedure for the design of the EnBand-Study, the joint
additive bias model (5)

7 =026 + 0.09 sign(Ng(i — 1) — Ne(i — 1))

i
65 + 65

is used, assuming the estimated standard deviation

o =0.73.
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2(b) Options In this section, we propose to specify the
randomization procedures under evaluation while taking
into account their parameterization and specific proper-
ties. A comprehensive review of the randomization proce-
dures is given in Rosenberger and Lachin (2016) [2], so we
do not repeat the details of their computation here.

In order to choose the randomization procedure which
best mitigates bias, we recommend including a variety of
procedures in the evaluation, covering the whole spec-
trum of available procedures. We identify three partly
overlapping classes of randomization procedures that
arise from different types of restrictions imposed on the
randomization process. We now introduce the classes
proceeding from the weakest to the strongest restrictions.

We start with the class of randomization procedures
where weakest restrictions are imposed. Complete ran-
domization is within this class and is characterized by
unrestricted treatment assignments without any control
of the imbalance neither during nor at the end of the
trial. The procedure is accomplished by tossing a fair
coin, so the probability that patient i will receive treat-
ment E is always 1/2, and may be considered as the “gold
standard” with respect to unpredictability. Most clinical
researchers avoid complete randomization because it can
lead to large imbalances on the number of patients on
each treatment either at the end or during the course of
the trial, especially in small samples. Another candidate
is Efron’s biased coin design [22] (EBC(p)) which con-
sists of flipping a biased coin with probability p > 0.5
in favor of the treatment which has been allocated less
frequently, and a fair coin in case of equality. Note that
this class includes complete randomization (CR) when
p = 0.5. With Efron’s biased coin more unbalanced alloca-
tion sequences become less probable. The third candidate
in this group is Wei’s urn design [24] (UD(«, B), where o
and B are user specified nonnegative integer parameters.

°
g
L]
.
EO) o e ° A oo
°
QO o0je ¢ % . . ® b4 ° % ®
- ° o ° ® o o . .
* *
© ° o oo °®e ” . .
° .
= ® 4 . ° ° A ° _TE. * ;.';¥_
. o ° ° o
8 -’ * ® ° ° L i ” e °
° . °* o ° . e * °
. L . P . ° ° °
. ° A4 ° . P 04 3

Fig. 1 Scatterplot of change in best corrected visual acuity of the pseudophakic patients treated with scleral buckling of the SPR-study
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The procedure tends to balance treatment assignments
by adaptively modifying the next allocation probabili-
ties based on the current degree of imbalance. It can be
regarded as an adaptively biased coin design.

One restriction implemented in randomization proce-
dures is to control the imbalance during the treatment
assignment process. Randomization procedures which
ensure that the difference in the number of treatment
assignments does not exceed a certain value either exact
or by probability during the allocation are designed to
control a given maximum tolerated imbalance [23]. A
procedure which controls the imbalance strictly is the
big stick design [25] (BSD(a)), which can be implemented
via complete randomization with a forced deterministic
assignment when a maximal imbalance a is reached dur-
ing the enrollment. Another candidate related to Efron’s
biased coin is Chen’s design (Chen(a),p) [26], where a
maximum tolerated imbalance is applied to Efron’ biased
coin. A broader class of designs results from the acceler-
ated biased coin design [27]. The maximal procedure of
Berger (MP(a)) is another candidate, which, in the most
recent version, controls the maximal tolerated imbalance,
but does not force balance at the end of the allocation
process [28].

The next type of restriction is characterized by control-
ling the total imbalance after completion of the assign-
ment process. Randomization procedures which ensure
that the difference in the number of treatment assign-
ments does not exceed a certain value at the end of the
allocation process control the final imbalance. One candi-
date is Random allocation rule (RAR), which assigns half
the patients to E and C randomly. Permuted block ran-
domization (PBR(b)) with block size b uses RAR within
blocks of b patients, and therefore controls the maximum
tolerated imbalance as well as terminal balance.

For the evaluation and comparison of randomization
procedures, some candidates are natural choices, such as
CR which is considered gold standard for unpredictabil-
ity, and RAR and PBR for a strict control of the imbalance
during and at the end of a trial. Note that the permuted
block design is the most frequently used procedure [28]. It
is the investigator’s decision which procedures to include
in the comparison study. However, due to the different
properties we strongly recommend including at least one
representative from each class in the evaluation study.
For small trials, the use of complete randomization is not
suitable as it does not control any imbalances, and can
therefore lead to a loss in power. For example, for total
sample size N = 50, the probability for an imbalance of
25% that leads to a loss in power of 5% (reduction from 80
to 75%) is larger than 3%.

Case Study (EnBand-Study) (continued). In the case
study we include Efron’s biased coin with Efron’s suggested
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probability of p = 2/3 = 0.67, Berger’s maximal proce-
dure, the Big-Stick Design and Chen’s design which controls
the maximum tolerated imbalance strictly and Wei's urn
design which controls the maximum tolerated imbalance
adaptively are considered. As representatives of the class to
control the final imbalance, the random allocation rule is
included in the case study, as well as the permuted block
design, which controls both maximum tolerated and final
imbalance.

2(c) Metric The application of the ERDO requires a
suitable metric for the target criterion that reflects the
objective of the evaluation. A large number of differ-
ent metrics have been defined in the literature, such as
the expected number of correct guesses [11], the loss
in power [2], or the balancing behavior [29]. Less work
has been done to combine the different metrics. For
instance, Atkinson [29] investigated the loss in power
by imbalance and the impact of bias by the the aver-
age number of correct guesses. Schindler [30] proposes
a unified linked assessment criterion to combine vari-
ous standardized metrics. In the case study, we consid-
ered the value of the new metric Prp(w < 0.05) as
well as for comparative reasons the mean type I error
probability.

Case Study (EnBand-Study) (continued). For the
EnBand-Study, the derivation above can be used to eval-
uate the randomization procedures with respect to the
probability of sequences exhibiting a type I error probabil-
ity less than or equal to 0.05. This metric fulfills the ICH
E9 [3] recommendation to study the potential contribution
of bias with respect to the p-value acceptably.

Step 3. Evaluation Method

For this step, we recommend a concise description of
the method used for the evaluation of the randomiza-
tion procedures. Usually it will comprise a comprehensive
simulation study rather than analytical results. Differ-
ent randomization procedures should be considered with
varying parameter settings (e.g., different block sizes, in
case of the permuted block design or different values of
p in Efron’s biased coin design). As mentioned in step
2(b), the set of randomization procedures under eval-
uation should be large and diverse with respect their
properties.

The estimates of the selection bias effect n and the time
trend effect 6 should be derived from the literature or
preceding clinical trials. One should vary n and 6 to deter-
mine the sensitivity of the comparison to changes in the
assumptions. It should be noted that it may be unrealistic
to assume no bias in a clinical trial. However more expe-
rience through re-analysis of existing data is necessary to
derive well-founded estimates for 1 and 6.
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Case Study (EnBand-Study) (continued). To choose an
appropriate randomization procedure for the EnBand-
Study, a comprehensive simulation study will be conducted
to assess the impact of the choice of a randomization pro-
cedure on the type I error probability assuming selection
and chronological bias. Considering the estimates n =
0.09,0 = 0.26 and o = 0.73 derived from the SPR-
Study, we are interested in investigate the stability of our
calculation with respect to rather small deviations from
the estimates. Accordingly, we considered the “50% change”
from estimates as values for our sensitivity analysis, result-
ing in the values 0.04, 0.09 and 0.14 for n and 0.13, 0.26 and
0.39 for 0 in the sensitivity study. Of course, other argu-
ments, e.g. using the limits of the 95% confidence interval of
the estimates may be used as basis for the sensitivity anal-
ysis. However, it should be noted, that in our special case
with the 95%-CI for n with (—0.09;0.26) and for 60 with
(—0.18;0.71) large deviations from the estimates on the on
hand and large values compared to the expected effect size
shown up, which be might a source of discussion.

Step 4. Software

This paragraph should specify the software used for the
evaluation. In general, the evaluation is not restricted to
a specific software. However, to the best of our knowl-
edge there is only one comprehensive software solution
available for the assessment of randomization procedures.
Recently Uschner [10] published the R package random-
izeR which provides the basis for the computations for
our case study. The package is available at the Compre-
hensive R Archive Network. It currently includes fifteen
randomization procedures and allows the generation of
randomization sequences in R and as a . csv file. Differ-
ent assessment criteria, like selection and chronological
bias and the combination of both are implemented in
the software to assess and compare randomization proce-
dures as well.

Case Study (EnBand-Study) (continued). The random-
izeR software version 1.3 will be used in the simulation
study.

Step 5. Results

The results calculated with randomizeR can be shown for
a range of sequences as well as using summary statis-
tics. Within this section, first some analytical examples
are given followed by numerical results for the underlying
example.

Case Study (EnBand-Study) (continued). Using the set-
tings above for the selection and chronological bias effects,
the numerical results for the evaluation are given in
Tables 2, 3 and 4. They were derived by Monte Carlo sim-
ulation with r = 100000 randomization sequences. This
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Table 2 Impact of selection bias effect n = 0.09 and linear time
trend effect & = 0.26 with o = 0.73 on probability of type | error
for different randomization procedures

Randomization Type | Error Pre(w < 0.05)
Procedure Probability

[RP] [mean]

CR 0.050 0.53
RAR 0.052 0.34
PBR(2) 0.105 0.00
PBR(10) 0.069 0.00
BSD@3) 0.054 0.11
BSD(4) 0.052 0.34
BSD(5) 0.051 046
MP(3) 0.062 0.00
MP(4) 0.058 0.01
MP(5) 0.055 0.06
EBC(0.67) 0.062 0.02
CHEN(2,0.67) 0.072 0.00
CHEN(3, 0.67) 0.066 0.00
CHEN(4, 0.67) 0.064 0.00
CHEN(5, 0.67) 0.063 0.01
ub(o,1) 0.051 044
ub(1,2) 0.051 046

ensures an accuracy with two decimal digits after the dec-
imal point for Prp(w < 0.05) and 3 decimal digits for the
mean type I error probabilities. The sequences were gener-
ated according specific randomization procedures imple-
mented in randomizeR. Using the type of bias as specified
(selection bias, chronological bias, both types of bias) and
the parameters (1, 0), the type I error probability is com-
puted for each randomization sequence using the doubly
non-central t-distribution with non-centrality parameters
8 and A. From these r = 100000 type I error probabili-
ties the mean value and the the probability of sequences
exhibiting a type I error probability less than or equal to
0.05 are calculated for each randomization procedure.

Table 3 Impact of selection bias effect n = 0.09 and linear time
trend effect & = 0.26 with o = 0.73 on probability of type | error
for the big stick design

Randomization Type | Error Pre(w < 0.05)
Procedure Probability

[RP] [mean]

BSD(10) 0.050 0.53

BSD(15) 0.051 0.51

BSD(20) 0.050 0.52

BSD(25) 0.050 0.53

BSD(30) 0.050 053

BSD(35) 0.050 0.53

BSD(40) 0.050 0.52
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Table 4 Impact of selection bias effect n = 0.09 and linear time
trend effect & = 0.26 with o = 0.73 on probability of type | error
for Wei's urn design
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Table 5 50% change of selection bias effect and linear time
trend effect (1, 6) on probability of type | error for complete
randomization (CR) and big stick design (BSD)

Randomization Type | Error Pre(w < 0.05) Randomization  Selection  Linear-Time Type | Error  Prp(w < 0.05)
Procedure Probability Procedure Bias Trend Bias Probability
[RP] [mean] [RP] n 0 [mean]
ub(o,1) 0.051 044 CR 0.04 0.13 0.050 0.52
ub(0,2) 0.051 044 CR 0.09 0.26 0.050 0.53
ub(0,3) 0.051 044 CR 0.14 0.39 0.051 0.56
ub(1,1) 0.051 047 BSD(@3) 0.04 0.13 0.051 0.10
ub(1,2) 0.051 0.46 BSD(3) 0.09 0.26 0.054 0.1
ub(1,3) 0.051 045 BSD(3) 0.14 0.39 0.059 0.10
ub@2,1) 0.051 048 BSD(4) 0.04 0.13 0.050 0.32
ub(R,2) 0.051 047 BSD(4) 0.09 0.26 0.052 0.34
ub(2,3) 0.051 046 BSD(4) 0.14 0.39 0.053 0.34
BSD(5) 0.04 0.13 0.050 045
BSD(5) 0.09 0.26 0.051 0.46
‘The results in Tqble 2 Sh?W ‘thc?t comp{ete randomiza- BSD(S) 014 039 0051 047
tion performs best in both criteria if both biases are present
in the study data. We observed promising results for BSD BSDA10) 0.04 013 0050 052
and UD. Thus we investigated these two procedures in ~ BSP(10) 0.09 0.26 0050 0.53
more detail with respect to their parameters, in particu-  BSD(10) 0.14 039 0.050 057

lar because complete randomization is criticized due to
the imbalance behavior. The performance of the big stick
design and Wei's urn design increases with respect to the
probability of sequences exhibiting a type I error proba-
bility less than or equal to 0.05. Taking into account that
a certain amount of imbalance does not affect the power
of the test, we varied the maximum tolerated imbalance
of the big stick design (see Table 3) and the parameters of
Wei's urn design (see Table 4) to get a more detailed image
of the performance of these two design with respect to their
parameters.

The data in Tables 3 and 4 show that the big stick design
with a = 10 performs reasonably well if selection bias
as well as linear time trend are present. Of course, the
joint biasing policy hides individual selection or time trend
effects. The results in Tables 2, 3 and 4 are extended to indi-
vidual selection and/or time trend effects in an additional
file in more detail [see Additional file 1].

Table 5 shows the results of varying n and 0 for these
randomization procedures (complete randomization and
the big stick design). Details for individual as well as joint
selection bias and linear time trend effects, as well as for
no effects and upper limit of 95% confidence intervals are
included in an additional file [see Additional file 2].

Step 6. Discussion and Conclusion
This step concerns the discussion of the results and their
interpretation with particular regard to the trial setting.

Case Study (EnBand-Study) (continued). From Tables 2,
3 and 4 we see that, with the setting n = 0.09 and 0 =

0.26, there are large differences between the performance
of the randomization procedures. Even complete random-
ization does not prevent against selection and time trend
bias overall; see first line of Table (2). It should be noted
that the latter is already known from Rosenberger and
Lachin [2]. As a matter of fact, using complete randomiza-
tion, almost 50% of the randomization sequences exhibit
a type I error probability elevation. Almost similar results
can be observed for the BSD(5) and UD. Using the PBR
with block sizes 2 or 10, the big stick design with maxi-
mal imbalance of a = 3, MP(3,4,5), EBC(2/3), and Chen’s
design are not recommended for application in our trial
setting based on the probability of sequences exhibiting a
type I error probability less than or equal to 0.05. Table 3
shows that the performance of the big stick design improves
depending on the maximal tolerated imbalance up to 10.
For Wei's urn design, from Table 4, we see similar results
over the parameters considered without reaching the big
stick design level.

It is often misleading to focus on the “mean type I error
probability” (see second column of Table 2) which shows
comparable results for CR, RAR, BSD(5), UD(0,1) and
UD(L2). The variability can clearly be seen by looking
at the probability of sequences exhibiting a type I error
probability less than or equal to 0.05.

The above argument may imply that one should relax
the terminal balance requirement by using the big stick
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design to achieve better results. Indeed, if the investiga-
tor is willing to accept imbalance in the data, say by 40
patients, it results an acceptable loss of power. However,
in the case of BSD(10) 53% of allocation sequences under
selection bias (0.09) and time trend (0.26) still preserve the
type I error probability of 0.05. So the maximum tolerated
imbalance can be restricted to 10 for BSD.

It should be taken into account that the evaluation above
uses small selection and chronological bias effects in the
example above. This may be different in other clinical set-
tings. However, the evaluation shows that ignoring the
influence of selection bias as well as chronological bias
may affect the test decision by means of type I error
rate probability. The effect may be conservative or anti-
conservative test decisions.

Case Study (EnBand-Study) We conclude that with a
selection bias effect of n = 0.09 and a linear time trend of
0.26i/n, the impact of the joint additive bias on the type
I error probability inflation is kept to an acceptable mini-
mum by complete randomization and the big stick design
with maximum tolerated imbalance of 10. Although com-
plete randomization performs slightly better in the case
study, we will use the big stick design in the analysis of the
EnBand-Study, because it controls also the maximum tol-
erated imbalance that may influence power calculations.

Discussion

Randomization is considered to be the most important
design feature in randomized clinical trials to protect
against bias [3, 33]. However no scientifically-based rec-
ommendation or argument for selecting a randomization
procedure has been given or proposed in the literature up
to now.

In this paper, the ERDO template is proposed to give
scientific arguments for the selection of a randomiza-
tion procedure with respect to the clinical situation under
investigation including a template for a structured report
in the design phase of a clinical trial. A new evaluation
metric based on the doubly non-central ¢ distribution and
a joint assessment criterion were derived as well. This
enables a scientific evaluation of randomization proce-
dures by using the randomizeR software comparably to
what is commonly conducted for sample size or power
considerations.

ERDO can be applied to every clinical trial, taking into
account, that in every practical situation different forms
and strengthen of selection biases and/or time trend bias
could affect the test decision. Practical recommendations
about the amount of selection bias and/or time trend
effect may be derived from previous studies, or in case
of uncertainty, as fraction from effect size and /or vari-
ation. The calculation can be easily conducted with our
randomizeR software package [10]. Reporting a clinical
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trial in a medical journal requires a concise description of
the selected randomization procedure and the scientific
criteria on which that selection was based.

Limitations

One limitation of our model for selection bias is, that it
appears to be not reasonable if the population is very lim-
ited, so that there is a pressure to include every patient
in the study. This happens in clinical trials with very rare
diseases. Tamm et al. [8], considered cases with relaxed
selection bias policies and misclassification, showing that
selection bias does not completely vanish. In limited pop-
ulations with high pressure to recruit, by means that every
patient has to be enrolled, e.g. by an external enroll-
ment board, it can be argued, that the effect of selection
bias vanishes. We interpret our selection biasing policy as
modeling the (worst case) related to unconscious selection
of patients.

It has to be mentioned, that the less knowledge the
designers have, the more appealing pure randomization
or the procedures closest to pure randomization will
be. Similarities between sample size justification and our
investigation to justify the selection of the randomization
procedure now imply a discussion about possible biases in
clinical trials. In our special example the magnitude of the
time trend seem to dominate the selection bias. This may
alter in other clinical settings.

In general we would recommend to assume at least a
certain amount of selection bias effect as well as time
trend effect, which may go in line with the assumed effect
size. And, taking into account open access to clinical data
recommendation, there will be a gain in information in the
future, which could be used in better designing a clinical
trial.

Extensions

We propose ERDO as a framework for “optimal” selection
of a randomization procedure in clinical trials with regard
to avoid bias. Hereby, we considered the most prominent
types selection and linear time trend bias in random-
ized clinical trials. However, other types of bias can be
easily implemented in ERDO, if a corresponding statis-
tical model can be formulated. In addition, the ERDO
approach can be applied to other metrics as well, see e.g.
Schindler [30]. Some of them like averaged number of
best guesses or loss in power are already implemented in
randomizeR, which constitutes the computational basic.
And finally other randomization procedures e.g. covari-
ate adaptive randomization procedures can be included
in the evaluation process. Although the current presen-
tation is restricted to a two arm parallel group design,
an extended biasing policy for multi-arm clinical tri-
als with continuous endpoint was developed and briefly
studied (Uschner et al.: The Impact of Selection Bias in
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Randomized Multi-Arm Parallel Group Clinical Trials,
submitted). Similarly Riickbeil [9] proposed a biasing pol-
icy for survival data and conducted a comparison study.
Both approaches will be implemented in the software in
the upcoming release. We are working on extending the
results to other endpoints and to group sequential clinical
trials. The methods can already be used in stratified trials
by analyzing the strata separately and pooling the results.
Our presented results for the bias model in a single cen-
tre study can be translated to multicentre clinical trials in
cases, where all centres follow the same biasing policy and
the time trend is independent of the centre.

Another important extension concerns a selection bias
corrected test [21] which has been introduced for a max-
imum likelihood based test. The bias corrected test is
suitable if large sample arguments can be used to support
the application of parametric tests. However, particularly
in small samples where the asymptotic arguments are
questionable, randomization based inference may be a
suitable alternative.

Of course many possible metrics may be considered. If
the particular evaluation criteria are measured on differ-
ent scales, Schindler [30] proposed a uniform assessment
criterion. Other metrics may also be used to combine cri-
teria. In randomizeR a linked assessment criteria via Der-
ringer Suich desirability [34] functions is implemented.

Second, concerning the balancing criteria, although it
is known that power is maximized in balanced designs
using continuous and homoscedastic endpoints, some
slight deviation from balance occurs by enrollment and
missing observation in almost every clinical trial. More-
over, the power of 80% is nearly kept in a study with an
allocation ratio of 2:1 or 2:3 if the effect size of ranges
between 0.2 and 0.8 in a two-sample ¢-test with two-sided
hypothesis at significance level 5%. So randomization pro-
cedures which allow for moderate imbalances should not
be excluded from consideration.

Further, varying n and 6 can be used to illustrate their
effects and bring sound scientific arguments into the
choice of a randomization procedure. However, choices of
appropriate n and 6 in practice will also depend on the
disease and study design restrictions (e.g., if masking is
possible).

Connected to the randomization procedure is the cor-
rect choice of the statistical analysis. Some authors have
argued that randomization-based inference is to be pre-
ferred in particular if the sample size is small. Of course
the possible allocation sets resulting from the different
randomization procedures might be taken into account
for the selection.

Conclusion
We acknowledge that until now the assessment of ran-
domization procedures in clinical trials has been complex
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and difficult for investigators to accomplish. However, the
methodology presented in this article facilitates this task.

The proposed ERDO framework guides the investigator
through a template for the choice of a randomization pro-
cedure, and provides easy to use tools for the assessment.
The barriers for the thorough reporting and assessment
of randomization procedures could be further reduced in
the future when regulators and pharmaceutical companies
employ similar, standardized frameworks for the choice of
randomization procedures.

Additional files

Additional file 1: This document includes detailed tables of the impact of
selection bias effect n and linear time trend effect 6 separately and jointly
on the type | error probability for different randomization procedures.

(PDF 49 kb)

Additional file 2: This document includes detailed tables of the sensitivity
analysis. The amount of  and 6 is varied from the estimate by "50%
changes”, resulting in the values 0.04, 0.09 and 0.14 for n and 0.13, 0.26 and
0.39 for 6. Further the upper limit of the 95%-Cl for  with (-0.09; 0.26) and
for 6 with (-0.18; 0.71) are used as well as the point of no biasn = 0,0 = 0.
All resulting combinations of i and 8 are considered for the different
randomization procedures. (PDF 74 kb)
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