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Abstract

Background: The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the
validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined
as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely
underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness
of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations.

Methods: We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the
observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly
since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a
formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate
estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the
event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy
of each method, and each method was applied to a prostate cancer recurrence study dataset.

Results: Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally
simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence,
the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92%
and 93% vs 68%).

Conclusions: The Person-time methods correct a systematic error in the standard Percentage Method for
calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and
tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high.
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Background
The follow-up rate, a standard index of the completeness
of follow-up, is important for assessing the adequacy of
a prospective or retrospective longitudinal cohort dataset
for research purposes. In particular, a low follow-up rate
raises concerns regarding the possibility of informative
censoring, bias and diminishing statistical power [1–5];
concerns that increase incrementally with the extent of
participant dropout from the cohort [5–12]. Common
sources of “loss-to-follow-up” include, death due to
causes other than the endpoint of interest, patient with-
drawal, as well as other reasons for dropout, such as a

change in at-risk status (e.g., undergoing a hysterectomy
during a study of cervical cancer). For simplicity, in this
paper we refer to all loss-to-follow-up and censoring
due to any causes other than the event of interest or the
end of the study as dropout.
Methods to accurately assess follow-up rates are likely

to be of growing importance during the current, expand-
ing era of electronic medical records (EMRs). That is,
hospital and outpatient databases are increasingly being
exploited for research purposes, but require careful scru-
tiny to determine whether they are truly adequate for
use in scientific studies. Patients in routine clinical prac-
tice may be more likely than research volunteers in a
prospective cohort to seek care from multiple, unaffili-
ated providers, leading to low follow-up rates observed
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at a specific health care facility, raising particular con-
cerns regarding informative censoring. Investigators may
therefore need to screen through multiple potential
clinics or other sources of EMR data to find an appro-
priate population with adequate follow-up data.
Thus, while there are many sources of potential bias,

the follow-up rate provides a quick and easy tool to ini-
tially screen potential retrospective clinical cohorts prior
to doing more in depth evaluation of the adequacy of
the data. Both the researchers and journal reviewers
should therefore routinely examine the follow-up rate in
an EMR-based study over a period of observation rele-
vant to the study question.
The most commonly used method to assess the com-

pleteness of the follow-up, recommended by Cochrane
Handbook [13] and the CONSORT guidelines [14] and
often referred to as the “Percentage Method” [15], in-
volves simply calculating the proportion of subjects
present at baseline (e.g., enrollment) who remained
through the end of the study interval or developed the
event of interest by the end of the interval [7, 13, 14,
16]. However, this definition is “naïve” in that it does not
distinguish subjects who dropped out early during a
study from subjects who dropped out late in the study.
In fact, the Percentage Method essentially assumes that
all the subjects who were lost to follow-up were lost at
the very beginning of the study, and therefore can se-
verely underestimate the follow-up rate in a cohort,
leading to a false conclusion regarding the quality of
the data.
Several attempts have been made to improve upon the

Percentage Method for assessing the degree of follow-
up. For example, the median follow-up time has been
used as a measure to examine the length of follow-up.
However, there have been disagreements regarding how
the median follow-up time should be calculated:
whether it should be calculated among all subjects,
only dropouts, or other variations, each has its limita-
tions [17–20]. Further, there is an increasing recogni-
tion that the median follow-up time does not directly
measure the “completeness of the follow-up”: e.g., the
median follow-up can be low with excellent follow-
up, and it can be high with poor follow-up [18, 20–22].
While time to event studies must have sufficient length of
follow-up to capture enough events in order to have suffi-
cient statistical power, as we mentioned earlier, poor
follow-up raises concern on the validity of the study.
Thus, to assess adequate of follow-up for a cohort study,
we need to examine both the length and the completeness
of follow-up.
Alternatively, a reverse Kaplan-Meier (KM) survival

curve has also been used to assess the length as well as
the completeness of the follow-up, which is constructed
by reversing “censor” and “event” [18]. However, as

explained in detail below, because the reverse KM
method treats the events of interest as censoring, it ex-
aggerates the cumulative loss to follow-up rate. In
addition, a measure of follow-up completeness proposed
by Clark et al. [21], which we explained more later, fails
to account for possible events that could have occurred
among those who were lost to follow-up if they had
remained in the study. Further, the accuracy of this
method, to our knowledge, was never formally examined
using simulations.
In this paper, we review major existing methods for es-

timating follow-up, and propose a new person-time
follow-up rate (PTFR) – essentially, the observed
person-time divided by the person-time assuming no
dropouts – to address the limitations we found with
existing methods. We then describe two methods to esti-
mate PTFR. Simulation studies are used to examine the
accuracy of the proposed methods and the existing
methods, and each method is applied to a real-world
prostate cancer recurrence “retrospective cohort” study
based on EMR data [23].

Existing measures for following-up rates
Consider a cohort of size N, and that Ti and Ci represent
the time to the development of event of interest and the
censoring time for the ith subject, respectively, i =
1,2,…,N. For simplicity, we assume the study ends at a
specified time,τ.

Standard “percentage method”
The Percentage Method ηpercentage defines the follow-up
rate as

ηpercentage ¼
N‐#lost to follow‐up

N

¼
N−

PN
i¼1

I T i > Ci&Ci < τð Þ
N

� 100%: ð1Þ

In brief, this method calculates the fraction of all
enrollees who either developed the outcome of interest
or were censored at τ. Note that although participants
dropped out at different times, the percentage method
essentially considers their follow-up time as zero no
matter how long they contributed person-time to the
study-systematically underestimating the true follow-up.
To help illustrate these points, Fig. 1 provides a simple
example of a hypothetical cohort of 100 subjects who
were followed and assessed with annual visits for
three years. There were 10, 5 and 5 outcome events
in the 1st, 2nd and 3rd year, respectively with 40
dropouts in the 1st year in scenario (A) and in the
3rd year in scenario (B). The Percentage Method esti-
mates follow-up rate to be 60%, regardless of whether
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the dropouts occurred at the beginning of the study
or late in the study.
As mentioned above, alternative methods have been

developed to address the length of actual observation
within a cohort. Two of the most commonly referenced
are the reverse KM Survival Curve and the Clark et al.’s
Completeness Index method [21].

Reverse Kaplan-Meier (KM) survival curve
The reverse KM survival curve is constructed by revers-
ing “censor” and “event” of the standard KM curve [18].
The advantage of this curve is that it describes the ex-
tent as well as the timing of loss to follow-up occurred
during the study follow-up. If this curve remained closed
to 1 until later in the study, then one can infer nearly
complete early follow-up therefore more reliable survival
estimates at earlier times than later. However, an import-
ant limitation to the reverse KM is that it removes
events of interest developed during the study from all

subsequent risk sets. Thus, studies with a high early
event rate can have a low follow-up rate simply due to a
smaller risk set. For example, for a hypothetical cohort
of 100 subjects who were followed for two years, there
were 30 outcome events in the 1st year in scenario (A)
and 10 outcome events in the 1st year in scenario (B)
while in both scenarios there was no dropout in the
1st year and 30 dropouts in the 2nd year. As indi-
cated in Fig. 2, the reverse Kaplan-Meier Survival
curve estimates a higher follow-up rate over time for
scenario (B) simply because that Scenario (B) had less
earlier events, despite that both scenarios had exactly
the same level and timing of dropouts for cohorts of
same size at baseline and of same length of follow-up
time. Thus, the reverse KM can be very sensitive to
earlier events. Another limitation is that the reverse
KM survival curve does not provide a summary
measure to assess the completeness of the follow-up
by the end of the study.

Fig. 1 Illustration of the differences in estimates of follow-up using existing and proposed methods. The figure depicts a hypothetical cohort of
100 subjects who were followed and assessed with annual visits for three years. There were 10, 5 and 5 outcome events in the 1st, 2nd and 3rd,
respectively. There were 40 dropouts in the 1st year in scenario (A) and in the 3rd year in scenario (B). For simplicity, in this example all events
and dropouts occurred on average at the middle of the year. Because the calculation of the true person-time follow-up rate requires the knowledge of
the event time for dropouts, we further assumed two situations for the 40 dropouts: (1) none of them became events during the study and (2) 5 of
them became events shortly after they dropped out. The Percentage Method (see Eq. (1)) estimates follow-up as the same in both scenarios, since it
does not account for person-time in a cohort, and in essence assumes that all dropout occurs at the beginning of the study. Conversely, the Clark
Completeness Index (see Eq. (2)) and the Simplified Person-Time Method (see Eq. (5)) both address person-time and provide accurate estimates of the
True Person-Time Follow-up Rate (see Eq. (3)). The calculations for each method are shown based on the data from the two scenarios depicted above
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Clark’s completeness index (CCI)
Clark et al. [21] proposed a novel measure to assess
completeness of follow-up based on person-time of
follow-up:

ηCCI ¼
PTobserved

PTpotential

¼
PN
i¼1

minðTi;Ci; τÞ
PN
i¼1

I Ci < min Ti; τð Þð Þτ þ I Ci > min Ti; τð Þð Þmin Ti; τð Þ
:

ð2Þ

Specifically, PTobserved = the actual total person-time
observed in the study, while PTpotential = total potential
person-time of follow-up estimated by assuming that all
dropouts had the full follow-up time. However, this ap-
proach fails to consider that those dropouts could have
developed the event of interest during the study interval.
Therefore, it can overestimate the total potential follow-up
time and consequently underestimate the completeness of

follow-up; the extent of underestimation would necessarily
increase with higher event and dropout rates. In Fig. 1,
ηCCI = 62.3% for scenario (A) and ηCCI = 92.5% for sce-
nario (B), suggesting that the method takes into ac-
count observation time for dropouts. However, if in
scenario (A) 5 of the 40 dropouts died shortly after
dropping out, PTpotential would be overestimated and
thus ηCCI would underestimate the true follow-up rate.
The extent to which this affects the estimates given
varying conditions and assumptions, to our knowledge,
has not been examined before.

Methods
A new person-time definition of follow-up rate (PTFR)
In this paper, we propose a new person-time follow-up
rate (PTFR) – essentially, the observed person-time di-
vided by the person-time assuming no dropouts. Specifi-
cally, we define the follow-up rate ηPTFR as:

ηPTFR ¼ PTobserved

PTno‐dropout
¼

PN
i¼1

minðTi;Ci; τÞ
PN
i¼1

min Ti; τð Þ
� 100% ð3Þ

where PTno-dropout = the total person-time that would
have been observed in the study if there were no drop-
outs. The denominator is the hypothetical situation of
no dropout, with subjects contributing time to event Ti

or time to the end of the study, whichever came first.
Note that the calculation of ηPTFR requires that the time
to event Ti is known for all participants, whether they
dropped out or not.
It can be shown that ηCCI underestimates ηPTFR since

ηPTFR−ηCCI ¼
PN
i¼1

I Ci≤Wið Þ τ−Wið ÞPN
i¼1

minðCi;WiÞ
PN
i¼1

I Ci≤Wið Þτ þ I Ci > Wið ÞWi

� �PN
i¼1

Wi

≥0

as Wi follows the distribution of Ti truncated at τ. Using
the example in Fig. 1, if none of the dropouts became
events during the study, ηPT = 62.3% for scenario (A)
and ηPT = 92.4% for scenario (B), ηPTFR = ηCCI; however,
if 5 of the dropouts became events shortly after they
dropped out, then ηPTFR = 65.3 % > ηCCI.
Because the PTFR cannot be calculated directly since

the event times for dropouts are not observed, here we
propose two estimation methods.

A formal method to estimate the person-time follow-up
rate (FPT)
We first consider an observational cohort study design
that involves repeated serial assessments of participants
at fixed time-intervals of equal length (e.g., annual or
semi-annual clinical visits). In addition to the baseline
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Fig. 2 Illustration of the Reverse Kaplan-Meier Survival Curve for
follow-up rate. The figure depicts a hypothetical cohort of 100 subjects
who were followed for two years, there were 30 outcome events in
the 1st year in scenario (A) and 10 outcome events in the 1st year in
scenario (B) while in both scenarios there was no dropout in the 1st
year and 30 dropouts in the 2nd year. The dashed dotted line de-
scribes the reverse KM follow-up rate for scenario (A), the dashed line
describes the reverse KM follow-up rate for scenario (B) and the solid
line describes the follow-up rate after treating outcome events
as competing events. While scenario (A) and (B) have the exactly
the same level and timing of dropouts, scenario (A) has a lower
follow-up rate simply because it has more earlier events; both
scenarios share the same follow-up rate after addressing competing
risk. Note: this is not the KM curve for the outcome events. In this plot,
losses to follow-up were treated as “events” while development of
outcome events were treated as “censored”
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visit at t0 = 0, we denote the pre-specified visit times as
(t1, t2,…,tK) where tK = τ, i.e., the end of the follow-up. It
is then assumed that, on average, events and censoring
occur midway through each interval, consistent with
standard practice in life-table analysis [24]. Therefore,
the numerator (i.e., the actual person-time of follow-up)
of Eq. (3) is estimated to be

PT̂ observed ¼
XK
k¼1

Nk−1−
NEk þ NCk

2

� �

where Nk − 1= number of subjects at risk at the beginning
of the time interval k (i.e., at time tk-1) and Nk ¼ Nk−1−
NEk−NCk ;NEk and NCk are number of events and drop-
outs that occurred during the interval k, respectively.
While PTobserved can be easily calculated by summing

all participants their observed follow-up time during the
study, calculation of the denominator, PTno-dropout in the
definition of ηPTFR, requires knowledge of the actual
time to outcome event for each participant if it hap-
pened during the study, regardless whether or not the
participant dropped out. This information is typically
not available in a real-world study. In an earlier effort to
address this problem, Chen, Wei and Huang used the
known event rate for the population from which the co-
hort was derived to calculate “the maximum person-
year”, which in our nomenclature, is PTno-dropout [15].
However, it is often difficult to specify the population
from which a cohort is derived [25], nor will the event
rate be known except for certain general endpoints, such
as all-cause mortality. Therefore, this approach is not
applicable to most studies.
To estimate PTno-dropout, herein we propose estimating

the event rate based on the observed data. The survival
function and the conditional probability of developing
the event of interest are estimated using a nonparamet-
ric maximum likelihood approach (NPMLE) proposed
by Turnbull [26], equivalent of a Kaplan-Meier survival
curve but appropriate for interval observations. To use
this approach, all subjects follow-up time need to be de-
scribed by an interval: if a subject experiences an event
between the (k-1)th and kth visit, then that individual’s
time to event is described by the interval (tk-1,tk); if a
subject dropped out between the (k-1)th and kth visit,
then that individual’s event time is described by an inter-
val (tk-1,tK + 1) where tK + 1 = some large number, such as
100 years(a theoretical time interval that in essence indi-
cates that the person who dropped out will eventually
develop an event assuming there are no competing
risks); if this subject was free of events till the end of the
study tK, then that individual is given an interval (tK,tK + 1).
The Interval package in R [27, 28] can be readily applied
to estimate the survival curve and the conditional

probability of developing the event of interest during each
interval.
Next, the expected number of events between (tk-1,tk)

is estimated to be N�
k−1P̂k where N�

k−1 ¼ number of sub-
jects remained in the study at time tk-1 if there was no
loss of follow-up and P̂k ¼ the estimated conditional
probability of event during the kth interval using the
NPMLE method for k = 1,…,K and N�

0 ¼ N . Therefore,
the number of subjects remained in the study at the be-
ginning of the interval k + 1 if there was no loss of
follow-up is then N�

k ¼ N�
k−1−N

�
k−1P̂k . Then, the ex-

pected person time if there was no dropout is estimated
to be

PŶ nodropout ¼
XK
k¼1

N�
k−1−

N�
k−1p̂k

2

� �
:

The Person-time follow-up rate is then estimated to
be

ηFPT ¼ PTobserved

P̂Tno‐dropout
ð4Þ

This method, apparently, is relying on the assumption
of independent censoring, that is, the event rate of the
dropout is the same as that in the general population.
While a prospective epidemiological cohort study may

intend to follow participants at serial intervals of ap-
proximate equal-length (e.g., annual or semi-annual
visits), not every participant returns for each visit or
does so at the planned time. This leads to varying
lengths of time between visits, which can sometimes be
quite extensive. Clinical based cohort studies that in-
volve ad hoc patient follow-up (e.g., cohorts defined
retrospectively from hospital EMR) often result in ir-
regular schedules of clinical visits with clustering that
does not occur at random (e.g., motivated by symptoms,
or an abnormal laboratory test result). To assess the
follow-up rate for such data, we extended the proposed
approach above to address irregular intervals between
visits.
For cohorts involving intermittent and ad hoc follow-

up, let ðt1i;t2i ;…tKiÞ be the visit times for the ith person,
where Ki is either (a) the date of the last visit in the
study for the ith person; or (b) the visit that ith person
was diagnosed of the event. Then for (a) we used time to
the last visit as an estimate of the person’s censoring

time, i.e., Ĉ i ¼ mînðTi;CiÞ ¼ tKi , and for (b)we estimate
the time to event occurred in the mid of the interval,

i.e.,
T̂ i¼mînðTi;CiÞ¼tKi−1þtKi

2 . The actual Person-time of
follow-up by a specified time, say, tK, is then estimated
by the summation of all the observed follow-up times
across subjects, i.e.,
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PT̂ observed ¼
XN
i¼1

I minðTi;Cið Þ < tK ÞmînðTi;CiÞ
þI minðTi;Cið Þ≥tK ÞtK :

To estimate PTno-dropout, if the ith person developed
the event at his/her last visit, the interval event time
is ðtKi−1; tKiÞ and if a person did not develop event at
his/her last visit, the interval event time is then
tKi ;Eð Þwhere again E represents some large number. Then
the NPMLE method can be applied to PTno-dropout.
As mentioned above, the use of observed data to esti-

mate the event rate relies on the assumption that the
loss to follow-up is not informative, i.e., event rate
among those who remained in the study is the same as
those who dropped out so that the event rate estimates
obtained from the observed data apply to the unob-
served. However, if the subjects who were lost to follow-
up are at a different risk of recurrence than those who
remained in the study, the estimates of event rates are
biased. For example, if the subjects who were lost to
follow-up had a higher risk of event, then the event risk
is under-estimated using the observed data and the
follow-up rate will be underestimated using the person-
time approach because PYnodropout is overestimated.
Conversely, if the subjects who were loss to follow-up
had a lower risk of event, then the event risk is over-
estimated and the follow-up rate will consequently be
overestimated using the Person-time approach. Here we
proposed to calculate a lower bound to the Person-time
follow-up rate by assuming all those who dropped out
never developed event of interest during the time inter-
val we examined. In this case, PYnodropoutreaches its
highest possible value, leading to a lower bound for the
follow-up rate. Note in this case PYnodropout = PYpotential

so that min ηPTFR = ηCCI. The lower bound of the follow-
up rate is important because it provides a conservative
estimate of the follow-up rate: if the follow-up rate was
over-estimated it can lead to over-optimism on the
quality of the follow-up.

A simplified method to estimate the person-time
follow-up rate (SPT)
The need to estimate the event rate for the purpose of
calculating the PTFR can be difficult especially to a non-
statistician. Therefore, we also explore a simplified
alternative method to allow quick estimation of ηPTFR
without having to estimate the event rate. Our proposed
Simplified Person-Time method is a hybrid method in-
cluding aspects of the Percentage Method and the
Person-Time Method. Specifically, as in the Percentage
Method, individuals who developed the event of interest
during the study are treated the same as individuals who
were followed till the end of the study, i.e., they are

treated as having contributed complete follow-up since
they have already provided complete data regarding the
factors associated with becoming a case. Furthermore, as
a Person-Time Method, dropouts contribute partial
follow-up time in the numerator.
A simple alternative method to calculate the follow-up

rate is therefore

ηSPT ¼
PN
i¼1

I Ci < min Ti; τð Þð ÞCi þ I Ci > min Ti; τð Þð Þτ
Nτ

�100%:

ð5Þ
Therefore, in Fig. 1, ηSPT = 66.7% for scenario (A) and

ηSPT = 93.3% for scenario (B), remarkably close to but
slightly overestimate ηPTFR, the slight overestimation is
because events are given the full length of follow-up in
this method. It can be shown that

ηPTFR−ηSPT≤

PN
i¼1

I Ci > Wið Þ Wi−τð Þ
PN
i¼1

Wi

≤0:

Figure 1 also indicated that ηCCI and ηSPT together
provides a close boundary for ηPTFR. In fact, the outcome
events can be viewed as competing risk to loss to follow-
up and we can therefore use the method in competing
risk framework for the computation of cumulative loss
to follow-up rate [29, 30] and then to obtain the subdis-
tribution reverse KM curve.
To revisit the reverse KM survival time, we will in-

stead assign the events to have full follow-up time and
then the rate of follow-up over time is no longer affected
by the amount and the timing of the events. In Fig. 2,
both scenarios (A) and (B) will share the same curve of
follow-up rate over time after addressing the competing
risk of events. It can be shown mathematically that the
area under the curve of this new follow-up rate over
time divided by τ is ηSPT.
R program for computation of each method is pro-

vided in Additional file 1.

Simulation studies
Simulation studies were used to examine follow-up rates
computed using the standard Percentage Method, the
CCI, the FPT, and the SPT as compared to the true
follow-up rate ηPTFR. To conduct these comparisons,
we assumed a range of different outcome event rates
and dropout rates. Specifically, the simulations involved
N = 1000 subjects and time-to-event and time-to-
dropout were generated for each subject using expo-
nential distributions. The event rate was varied between
5% to 50% and the dropout rate from 10% to 50%,
which covers a wide range of plausible values for these
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two parameters. In the first scenario of the simulation,
the length of the study was five years with annual clini-
cal visits; the second scenario incorporated random
variations in the time between clinic visits (from 0.5 to
1.5 years). The results were then averaged across 1000
simulated datasets.

Application to the prostate cancer clinical cohort study
A retrospective clinical cohort study of time to recur-
rence of prostate cancer (PrCa) was conducted using
EMRs among patients who underwent robotic assisted
laparoscopic prostatectomy (RALP) by a single surgeon
at Montefiore Medical Center in the Bronx from October,
2005 through December, 2012 [23]. We used this dataset
as a real-world example with staggered study entry and ad
hoc follow-up. The dataset included N = 610 PrCa pa-
tients. Clinical guidelines held that PrCa patients should
have PSA levels measured every 3 to 4 months in the
first year following RALP, every 6 months in the
second and third year, and then annually. However,
PSA measurements were to be conducted more frequently
if the post-operative serum PSA value exceeded 0.1 ng/dl.

The median number of follow-up serum PSA measure-
ments was 7 (range 1–28). PrCa recurrence was defined
as a rise in serum PSA of 0.2 ng/ml or higher. There were
87 (14.3%) recurrence events following RALP. Three-year
and five-year recurrence rates were of primary interest.
Note although there were no observed deaths in the

study, death can be a potential competing risk here. For
the interest of assessing the completeness of the follow-
up, death should be included as an event when calcu-
lating the follow-up rate.

Results
Simulation studies
Table 1 shows that across a wide range of dropout and
event rates, ηpercentage systematically underestimated the
follow-up rate: the larger the dropout rate, the higher
the level of underestimation. For example, when the
event rate was fixed at 10%, the averaged ηpercentage var-
ied from 91.0% to 46.4%, whereas the true ηPTFR varied
from 95.3% to 68.4%. In contrast, the FPT ηFPT consist-
ently provided an accurate estimate of ηPTFR with bias
less than 2%. The downward bias is because the

Table 1 Follow-up rates under varying assumptions estimated using four methods: (i) the standard Percentage Method (Eq. 1), (ii)
the Clark’s Completeness Index (CCI, Eq. 2), (iii) the Person-Time Method estimated using the formal method (FPT, Eq. 4) and (iv) the
Simplified Person-Time Method (SPT, Eq. 5)

Assumed event
rate

True Person-time
follow-up rate
ηPTFR

Percentage Method
ηpercentage

Estimated using the
formal method
ηFPT

Clark’s compleness inex
ηCCI

Simplified Person-time method
ηSPT

Average %bias1
ffiffiffiffiffiffiffiffiffi
MSE

p
2 Average %bias

ffiffiffiffiffiffiffiffiffi
MSE

p
Average %bias

ffiffiffiffiffiffiffiffiffi
MSE

p
Average %bias

ffiffiffiffiffiffiffiffiffi
MSE

p

5% 95.0% 90.4% −4.90 .047 95.0% 0.00 .001 94.9% −0.08 .001 95.1% 0.05 .001

81.9% 66.7% −18.5 .158 82.1% 0.16 .002 81.7% −0.26 .003 82.1% 0.25 .003

68.1% 44.8% −34.3 .233 68.3% 0.45 .004 67.9% −3.49 .003 68.2% 0.59 .005

56.7% 29.3% −48.2 .274 57.3% 0.92 .006 56.5% −0.27 .003 57.3% 1.09 .007

10% 95.2% 91.0% −4.48 .043 95.2% −0.01 .002 95.1% −0.29 .003 95.4% 0.10 .002

82.1% 67.9% −17.4 .142 82.3% 0.17 .002 81.6% −0.69 .006 82.5% 0.49 .006

68.5% 46.5% −32.2 .220 68.9% 0.64 .005 67.9% −1.11 .008 69.2% 1.07 .009

56.4% 30.3% −46.2 .261 57.1% 1.33 .008 55.6% −1.36 .008 57.4% 1.84 .011

30% 94.4% 90.0% −4.61 .044 93.4% −0.95 .009 93.7% −0.64 .006 94.6% 0.31 .004

82.7% 70.7% −14.5 .120 82.3% −0.04 .004 81.1% −1.94 .016 83.6% 1.06 .009

69.4% 50.9% −26.8 .186 69.7% 0.42 .005 67.1% −3.33 .023 70.9% 2.17 .016

53.6% 31.0% −42.2 .226 54.8% 2.17 .012 51.1% −4.71 .026 55.9% 4.19 .023

50% 93.2% 89.5% −3.97 .037 88.3% −0.53 .049 91.2% −2.08 .020 93.9% 0.80 .008

77.6% 67.2% −13.4 .105 74.6% −3.79 .030 72.5% −6.58 .051 79.9% 3.00 .024

65.0% 51.1% −2.14 .140 63.6% 2.03 .014 58.5% −9.93 .647 68.4% 5.25 .035

46.6% 31.3% −32.8 .153 47.8% 0.03 .014 40.0% −14.0 .066 51.3% 10.0 .005

These results were compared to the true Person-time follow-up Rate (Eq. 3) based on complete information generated under the simulations, each averaged
across 1000 simulated data sets. The simulations involved an assumed 5-year prospective cohort study of N = 1000 subjects with fixed annual interval clinical visits
and non-informative dropout. Time-to-event was generated based on exponential distributions with event rates varied from 5 to 50% and time to dropout was
generated based on an independent exponential distribution with dropout proportion varying from 10 to 70%. Results were averaged across the 1000
simulated datasets
Note: 1. % bias was calculated as (average of the particular method-ηPTFR)/ηPTFR*100%; 2.

ffiffiffiffiffiffiffiffiffi
MSE

p
was calculated as the square root of the average of (estimate-ηPTFR)

2.
MSE from the true ηPTFRwas calculated instead of variance because several methods used here can be biased
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Turnbull’s NPMLE [26] tends to slightly underestimate
the event rate consequently the follow-up rate. This
under-estimation of the cumulative incidence function
using the NPMLE method for interval-censored data has
been recognized [31, 32] and more research on alterna-
tive estimators are needed.
The ηCCI in general provided a good but slightly lower

estimate of ηPTFR, except when both the event and drop-
out rates were high because it fails to take into account
events occurred in dropouts. For example, when the
event rate was 50% and dropout was 70%, the true
ηPTFR = 46.6% while ηCCI = 40.0%, a 14% downward
bias. The ηSPT is also in close agreement with the true
person-time follow-up rate ηPTFR but slightly higher be-
cause the events are given the full length of follow-up.
The overestimation is also more apparent when the event
and dropout rates are high. In the same above ex-
ample, ηSPT = 51.3%, a 10% upward bias. Careful
examination of Table 1 shows that the easily estim-
able SPT and the CCI were as likely to be the closest
to the “True Person-Time” follow-up rate in most
scenarios as the more complex and laborious FPT.
When ηSPT is used in tandem with ηCCI, they provide
a tight range of the true follow-up rate so that the
use of ηFPT is not necessary.
Similar results for each of the methods of estimating

follow-up rates were obtained when visits were irregular;
i.e., allowing the time-intervals between visits to vary
within a person and between persons (results not
shown).

Example dataset
Table 2 shows the follow-up time as estimated by the
Percentage Method, the CCI, the FPT, and the SPT. Be-
cause event rates and dropout rates are low, as expected,
the FPT, the CCI and the SPT provided similar results.
These results provide much higher estimated follow-up

than that calculated using the naïve Percentage Method.
In fact, had the Percentage Method approach been used,
the investigator may have falsely concluded that the
dataset had inadequate 5-year follow-up to be suitable
for research purposes, when in fact the other methods
showed follow-up to be >90% after 5-years.
In case of informative censoring, as mentioned in the

method section, the CCI estimate provides a lower
bound for the person-time follow-up rate. Table 2
showed that the lower bounds were very close to the
Person-time estimates, suggesting that even in the ex-
treme case that all the dropouts have no risk of develop-
ing event during the study, we do not expect the true
follow-rate to be much lower.

Discussion and Conclusion
The completeness of follow-up and the length of follow-
up are important measures to determine the adequacy of
a cohort dataset for research purposes. The longer the
follow-up is, the less the concern regarding statistical
power; the better the follow-up is, the less the concern
regarding the validity of a study. This paper focused on
measures to assess the completeness of the follow-up. A
commonly used follow-up rate to assess the complete-
ness of the follow-up, the naïve Percentage Method, fails
to consider the person-time contributed to a study by
subjects who drop out prior to study completion; other
existing measures of completeness of the follow-up in-
cluding the reverse Kaplan-Meier survival curve and the
Clark’s completeness index (CCI) all have its own limita-
tions. Therefore, we define a new follow-up rate based
on total observed person-time of follow-up out of the
total person-time of follow-up that could have been ob-
served if there was no dropout. This definition corrects
the inherited biases in the existing methods.
We next proposed two methods to estimate the

proposed Person-Year follow-up rate. In the formal

Table 2 The follow-up rate at each annual interval after subjects (N = 610) in a retrospective cohort study of 3-year and 5-year
prostate cancer (PrCa) recurrence risk based on electronic medical record (EMR) data

Follow-upb Nc Percentage Method
ηpercentage

Estimated follow-up using
the formal method ηFPT

Clark’s completeness index
ηCCI

Simplified Person-time
Method
ηSPT

1 Year 558 91.4% 95.7% 95.5% 95.7%

2 Year 472 86.2% 95.0% 94.5% 95.0%

3 Year 383 80.9% 93.6% 92.9% 93.8%

4 Year 295 75.6% 92.5% 92.3% 93.3%

5 Year 197 67.5% 91.8% 91.8% 93.0%

Follow-up rates were estimated using four methods, namely, (i) the standard Percentage Method (Eq. 1a), (ii) the formal Method (FPT, Eq. 4), (iii) the Clark’s
completeness index (CCI, Eq. 2), and (iv) the Simplified Person-Time Method (SPT, Eq. 5)
aEquations are shown in the next
bA retrospective cohort study was conducted among incident PrCa patients who underwent robotic assisted laparoscopic prostatectomy (RALP) by a single
surgeon at Montefiore Medical Center (MMC) in the Bronx from 10/2005 through 12/2012. These subjects were followed for disease recurrence or progression
through December 2012. A total of N = 610 PrCa patients who underwent RALP and had their follow-up at MMC were included in this analysis
cWe calculated the follow-up rate at each year among the subset of the patients who had RALP early enough to be eligible for such length of follow-up. For example, to
estimate the three year follow-up rate, we calculated this rate among the subjects who had RALP at least before 12/31/2009

Xue et al. BMC Medical Research Methodology  (2017) 17:155 Page 8 of 10



person-time method, we proposed to estimate the event
rate using the observed data, based on which we then
estimate the expected number of events if they were no
dropouts. Note non-informative censoring is assumed
for the validity of FPT, that is, event rate among the
dropouts is the same as those who did not. Although
this assumption is not verifiable, sensitivity analyses can
be conducted to examine the robustness of the estimate
of the follow-up rate, for example, by assuming that the
dropouts have either a higher event rate or lower event
rate than those who did not drop out. The second sim-
plified method (SPT) assigns event time as full follow-up
therefore does not require the estimation of event rate
and consequently is much easier to use.
Our simulations showed that the Percentage Method

often underestimates the follow-up rate quite extensively
when the dropouts occurred later in the study. The FPT
performed well and the CCI and SPT also performed
well in most scenarios, while the CCI tends to slightly
underestimate and the SPT slightly overestimate the
follow-up rate. The bias can be moderate only when
both the event rate and the dropout rate are high; other-
wise, the SPT used in tandem with the CCI provides an
accurate and tight interval estimate of the true Person-
time follow-up rate. In these cases, the use of FPT which
involves more computations is not necessary. However,
the FPT is recommended when event rates and dropout
rates are high.
Application of the methods to an example dataset,

based on a study of prostate cancer recurrence, helped
demonstrate the critical importance of considering
person-time prior to dropout when estimating follow-up
rates. Briefly, using the standard Percentage Method the
5-year follow-up rate was estimated to be approximately
68%, whereas the CCI, the FPT and SPT all showed the
follow-up to be greater than 90%.
Although the CCI method has been proposed over a

decade ago, the use of this person-time method to deter-
mine follow-up rates has not been widely adopted, likely
due to the fact that the performance of the CCI has not
been fully examined and/or the misconception that me-
dian follow-up time and the reverse KM survival curve
are sufficient. Thus, the presentation of this work is
timely. The availability and ease of the calculation of the
proposed person-time follow-up rate can represent an
important advance in assessing the completeness of the
follow-up.
Guidelines on how much the extent of loss to follow-

up can be problematic have been based primarily on the
percentage method. New guidelines that are based on
the person-time follow-up rate should be developed to
suggest “acceptable” and “alarming” follow-up rates. Re-
cent work by von Allmen [33] examined the bias in esti-
mating mortality rate under various levels of CCI.

However, this work did not distinguish missing mecha-
nisms including missing completely at random, missing
at random and missing not at random; further, research
studies are often interested in obtaining an unbiased es-
timate of the exposure-disease association or relative risk
associated with the exposure instead of absolute risk of
death or disease. Therefore, further studies including
conducting series of simulation studies to examine the
bias and efficiency loss on relative risk estimates under
various levels of loss to follow-up measured by our pro-
posed person-time follow-up rates and under various
missing mechanisms are needed and will be the primary
focus of our future research.

Additional file

Additional file 1: R program for Computation of the traditional
Percentage follow-up rate, Formally estimated Person-Time follow-up
rate, Clark’s Completeness Index and Simplified Person-Time follow-up
rate. (DOCX 14 kb)
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