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Abstract

Background: Diagnostic tests are performed in a subset of the population who are at higher risk, resulting in
undiagnosed cases among those who do not receive the test. This poses a challenge for estimating the prevalence
of the disease in the study population, and also for studying the risk factors for the disease.

Methods: We formulate this problem as a missing data problem because the disease status is unknown for those
who do not receive the test. We propose a Bayesian selection model which models the joint distribution of the
disease outcome and whether testing was received. The sensitivity analysis allows us to assess how the association
of the risk factors with the disease outcome as well as the disease prevalence change with the sensitivity
parameter.

Results: We illustrated our model using a retrospective cohort study of children with asthma exacerbation that
were evaluated for pneumonia in the emergency department. Our model found that female gender, having fever
during ED or at triage, and having severe hypoxia are significantly associated with having radiographic pneumonia.
In addition, simulation studies demonstrate that the Bayesian selection model works well even under circumstances
when both the disease prevalence and the screening proportion is low.

Conclusion: The Bayesian selection model is a viable tool to consider for estimating the disease prevalence and in
studying risk factors of the disease, when only a subset of the target population receive the test.
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Background
It is often of interest to estimate the prevalence of a cer-
tain condition in a population and this proportion is
underestimated as those who were not screened for the
disease were assumed negative for the condition. Under-
screening of a disease is common because of resource
limitation, perceived low risk which eliminates the need of
screening, or lack of recommendations from guidelines.
For example, fatty liver disease and metabolic syndrome
among children may go undetected because relevant eval-
uations were not routinely recommended by pediatricians

[1]. At patient level, under-diagnosis could cause delay in
treatment. A study in Italy reported the rate of Chronic
Obstructive Pulmonary Disease (COPD) under-diagnosis
ranges between 25 and 50%, and as a consequence, many
patients missed the optimal time for therapeutic interven-
tion, contributing to the progression of the disease to be
more severe [2]. Other common diseases that go under-
diagnosed include hepatitis C virus (HCV) [3, 4], HIV and
sexually transmitted diseases (STD) [5], hypertension in
children and adolescents [6], and depression [7]. Under-
diagnosis of infectious disease such as pneumonia, HIV or
STD poses a societal burden.
Perceived as at low risk for the condition, those who

are not screened or examined are usually classified as
negative, which results in an underestimated proportion
or prevalence of the disease in the study population.
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This misclassification can also bias the association of
risk factors with the disease condition [8–10]. Standard
approach to handle misclassification in binary out-
comes relies on validation study of a subsample of ini-
tial non-respondents in the study population. When
validation data are not available, Hausman et al. (1998)
[11] and Savoca (2011) [12] examine the misclassifica-
tion bias as a function of the error rates, under bal-
anced and unbalanced scenarios. However, these
methods require assumptions on the functional form of
the positive diagnosis probability and the misclassifica-
tion parameters [12]. Shebl et al. (2012) develop a
likelihood-based method to estimate incidence when
disease status is measured imperfectly based on hidden
Markov models, while assuming the known constant
levels of sensitivity and specificity and constant inci-
dence rates over time [4].
Technically, the disease condition for those who

were not screened/examined is unknown and classify-
ing them as negative is based on a strong assumption
about the missing values. Instead, we formulate the
problem as a missing data problem and treat the dis-
ease status of those not tested as missing. The missing
data mechanism, which concerns how the data are
missing and whether the missingness is related to the
underlying missing values, is critical when dealing
with missingness. When the missingness depends nei-
ther on observed nor missing values, the data are
missing completely at random (MCAR). When the
missingness depends on the observed values but not
the missing values, the missing data mechanism is
called missing at random (MAR). In the case when the
missingness can depend on the missing values, the
missing data mechanism is called missing not at ran-
dom (MNAR). When the missing data mechanism is
MCAR or MAR, correct inference may be achieved
based on a likelihood function which does not involve
a modeling for the missingness mechanism; likelihood
inference which ignores the model for missingness
(ignorable likelihood, Zhang and Little 2011 [13])
includes maximum likelihood estimation, Bayesian
inference, and multiple imputation [14]. However,
when the missing data mechanism is MNAR, a correct
inference has to consider the joint distribution of the
outcome variable and the missingness indicator;
depending on factorization of the joint distribution of
the outcome variable and the missingess indicator,
three classes of models have been investigated: the se-
lection model, pattern mixture model, and shared par-
ameter model [15].
In this article, we propose a class of Bayesian selection

model, which estimates the disease prevalence in the
study population (both screened and unscreened) using
a sensitivity parameter which denotes the likelihood of

being screened. This model will yield estimates of the
prevalence as well as the association of risk factors with
the disease outcome under different values of the sensi-
tivity parameter and therefore the big picture of the re-
search questions.

Methods
Data source
We were interested in estimating the proportion of
children with an asthma exacerbation who were diag-
nosed with radiographic pneumonia among those pre-
sented to the emergency department of the Cincinnati
Children’s Hospital Medical Center between January
1st, 2010, and December 31, 2013. Children were identi-
fied using a validated algorithm of an International Classi-
fication of Diseases, Ninth Revision, Clinical Modification
diagnosis code of asthma (code 493.x) in the first 3 diag-
nosis positions and receipt of 1 or more doses of albuterol
sulfate in the emergency department [16]. Children less
than 2 years were excluded to minimize including infants
with bronchiolitis.
We investigated the risk factors for radiographic pneu-

monia i.e. focal opacity present on chest radiograph)
[17]. Consequences of the overuse of radiography in-
clude increased time in the hospital, unnecessary radi-
ation, increased cost, and inappropriate antibiotic use
due to equivocal imaging findings [18]. Due to the high
rate of normal chest radiograph and the consequences
of unnecessary radiograph, only about a third of those
who presented to emergency department received chest
radiography. This was noted as a limitation of the re-
gression analysis used as only subjects who received
chest radiography were included in fitting the model that
assessed risk factors for radiographic pneumonia and
therefore limited the generalizability of their findings to
the larger study population of all children with asthma
exacerbation who present to the ED [17]. Due to the fact
that those who received chest radiography are a biased
sample of all presented to ED with asthma exacerbation,
with possibly higher probability of having radiographic
pneumonia than children who did not receive the chest
radiography, the analyses that discarded the subjects
who did not receive the chest radiography may have led
to biased estimation of the risk factors with the outcome
of radiographic pneumonia.
Assuming those who did not undergo chest radiog-

raphy to be negative for radiographic pneumonia will
underestimate the prevalence of the disease in the study
population and potentially bias the association of risk
factors on the disease. We formulate this problem as a
missing problem and use a Bayesian selection model to
jointly model the disease status and the response indi-
cator, i.e., whether the subject received chest radiog-
raphy or not.
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Bayesian selection model
Let yi denote the actual binary radiographic pneumonia
status, equal to 1 if the ith subject had radiographic
pneumonia, and 0 if not. This outcome was observed for
subjects who received chest radiography, and missing for
subjects who did not receive chest radiography. We use
Ri to denote whether we observed the ith subjects radio-
graphic pneumonia status, and Ri is equal to 1 if the
subject received chest radiography and equal to 0 if not.
We use xi and zi to denote the covariate sets that pre-
dicts the outcome yi and the response status Ri, respect-
ively. The covariates in xi and zi may overlap with each
other. The selection model is based on the joint distribu-
tion of (yi, Ri),

f yi;Rijxi; zi ; β; λ; θð Þ ¼ f yi jxi; βð Þf Rijyi; zi ; λ; θð Þ ð1Þ
where f(yi| xi; β) and f(Ri| yi, zi; θ) are modeled as logistic
regression as

logit Pr yi ¼ 1jxi; βð Þð Þ ¼ xTi β ð2Þ

logit Pr Ri ¼ 1jyi; zi; θð Þð Þ ¼ zTi θ þ λyi ð3Þ

Here the parameter βdenotes the risk for radiographic
pneumonia, which is the main parameter of interest; and

the parameters θand λ relate the propensity of receiving
chest radiography (and hence the response indicator) to
covariates zi and the actual pneumonia status yi. Note
here yi is missing for subjects who did not receive radi-
ography, which leads to identification issues for this joint
model [15].
To address the identification issues inherent in the

model, we useλas a sensitivity parameter, taking a range
of fixed values from - ∞ to∞. Whenλis 0, the propensity
of a subject receiving chest radiography does not de-
pend on this subject’s radiographic pneumonia status;
this corresponds to missing at random assumption in
the missing data literature. Whenλis greater than 0, the
propensity of a subject receiving chest radiography is
positively associated with the subject’s radiographic
pneumonia status. Whenλ is less than 0, having radio-
graphic pneumonia is associated with lower propensity
of receiving a chest radiography. For this specific appli-
cation, it is reasonable to assume that patients with
radiographic pneumonia are more likely to receive
chest radiography than patients without radiographic
pneumonia, and therefore λ> 0.
An important feature of the model is that by allowing

the sensitivity parameterλ to change, we can assess how
the main parameters of interest is sensitive to the

Fig. 1 Regression coefficients of risk factors predicting radiographic pneumonia over sensitivity parameter λ. Figure 1(a), (b), (c), (d) shows the
estimates of gender (male vs. female), fever at ED (yes vs. no), severe hypoxia (yes vs. no), and age. The results from the complete-case (CC)
analysis, and the analysis which assumes negative for those not tested (NNT) are also shown
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perturbation of the sensitivity parameter. The Bayesian
modeling setup also makes it easy to predict the overall
proportion of the radiographic pneumonia in the study
population for a fixedλ. For illustration purpose, we use
the same set of covariates for xi and zi, which includes
gender (female vs. male), age at visit (≥ 5 years vs. < 5 years),
fever during ED stay or at triage (temperature ≥ 38 °C
vs. < 38 °C), and severe hypoxia (Oxygen saturation < 90%
vs. ≥ 90%). [17]
We formulate the model in a Bayesian framework

(BSM) and estimate the parameters using Markov
Chain Monte Carlo (MCMC) methods. The MCMC al-
gorithm is called “data augmentation”. The algorithm
iteratively draws the next values of parameters and the
unobserved yi ‘s from the corresponding posterior dis-
tributions of the parameters and the posterior predict-
ive distributions of the unobserved yi ‘s. We use proper
and non-informative prior distributions for all parame-
ters, i.e., multivariate normal priors with mean 0 and
diagonal covariance matrices with a large scale param-
eter of 10,000 for bothβandθ. The software package
WinBUGS is used to estimate the posterior distribution
of the parameters [19].

Results
Out of the 14,007 children who visited emergency de-
partment for asthma exacerbation, chest radiography
was performed on 4708 children (33.6%). Radiographic
pneumonia was present in 280 of the 4708 children who
received chest radiography (5.9%).

Figure 1(a)-(d) shows the regression parameters of
gender (β1: males vs. female), age at visit (β2: ≥ 5 years
vs. < 5 years), fever during ED stay or at triage (β3:
temperature ≥ 38 °C vs. < 38 °C), and severe hypoxia (β4:
Oxygen saturation < 90% vs. ≥ 90%), respectively. For
comparison purpose, the results from the following two
naïve methods were also plotted on the same plots:

a) Complete-case analysis (CC): logistic regression only
includes those had observed radiographic
pneumonia status, i.e., those who received chest
radiography;

b) Negative for not tested (NNT): logistic regression
with all subjects which assumes negative radiographic
pneumonia for those who did not receive chest
radiography.

c) Multiple imputation (MI): multiple imputation using
chained equation which assumes missing at random.

The point estimates from the four methods and the 95%
credible intervals (CI) from the proposed Bayesian selec-
tion model were plotted on the same plots. As the sensi-
tivity parameter goes from −4 to 4, we see a decreasing
trend of the risk of having radiographic pneumonia com-
paring males to females. As we mentioned before, the true
λ should be positive because those with pneumonia are
believed to be more likely to receive chest radiography;
therefore, we focus on the results whenλis positive.
Whenλis greater than 0, the coefficients is negative for
gender from the BSM and the 95% CI does not cover 0,

Fig. 2 Estimated prevalence of radiographic pneumonia in the target population by sensitivity parameter λ
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implying that males had significantly higher risk of hav-
ing radiographic pneumonia than females among these
who visited emergency department for asthma exacer-
bation (Fig. 1(a)). Forλ> 0, old age is associated with
significant high risk of having radiographic pneumonia
among this study population (Fig. 1(b)). Having fever
during ED or at triage, or having severe hypoxia, are
both significantly associated with positive radiographic
pneumonia (Fig. 1(c)-(d)).
For the estimates of these risk factors (Fig. 1), the

Bayesian selection model yields the same results as the
complete-case (CC) analysis when λ= 0; this is not sur-
prising because when the missingness depends on the
covariates but not the outcome, the complete-case ana-
lysis for fully efficient for the regression [13] When λis
sufficiently large (e.g., approaching to 4 in this example),
the BSM methods yields results close to that of NNT.
This is because when λis large, it is sufficient to assume
that those who did not receive chest radiography were
negative for radiographic pneumonia. MI yields estimates
close to CC for gender, fever at ED, severe hypoxia but
smaller effect for age.

Figure 2 shows the overall prevalence of radiographic
pneumonia in the study population decreases as sensitiv-
ity parameterλincreases. When λis between 0 and 4, the
estimates of the prevalence range from 0.056 to 0.032.

Simulation studies
The prevalence of radiographic pneumonia in the
current study population is less than 6%, which is rela-
tively low. In some other diseases such as sexually trans-
mitted diseases and hypertension, the prevalence could
be much higher. Logistic models are well-known to suf-
fer from bias for rare events, and therefore the preva-
lence has an impact on the proposed BSM method [20].
On the other hand, missingness proportion plays an im-
portant role in the performance of missing data models,
and therefore in our setting the performance of the BSM
method could also be affected by the proportion of
screening. In this section, we assess the performance of
the BSM for different values of disease prevalence and
proportions of subjects screened.
We generate two covariates, x1 which is a binary vari-

able from Bernoulli distribution (e.g., gender) and x2 from

Fig. 3 Regression coefficients of x1 and x2 under four different levels of prevalence and screening rates (Low-Low, Low-High, High-Low, High-
High). Figure 3(a), (b) shows the regression coefficients of x1 and x2 under low-low scenario, Fig. 3(c), (d) shows the regression coefficients of x1
and x2 under low-high scenario, Fig. 3(e), (f) shows the regression coefficients of x1 and x2 under high-low scenario, and Fig. 3(g), (h) shows the
regression coefficients of x1 and x2 under high-high scenario
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a normal distribution (e.g., age of high school students),
and b1, b2 are the regression coefficients of x1, x2 in the
main outcome model, respectively,

x1 � Bernoulli 0:5ð Þ
x2 � N 16; 2ð Þ

and we generate the disease status y based on a logistic
regression model,

logit Pr y ¼ 1ð Þ½ � ¼ aþ x1 þ x2

and the response indicator R is also generated based
on a logistic regression model,

logit Pr R ¼ 1ð Þ½ � ¼ b−x1 þ 0:5�x2 þ 0:5�y1

We choose a to be −22.2 and −18.7 so the prevalence
is around 2% (low prevalence) and 20% (high preva-
lence), and b to be −8.5 and −7.0 so that the response
rates are 30% (low screening rate) and 60% (high screen-
ing rate). The combinations result in four simulation
scenarios: (1) low prevalence and low screening rate; (2)
low prevalence and high screening rate; (3) high preva-
lence and low screening rate; (4) high prevalence and
high screening rate. We simulate 10,000 subjects from
the study population and plot the regression estimates
vs. the sensitivity parameter for each regression coeffi-
cient in Fig. 3, and the estimated prevalence vs. the sen-
sitivity parameter in Fig. 4. To assess the performance of
the BSM methods under the true sensitivity parameter
(λ = 0.5), we replicate the process 200 times and evaluate

the methods by assessing the empirical bias, the root
mean squared error, and the coverage probabilities of
the 95% credible interval.
Table 1 shows the bias, RMSE and coverage probabil-

ity of the 95% credible intervals of the proposed method
along with NNT, CC and MI methods, when the sensi-
tivity parameter is set at the true value (0.5). The true
values of the regression coefficients of x1 and x2 are both
1, and the empirical bias is less than 1% for all but one
coefficient, out of all simulation scenarios for the BSM
method; Only the coefficient of x2 shows more than 1%
empirical bias under the scenario when both prevalence
and the screening proportion are low. We see an im-
provement in the RMSEs (i.e., smaller RMSEs) with in-
crease in either the disease prevalence or the screening
proportion. As expected, the coefficient of the binary co-
variate x1 has larger RMSEs than the coefficient of the
continuous covariates x2. In general, the BSM method
achieves good coverages for both regression coefficients.
The two cases with coverage probabilities less than 90%
are for the coefficient of x2 when the screening probabil-
ity is low. All other methods show large bias, increased
RMSE and poor confidence coverage compared to BSM
method.
Figure 3 shows the point estimates plots along with

the 95% credible intervals of the two regression coeffi-
cients of x1 and x2, under the four simulation scenarios.
Figure 3(a), (c), (e) and (g) are for coefficients of x1
under (1) low prevalence and low screening rate, (2) low
prevalence and high screening rate, (3) high prevalence
and low screening rate, (4) high prevalence and high

Fig. 4 Estimated prevalence by sensitivity parameter λ under different levels of prevalence and screening rate: (a) Low-Low, (b) Low-High, (c),
High-Low, and (d) High-High
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screening rate, respectively, while Fig. 3(b), (d), (f ), (h)
are for coefficient of x2 under the corresponding four
simulation scenarios. We see similar trends in the coeffi-
cient estimates with the change of the sensitivity param-
eter. However, there is substantial improvement in
precision (tighter confidence bands) with the increase of
prevalence or screening proportion. The estimated
prevalence under different sensitivity parameters for the
four simulation scenarios were plotted in Fig. 4.

Discussion
Under-screening results in missing disease status or mis-
classified disease status when assumptions are made for
those who did not receive the screening test. The goal of
our method was to demonstrate the use of the Bayesian
selection model for missing outcome or misclassified
outcome due to under-screening. Unlike other methods
that rely on assumptions [8, 9] or validation data, [12]
the BSM method relates the propensity of receiving
screening to the disease status through a sensitivity

parameter. By varying the sensitivity parameter, the BSM
method demonstrated how the prevalence and the asso-
ciation of risk factors change with the sensitivity param-
eter. We further used simulation studies to demonstrate
the performance of BSM method under different levels
of disease prevalence and screening proportion. Our
simulation indicates that the BSM method performs well
even under scenarios when both the prevalence and the
screen proportion are low.
For illustration purpose, we applied the proposed BSM

method to a pneumonia dataset. The results showed in-
creased risk of pneumonia in girls, which is consistent
with studies from Japan [21]. The results also indicated
that having fever during ED or at triage, or having severe
hypoxia, is positively associated with radiographic pneu-
monia. This is not surprising, as both fever and hypoxia
are symptoms of pneumonia in kids [22]. A more rigor-
ous analysis of the risk factors for radiographic pneumo-
nia would need to examine more risk factors and
possibly their interactions.

Table 1 Bias, RMSE, and Coverage Probability of 95% Credible Interval of the BSM, NNT, CC, and MI method, When Sensitivity
Parameter is Set to True Value

Low-Low Low-High High-Low High-High

BSM Bias*1000 b1 3.19 4.14 1.91 2.88

b 2 12.94 4.81 2.60 1.88

RMSE*1000 b 1 192.51 163.04 94.14 66.59

b 2 75.19 54.64 40.47 28.12

Coverage Probability b 1 96.0% 97.0% 97.0% 97.5%

b 2 88.0% 94.5% 88.5% 91.0%

NNT Bias*1000 b 1 −309.37 −101.24 −857.09 −331.60

b 2 136.93 56.88 30.70 34.85

RMSE*1000 b 1 362.4 190.85 860.28 338.08

b 2 151.02 77.23 41.93 42.98

Coverage Probability b 1 63.0% 95.0% 0% 0%

b 2 43.5% 86.0% 81.0% 73.5%

CC Bias*1000 b 1 89.30 43.30 113.73 77.02

b 2 −38.4 −24.67 −51.17 −37.12

RMSE*1000 b 1 212.04 167.71 148.09 101.61

b 2 81.55 60.70 64.04 45.83

Coverage Probability b 1 93.0% 96.0% 76.5% 83.5%

b 2 89.5% 91.5% 68.5% 74.5%

MI Bias*1000 b 1 97.01 43.23 115.96 79.41

b 2 −43.32 −25.72 −51.34 −35.10

RMSE*1000 b 1 221.17 168.02 150.53 103.85

b 2 84.14 61.07 64.81 44.29

Coverage Probability b 1 92.5% 97.0% 76.0% 82.0%

b 2 88.0% 92.5% 71.5% 76.0%

*denotes "multiplied by"
BSM Bayesian selection model, NNT Negative for not tested, CC Complete-case analysis, MI Multiple imputation
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The Bayesian selection model is an important tool to
consider for estimating the disease prevalence and in
studying risk factors of the disease, when only a subset
of the target population receive the test. For studying
the association of the risk factors, i.e., the regression of
outcome on risk factors, this method reduces to the
complete-case analysis when the sensitivity parameter is
set to zero, and approximates the NNT method when
the sensitivity parameter approaches infinity. Unfortu-
nately, there is no information available to estimate the
sensitivity parameter without validation sample. The
choice of the sensitivity parameter can be aided by gath-
ering information relating the propensity of receiving
the test to the actual disease status. The choice of covar-
iates in the outcome model and the response indicator
model can be aided by input from substantive experts
regarding the hypothesized relationship of variables with
the outcome and/or the response indicator. When valid-
ation data are available, it is possible to identify the pa-
rameters in the Bayesian selection model. In future
work, we plan to study how to efficiently make use of
the validation data.

Conclusions
In the current study, we developed a Bayesian selection
model that jointly modeled the binary outcome and the
response indicator for the case when the binary outcome
may be missing or misclassified due to under-screening.
The model for the response indicator relates the propen-
sity of receiving screening to the disease status through
a sensitivity parameter. The application of the model to
a pneumonia data yielded results that were consistent
with previous studies. The performance of the proposed
method over other methods in the simulation studies
demonstrated the promise of the proposed model for
modeling missing or misclassified disease outcome due
to under-screening.

Abbreviations
BSM: Bayesian selection model; CC: Complete-case analysis; CI: Confidence
interval; COPD: Chronic obstructive pulmonary disease; ED: Emergency
department; HCV: Hepatitis C virus; MAR: Missing at random; MCAR: Missing
completely at random; MCMC: Markov chain Monte Carlo; MI: Multiple
imputation; MNAR: Missing not at random; NNT: Negative for not tested;
RMSE : Root mean squared error; STD: sexually transmitted disease

Acknowledgements
Not applicable

Funding
Not applicable

Availability of data and materials
The pneumonia dataset for this study was maintained by Cincinnati
Children’s Hospital. The investigators obtained approval of the Institutional
Review Board to use the dataset. The dataset cannot be made publicly
available because of protected health information (PHI) contained in the
dataset. The simulation work was performed in R and is available from the
corresponding author on request.

Authors’ contributions
The study concept and design, as well as the interpretation of results were
conducted by NZ, LA, TAF and MM. The programming, analysis of the
manuscript were conducted by NZ and SC. All authors were involved in
critical revision of the manuscript for important intellectual content. All
authors gave final approval of the version to be published and agreed to be
accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately
investigated and resolved.

Ethics approval and consent to participate
The institutional review board (IRB) at Cincinnati Children’s Hospital
approved the study and waived the need for informed consent.

Consent for publication
Not applicable

Competing interests
The authors declares that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital
Medical Center, 3333 Burnet Ave, MLC 5041, Cincinnati, OH 45229, USA.
2Department of Pediatrics, University of Cincinnati College of Medicine,
Cincinnati, OH, USA. 3Division of Emergency Medicine, Cincinnati Children’s
Hospital Medical Center, Cincinnati, OH, USA.

Received: 15 August 2017 Accepted: 27 November 2017

References
1. Riley MR, Bass NM, Rosenthal P, et al. Underdiagnosis of pediatric obesity

and underscreening for fatty liver disease and metabolic syndrome by
pediatricians and pediatric subspecialists. J Pediatr. 2005;147(6):839–42.

2. Cazzola M, Puxeddu E, Bettoncelli G, et al. The prevalence of asthma and
COPD in Italy: a practice-based study. Respir Med. 2011;105(3):386–91.

3. Hsieh Y-H, Rothman RE, Laeyendecker OB, et al. Evaluation of the
Centers for Disease Control and Prevention recommendations for
hepatitis C virus testing in an urban emergency department. Clin
Infect Dis. 2016;62(9):1059–65.

4. Shebl FM, El-Kamary SS, Shardell M, et al. Estimating incidence rates with
misclassified disease status: a likelihood-based approach, with application to
hepatitis C virus. Int J Infect Dis. 2012;16(7):e527–e31.

5. Girardi E, Sabin CA, Antonella d'Arminio Monforte M. Late diagnosis of HIV
infection: epidemiological features, consequences and strategies to
encourage earlier testing. JAIDS Journal of Acquired Immune Deficiency
Syndromes. 2007;46:S3–8.

6. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in
children and adolescents. JAMA. 2007;298(8):874–9.

7. Yamada K, Maeno T, Waza K, et al. Under-diagnosis of alcohol-related
problems and depression in a family practice in Japan. Asia Pacific family
medicine. 2008;7(1):1.

8. Copeland KT, Checkoway H, McMichael AJ, et al. Bias due to
misclassification in the estimation of relative risk. Am J Epidemiol. 1977;
105(5):488–95.

9. Jurek AM, Greenland S, Maldonado G, et al. Proper interpretation of non-
differential misclassification effects: expectations vs observations. Int J
Epidemiol. 2005;34(3):680–7.

10. Chyou P-H. Patterns of bias due to differential misclassification by case–
control status in a case–control study. Eur J Epidemiol. 2007;22(1):7–17.

11. Hausman JA, Abrevaya J, Scott-Morton FM. Misclassification of the
dependent variable in a discrete-response setting. J Econ. 1998;87(2):239–69.

12. Savoca E. Accounting for misclassification bias in binary outcome measures
of Illness: the Case of post-traumatic stress disorder in male veterans. Sociol
Methodol. 2011;41(1):49–76.

13. Little RJ, Zhang N. Subsample ignorable likelihood for regression analysis
with missing data. J R Stat Soc: Ser C: Appl Stat. 2011;60(4):591–605.

Zhang et al. BMC Medical Research Methodology  (2017) 17:168 Page 8 of 9



14. Rubin DB. Multiple imputation for nonresponse in surveys: John Wiley &
Sons; 2004.

15. Little RJ. Rubin DB. Statistical analysis with missing data: John Wiley &
Sons; 2014.

16. Statistics NCfH. The international classification of diseases, 9th revision,
clinical modification: procedures: tabular list and alphabetic index. US
Department of Health and Human Services, Public Health Service, Health
Care Financing Administration; 1980.

17. Florin TA, Carron H, Huang G, et al. Pneumonia in children presenting to the
emergency department with an asthma exacerbation. JAMA Pediatr. 2016;

18. Schuh S, Lalani A, Allen U, et al. Evaluation of the utility of radiography in
acute bronchiolitis. J Pediatr. 2007;150(4):429–33.

19. Lunn DJ, Thomas A, Best N, et al. WinBUGS-a Bayesian modelling
framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):
325–37.

20. King G, Zeng L. Logistic regression in rare events data. Polit Anal. 2001:137–63.
21. Eshima N, Tokumaru O, Hara S, et al. Age-specific sex-related differences in

infections: a statistical analysis of national surveillance data in Japan. PLoS
One. 2012;7(7):e42261.

22. Mahabee-Gittens EM, Grupp-Phelan J, Brody AS, et al. Identifying
children with pneumonia in the emergency department. Clin Pediatr.
2005;44(5):427–35.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Zhang et al. BMC Medical Research Methodology  (2017) 17:168 Page 9 of 9


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data source
	Bayesian selection model
	Results
	Simulation studies

	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

