
RESEARCH ARTICLE Open Access

A comparison of estimators from self-
controlled case series, case-crossover
design, and sequence symmetry analysis
for pharmacoepidemiological studies
Yoshinori Takeuchi1,2* , Tomohiro Shinozaki1 and Yutaka Matsuyama1

Abstract

Background: Despite the frequent use of self-controlled methods in pharmacoepidemiological studies, the factors
that may bias the estimates from these methods have not been adequately compared in real-world settings. Here, we
comparatively examined the impact of a time-varying confounder and its interactions with time-invariant confounders,
time trends in exposures and events, restrictions, and misspecification of risk period durations on the estimators from
three self-controlled methods. This study analyzed self-controlled case series (SCCS), case-crossover (CCO) design, and
sequence symmetry analysis (SSA) using simulated and actual electronic medical records datasets.

Methods: We evaluated the performance of the three self-controlled methods in simulated cohorts for the following
scenarios: 1) time-invariant confounding with interactions between the confounders, 2) time-invariant and time-varying
confounding without interactions, 3) time-invariant and time-varying confounding with interactions among the
confounders, 4) time trends in exposures and events, 5) restricted follow-up time based on event occurrence, and 6)
patient restriction based on event history. The sensitivity of the estimators to misspecified risk period durations was
also evaluated. As a case study, we applied these methods to evaluate the risk of macrolides on liver injury using
electronic medical records.

Results: In the simulation analysis, time-varying confounding produced bias in the SCCS and CCO design estimates,
which aggravated in the presence of interactions between the time-invariant and time-varying confounders. The SCCS
estimates were biased by time trends in both exposures and events. Erroneously short risk periods introduced bias to
the CCO design estimate, whereas erroneously long risk periods introduced bias to the estimates of all three methods.
Restricting the follow-up time led to severe bias in the SSA estimates. The SCCS estimates were sensitive to patient
restriction. The case study showed that although macrolide use was significantly associated with increased liver injury
occurrence in all methods, the value of the estimates varied.

Conclusions: The estimations of the three self-controlled methods depended on various underlying assumptions, and
the violation of these assumptions may cause non-negligible bias in the resulting estimates. Pharmacoepidemiologists
should select the appropriate self-controlled method based on how well the relevant key assumptions are satisfied
with respect to the available data.
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Background
Medical databases, including medical claims data and
electronic medical records, are increasingly used in
pharmacoepidemiological research to assess the associa-
tions between drug exposure and adverse effects. The
clear advantage of these database studies is the provision
of large sample sizes enabling the evaluations of rare
adverse events. On the other hand, the associations
between specific drugs and adverse events may be con-
founded by time-invariant factors, including genetic
factors, chronic medical conditions, and patient lifestyle.
Because medical databases rarely contain such informa-
tion, it is difficult to adjust for these time-invariant
confounders.
Self-controlled methods, which are also referred to as

case-only methods, are observational study designs
where the case patients who experience the event of
interest act as their own controls based on data from
non-case periods [1–3]. The use of cases as their own
controls minimizes the confounding effects of time-
invariant risk factors. Self-controlled methods may
therefore represent a powerful option for analyzing rou-
tinely collected medical databases that lack information
on potentially influential confounders [1].

Among the existing self-controlled methods, self-
controlled case series (SCCS) [4, 5], case-crossover
(CCO) design [6, 7], and sequence symmetry analysis
(SSA) [8, 9] are frequently employed in pharmacoepide-
miological studies. Although all three methods estimate
the relative risk or odds ratio of an event during expos-
ure periods compared with non-exposure periods, they
differ in their designated analytical periods. In SCCS, the
relative risk during the exposure (risk) and non-
exposure (control) periods are estimated. In CCO
design, the odds of exposure in the time period immedi-
ately preceding the event of interest (case period) are
compared with those in an earlier time period that did
not result in an event (control period). In SSA, a crude
sequence ratio is calculated as an effect measure of
relative risk by dividing the number of subjects who had
experienced the first event after the first exposure by the
number of subjects who had experienced the first event
before the first exposure. The typical designs of these
methods are illustrated in Fig. 1.
In pharmacoepidemiological studies, the estimates of

the three self-controlled methods may be biased under
the following situations: the presence of short-term
time-varying factors, such as the transient use of

Fig. 1 Typical settings of analytical periods for the three self-controlled methods used in this study. a Self-controlled case series. The observation
period of each subject is divided into risk periods (defined number of days after an exposure) and control periods (all other periods). b Case-crossover
design. For each case, a case period (defined number of days before the first event) and a corresponding control period (defined number of days before the
first event) are designated. (c) Sequence symmetry analysis. A crude sequence ratio is calculated by dividing the number of subjects who had experienced
the first event a defined number of days after the first exposure (indicated by the black arrow, i.e., exposure➔ event) by the number of subjects who had
experienced the first event a defined number of days before the first exposure (indicated by the white arrow, i.e., event➔ exposure)
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concomitant drugs or acute disease occurrence; the in-
fluence of long-term factors, such as seasonality, age ef-
fects, and time trends in drug prescriptions; restricted
follow-up of patients based on event occurrence; patient
restriction based on event history; and the misspecifica-
tion of risk period durations (i.e., erroneously short or
long). Although previous review articles have described
several assumptions for appropriate estimations using
these methods [1, 2, 10], few studies have statistically
compared the performance of the methods using a single
data source for the aforementioned situations.
In this study, we simulated several databases contain-

ing electronic medical records to compare the estimators
produced by SCCS, CCO design, and SSA in the pres-
ence of a short-term time-varying confounder and its
interactions with time-invariant confounders, as well as
in the presence of long-term time trends in exposures
and events. Additionally, we examined the effects of se-
quentially censoring patients at the time of each event
and restricting analyses to patients who did not experi-
ence the event before the first exposure. Moreover, the
sensitivity of the estimators to misspecified risk period
durations of exposure was evaluated. Finally, these three
methods were also compared using real-world data
extracted from a university hospital’s electronic medical
records database for estimating the association between
macrolide use and liver injury.

Methods
Self-controlled methods
Table 1 provides an overview of the three self-controlled
methods used in this study. The SCCS method identifies
patients who experienced an event at least once during
the designated study duration, and models a Poisson dis-
tribution during the period k of patient i with expected
events. This is described in Eq. (1) as follows:

λik ¼ tikexpfϕi þ βXiðkÞg ð1Þ

where tik represents the length of period k (as an offset

term), exp(ϕi) the baseline (i.e., unexposed) incidence
rate, and Xi(k) the exposure status of period k (0 for the
control period and 1 for the exposure period) of patient
i [11]. In the calculation of the likelihood function con-
ditional on becoming a case [11], the individual patient
effect ϕi is cancelled out because each patient acts as
their own control; therefore, the incident rate ratio (IRR)
β for exposure Xi(k) can be estimated without estimation
of ϕi. A previous simulation study showed that the SCCS
method was less sensitive to time trends in probability
for exposures and/or events, even for small sample sizes
[12]. However, the effect estimates can become biased if
a prior event affects subsequent exposure probability,
event rate, or both [13, 14].
In CCO design, a patient’s exposure experience during

the case period is compared with his/her exposure ex-
perience during the control period, and the exposure
probability πij in the period ji (1 if case period, 0 if con-
trol period) of patient i is modelled as follows in Eq. (2):

logitðπijÞ ¼ φi þ γ � ji ð2Þ

where expit(φi) represents the patient i-specific exposure
probability during control periods [15]. Analogous to
matched case-control studies, the conditional exposure
odds ratio (OR) of case and control periods γ coincides
with the conditional event OR between exposed and
unexposed periods. As with the SCCS, the individual
patient effect φi is cancelled out in the conditional likeli-
hood function. Note that asymptotically unbiased
estimations require assumptions that the exposure has no
carryover effects and that the confounders are independ-
ent to exposure trends [15, 16]. Moreover, bias can be in-
troduced to the CCO design estimates if the exposure
prevalence is different between the case and control pe-
riods, i.e., if an exposure time trend is present [16, 17].
The SSA method was developed to examine the

symmetry in the distribution of an event before and after
an exposure of interest [18]. That initial report argued that
the ratio of exposure-event sequence orders approximates

Table 1 Overview of the three self-controlled methods

Methods Effect measures Study populations Information used in analysisa Main assumptions

Self-controlled
case series

Incident rate ratio Case patients who experienced
at least one event during each
observation period

Every exposure and every
event for each case patient

Events do not alter the probability
of subsequent exposure and events.

Case-crossover
design

(Exposure) odds
ratio

Case patients who experienced
at least one event during each
observation period

Every exposure and the first
event for each case patient

There are no time-trends in the
occurrence of exposure.

Sequence symmetry
analysis

Adjusted sequence
ratio

Case patients who experienced
at least one exposure or one
event during each observation
period

The first exposure and first
event for the study population

Events do not alter the probability
of subsequent exposure.
Trends in the occurrence of exposure
and events are similar to those for the
study population.

aMinimal information required for the calculation of each effect measure
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the IRR in exposed and non-exposed person-time
without algebraic proof [18]. The use of source popu-
lation trends in exposures or events is recommended
to adjust for time trends in the occurrence of these
episodes [19], which may alter SSA estimates [18, 20].
Although SSA has been frequently used in pharma-
coepidemiological studies [1, 8, 9], the performance of
this method as an IRR estimator in the pharmacoepi-
demiological context remains unclear. The estimation
methods and underlying models are described in the
“Analysis of simulated datasets” subsection.

Simulation study design
We used a simulation study setting designed to
evaluate the risk of an acute event Y(t) (e.g., liver in-
jury, or LI) associated with a transient exposure X(t)
(e.g., antibiotic use) at day t = 1, …, 1800. Two time-
invariant binary confounders C1 and C2 (e.g., genetic
factors, chronic conditions, or sex) and one binary time-
varying confounder C3(t) (e.g., brief administration of
drugs or occurrence of an acute disease) were also
generated.
For each simulation setting, we simulated 2000 data-

sets, each of which was composed of 100,000 patients
who had an 1800-day observation period without drop--
outs or censoring (Fig. 2). First, C1 and C2 were gener-
ated at Day 0 using a Bernoulli distribution with success
probabilities of 0.05 and 0.5, respectively; their values
were kept constant throughout the observation period.
Time to onset of C3(t) followed an exponential distribu-
tion with a rate of 0.001, and was re-generated immedi-
ately after C3(t) = 1 for subjects who had already
experienced an onset of C3(t) (this allows for more than
one onset of C3(t) for each subject). We assumed that
C3(t) occurred over a short period of time. Therefore,
we set a fixed condition of “C3(t) = 1” during a defined
duration (covariate-effect time; EtC) that began from the
onset of C3(t). If a new C3(t) was initiated before the
fixed period of the previous C3(t) had ended, that fixed
period was extended by the defined duration (EtC).
The incidence of exposure X(t) was generated using a

piecewise exponential distribution with rate parameters,
as described in Eq. (3).

λX tð Þ ¼ expf log 2:5�10−4
� �þ log 2:0ð ÞC1 þ log 1:2ð ÞC2

þ log 5:0ð ÞC3 tð Þg
ð3Þ

The exposure can occur multiple times; once an
exposure began, the next time-to-exposure was
generated using the above exponential distribution.
For this study, we assumed that the exposure X(t) is
the usage of antibiotics that would have a transient
effect on the incidence of an LI event. A fixed

condition of “X(t) = 1” was set during the defined
duration (exposure-effect time; EtX = 15 days) that
began from the onset of X(t). If a new exposure oc-
curred before the fixed period of the previous X(t)
had ended, that fixed period was extended by the
defined duration (EtX).
Finally, event Y(t) followed a piecewise exponen-

tial distribution with rate parameters as described in
Eq. (4).

λY tð Þ ¼ expf log 2:0�10−5
� �þ βXX tð Þ þ βC1 C1

þβC2C2 þ βC3C3 tð Þ þ βC1C2C1C2

þβC2C3C2C3 tð ÞÞg
ð4Þ

where the parameters varied according to the scenarios
described below. Events can occur multiple times; once
an event occurred, the next time-to-event was generated
using the above exponential distribution. Note that for
the data generation step in this study, the assumption
holds that the occurrence of an event did not affect the
probability of subsequent exposure, which is considered
a key assumption for SCCS and SSA.

Simulation scenarios for time-varying confounding
The following scenarios were utilized to evaluate the ef-
fects of a time-varying confounder on the estimates from
the three methods.

Scenario 1
There is time-invariant confounding (βC1 = log(2.0),
βC2 = log(3.0)) and interactions between the time-
invariant confounders (βC1C2 = log(5.0)); the effect of
exposure βX is varied (log(1.0), log(3.0) or log(10.0)).

Scenario 2
There is time-invariant (βC1 = log(2.0), βC2 = log(3.0))
and time-varying confounding but no interactions; the
effect of exposure βX (log(1.0), log(3.0) or log(10.0)), the
effect of time-varying confounder βC3 (log(0.2), log(0.5),
log(2.0) or log(5.0)), and the effect of covariate-effect
time EtC (5, 10, 15, 20 or 30 days) are varied. When
changing the parameters βX, βC3, or EtC, the other
parameters are fixed.

Scenario 3
In addition to time-invariant and time-varying con-
founding (βC1 = log(2.0), βC2 = log(3.0), βC3 = log(5.0)),
there are interactions among the time-invariant and
time-varying confounders; the effect of βX (log(1.0),
log(3.0) or log(10.0)), the interaction effects among the
time-invariant and time-varying confounders βC2C3
(log(0.2), log(0.5), log(2.0) or log(5.0)), and the effect of
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covariate-effect time EtC (5, 10, 15, 20 or 30 days) are
varied. When changing the parameters βX, βC2C3, or EtC,
the other parameters are fixed.

Simulation scenario for long-term time trends in ex-
posures and events For the evaluation of time trends in
exposures and events, we slightly altered the data gener-
ation step. Specifically, the incidence of exposure X(t)
was generated using Eq. (5).

λXðtÞ ¼ expflogð2:5�10−4Þ þ logð2:0ÞC1

þ logð1:2ÞC2 þ logð5:0ÞC3ðtÞ þ αTRtg ð5Þ

where αTR is the effect of time trend on the onset of
exposure. Event Y(t) was subsequently generated using
Eq. (6).

λY ðtÞ ¼ exp

(
logð2:0�10−5Þ þ βXXðtÞ þ βC1C1 þ βC2C2 þ βC3C3ðtÞ þ βC1C2C1C2

þβC2C3C2C3ðtÞ þ βTRt

)

ð6Þ

where βTR is the effect of time trend on event

occurrence. Based on this data generation process, we
established the following scenario:

Scenario 4
There are time-invariant confounding (βC1 = log(2.0),
βC2 = log(3.0)) and time trends in exposures or events;
the time trend of exposure αTR or events βTR (0 or
log(1.001)) are varied. Table 2 summarizes the detailed
parameters of Scenarios 1 to 4 in the simulation study.

Simulation scenario for restricting follow-up time
based on event occurrence In Scenarios 1 to 4, all pa-
tients had the same observation period (1800 days).
However, this setting is not applicable if the observations
can be censored due to patient death associated with the
event of interest (e.g., myocardial infarction). The
restriction of follow-up time based on event occurrence
may affect the estimators of SCCS and SSA. To evaluate
the effect of this condition, we probabilistically censored
the observation of patients when an event occurred.
Based on this data generation process, we established
the following scenario:

Fig. 2 Summary of the data generation and analytical process used in the simulation study. Abbreviations: CCO, case-crossover; SCCS, self-controlled
case series; SSA, sequence symmetry analysis
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Scenario 5
There is time-invariant confounding (βC1 = log(2.0), βC2 =
log(3.0)) but no time trends (αTR = βTR = 0); the observa-
tion of patients was sequentially censored upon event
occurrence. Censoring probability (PC) was based on the
Bernoulli distribution with success probabilities of 0.3, 0.6
or 1.0.
Note that a PC value of 1.0 would mean that all

subjects were censored at their first event (e.g., the event
of interest is death). Therefore, SSA could not be
performed when PC was set to 1.0 because no patients
would experience this event before their first exposure
under this setting.

Simulation scenario for patient restriction based on
event history In pharmacoepidemiological studies,
analyses may be restricted to subjects who did not
experience the event before their first exposure if the
analyst suspects that the event alters the probabilities of

subsequent exposures or events. To compare the esti-
mates of self-controlled methods under this restriction,
the following scenario was utilized:

Scenario 6
There is time-invariant confounding (βC1 = log(2.0),
βC2 = log(3.0)) but no time trends (αTR = βTR = 0);
patients who experienced the first event before their
first exposure were excluded from the study
population.
This scenario could not be applied to SSA because the

crude sequence ratio (CSR) cannot be calculated if the
number of patients who had experienced the first event
before their first exposure is zero.

Analysis of simulated datasets
For the SCCS, risk periods were defined as a 15-day
period that began on the first day of an exposure, and
the control period encompassed all other periods outside

Table 2 Detailed Parameters of Scenarios 1 to 4 in the Simulation Study

Scenarios βX βC1 βC2 βC3 βC1C2 βC2C3 αTR βTR EtC (Days)
a

1 log(1.0) log(2.0) log(3.0) log(1.0) log(5.0) log(1.0) – – 15

log(3.0) – –

log(10.0) – –

2 log(1.0) log(2.0) log(3.0) log(5.0) log(1.0) log(1.0) – – 15

log(3.0) – –

log(10.0) – –

log(3.0) log(2.0) log(3.0) log(0.2) log(1.0) log(1.0) – – 15

log(0.5) – –

log(2.0) – –

log(3.0) log(2.0) log(3.0) log(5.0) log(1.0) log(1.0) – – 5

– – 10

– – 20

– – 30

3 log(1.0) log(2.0) log(3.0) log(5.0) log(1.0) log(5.0) – – 15

log(3.0) – –

log(10.0) – –

log(3.0) log(2.0) log(3.0) log(5.0) log(1.0) log(0.2) – – 15

log(0.5) – –

log(2.0) – –

log(3.0) log(2.0) log(3.0) log(5.0) log(1.0) log(5.0) – – 5

– – 10

– – 20

– – 30

4 log(3.0) log(2.0) log(3.0) log(1.0) log(1.0) log(1.0) log(1.001) log(1.0) 15

log(1.0) log(1.001)

log(1.001) log(1.001)
aLength of the period in which the time-varying covariate C3(t) has an effect
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of the risk periods. The IRR for exposure βX and 95%
confidence intervals (CI) were estimated using a univari-
able conditional Poisson regression model stratified by
each case, and the risk periods and control periods were
compared [11]. In this analysis, we used SAS macro
programs (element.sas, sccs.sas, and poisreg.sas) avail-
able from the Open University website, UK [21].
For CCO design, we defined the case period as the 15-

day period beginning 14 days before the first event for
each case. The control period was defined as the 15-day
period beginning 29 days before the first event until
15 days before the first event. Cases who experienced
the first event within 29 days from the start of follow-up
were excluded from analysis. The effect of exposure βX
was approximated by estimating the conditional OR for
exposure onset (i.e., the first day of X(t) = 1) in a case
period versus a control period and the 95% CIs using
conditional logistic regression [22].
The SSA requires cases who had experienced an ex-

posure and event within a period of prespecified length
(e.g., 15 days), irrespective of the order of exposure and
event. First, a CSR was calculated by dividing the num-
ber of patients who had experienced their first event in a
15-day period beginning on the first day of exposure
(i.e., exposure ➔ event) by the number of patients who
had experienced their first event in a 15-day period be-
ginning 15 days before their first exposure (i.e., event ➔
exposure). Following a previous report [20], a null-effect
sequence ratio (NSR) (described in Appendix A in
Additional file 1) was calculated to adjust for trends in
the occurrence of either exposures or events. However,
this adjustment method depends on the underlying as-
sumption that the trends in exposures and events for the
background population (i.e., all subjects included in the
database) are similar to those for the study population
that was used for the calculation of the CSR (e.g., the
way a drug is prescribed is similar between cases and
non-cases). The adjusted sequence ratio (ASR) is the
ratio of CSR to NSR, and the 95% CIs were calculated
based on the binomial distributions conditional on the
total number of post-exposure and pre-exposure events.
In Appendix B in Additional file 1, we derived CSR as a
partial maximum likelihood estimator of βX in a Cox
model stratified by individual cases.
We calculated the bias (difference between the mean

estimates and βX), empirical standard error (SE) of point
estimates, mean squared error (MSE; sum of squared
bias and empirical variance), mean estimated SE, and
coverage probability of CIs (proportion of replications in
which the 95% CIs included the true βX value).

Simulation scenario for misspecification of the risk
period duration To evaluate the sensitivity of each esti-
mator to misspecified risk period durations of exposure

(EtX = 15 days), Scenario 4 datasets with no time trends
(αTR = βTR = 0) were analyzed by specifying erroneously
short or long risk period durations (5 or 25 days,
respectively).

Case study
To compare the estimates obtained from the three self-
controlled methods using real-world data, we also
performed a case study that examined the risk of LI as-
sociated with the administration of macrolides using
electronic medical records from the University of Tokyo
Hospital (Tokyo, Japan). This electronic medical records
database included information of patients who visited as
outpatients or had been admitted to the hospital be-
tween January 2011 and December 2015 (approximately
244,000 patients). Data included patient characteristics
(anonymized personal identifiers, age, and sex); the dates
of outpatient visits, admission and discharge; prescribed
medications; diagnoses; and laboratory test results.
The study population of this case study was composed

of patients who had at least a 90-day continuous obser-
vation period. Each observation period was defined as
the combined durations of hospitalization and consecu-
tive outpatient visits (the intervals of hospitalization or
outpatient visits were within 100 days). If the start date
of hospitalization of a patient was earlier than 2011, we
defined the observation start date as January 1, 2011.
The observation end date was set as December 31, 2015
if a patient was still hospitalized after the end of 2015.
Therefore, each patient could contribute multiple dis-
continuous observation periods. The exposure of interest
was defined as the prescription of any macrolide ap-
proved for use in Japan, including erythromycin, roxi-
thromycin, clarithromycin, azithromycin, spiramycin,
and josamycin. The onset of LI was defined as 1) an in-
crease in alanine aminotransferase or conjugated
bilirubin that exceeded twice the upper limit of the normal
range, or 2) a same-day combinatorial increase in aspar-
tate aminotransferase, alkaline phosphatase, and total
bilirubin, provided that one of these exceeded twice the
upper limit of the normal range [23]. Patients who experi-
enced the exposure or event (LI onset) within 90 days
after the start date of observation were excluded.
In this case study, we designated three patterns of risk

periods (15-day, 30-day, and 45-day periods) that began
on the first day of macrolide prescription. These dura-
tions were based on previous findings that the onset of
LI generally occurs within 1 to 6 weeks of macrolide ex-
posure [24, 25]. In SCCS, each observation period was
divided into risk periods (0–14, 0–29, or 0–44 days after
exposure) and control periods (all other periods). Con-
tiguous prescriptions of any macrolide (without an inter-
val of one day or more of non-prescription) were
considered a single risk period. Therefore, even if the
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patients had multiple observation periods, all these pe-
riods would contribute to the SCCS analysis. Because
SCCS can simultaneously address multiple exposures,
the continuous administration of macrolides within
30 days were considered a single exposure. Similarly,
consecutive elevations of liver enzyme that met the def-
inition of LI onset within 7 days were considered a sin-
gle event. In CCO design, we defined a case period as
14–0, 29–0, or 44–0 days before the first LI onset; the
corresponding control periods were 29–15, 59–30, or
89–45 days, respectively, before the first LI onset. In
SSA, CSRs were calculated by dividing the number of
patients who had experienced their first LI during 0–14,
0–29, or 0–44 days after the first day of macrolide pre-
scription by the number of patients who had experi-
enced their first LI during 1–15, 1–30 or 1–45 days
before the first day of macrolide prescription, respect-
ively. For the calculation of NSRs, we used the dates of
the first exposure and first LI onset for each patient in
the electronic medical records database (Appendix A).
Data generation of the simulation study and all statistical

analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC).

Results
Simulation study results
Impact of time-varying confounding
The results of simulations for Scenarios 1, 2, and 3 are pre-
sented in Tables 3, 4, and 5, respectively. Time-invariant
confounders and their interactions did not introduce any
bias to the point and interval estimates from all three self-
controlled methods, regardless of the true IRR value
(Table 3). After including transient time-varying confound-
ing, however, we observed bias in the estimates of SCCS
and CCO design. For βC3 = log(5.0) and EtC = 15 days, this
bias were equivalent to approximately 10% overestimation

of the IRR (Table 4). The bias increased and the coverage of
95% CI fell below the nominal level (0.95) when the EtC
values increased. On the other hand, little bias was ob-
served in SSA estimates, and the coverage of 95% CI was
close to 95% for all settings of Scenario 2.
The interaction between time-varying and time-

invariant confounders caused larger bias in the estimates
from SCCS and CCO design (Table 5), which were
equivalent to approximately 40% overestimation when
interaction effect βC2C3 = log(5.0). The bias increased
with increasing values of EtC and βC2C3. These findings
indicated that both SCCS and CCO design could not
eliminate the interaction effect partly induced by time-
invariant factors, despite being able to eliminate the
main effects of these factors. However, the level of bias
and CI coverage probabilities of SSA were virtually un-
changed with the addition of the non-null interaction
βC2C3 (Table 5).

Long-term time trends in exposures and events
The results of the simulations for Scenario 4 are shown
in Table 6. The parameter of log(1.001) produced mod-
erate increases in time trend, and reached an approxi-
mate 6-fold increase of the incidence rate at Day 1800
relative to the first day. In cases of exposure or event
time trends, there was no substantial bias observed for
all methods. However, if there were both exposure and
event time trends, the SCCS estimates demonstrated
bias and undercoverage of 95% CI, whereas the CCO de-
sign and SSA estimates had negligible bias.

Restricting follow-up time based on event occurrence
Although probabilistic censoring in Scenario 5 did not
lead to substantial bias in the SCCS estimates, moderate
undercoverage of 95% CI was observed when PC was set
to 1.0 (Table 7). Conceptually, the CCO design estimates

Table 3 Results of Simulations for Scenario 1

Setting Results of simulations

Methods
(Effect measures)

βX Mean of estimates
(Ratio scale)

Bias (Log scale) Empirical standard
error

Mean squared
error

Mean standard
error

Coverage (%)

SCCS (IRR) log(1.0) 0.99 -0.0125 0.1354 0.0185 0.1335 95.1

CCO (OR) 1.00 -0.0005 0.2084 0.0434 0.2116 96.1

SSA (ASR) 0.99 -0.0005 0.2373 0.0563 0.2454 96.3

SCCS (IRR) log(3.0) 2.99 -0.0030 0.0791 0.0063 0.0777 94.7

CCO (OR) 3.04 0.0121 0.18 0.0309 0.1732 94.8

SSA (ASR) 3.04 0.0119 0.2016 0.0408 0.2003 95.2

SCCS (IRR) log(10.0) 9.98 -0.0019 0.0438 0.0019 0.0446 95.5

CCO (OR) 10.30 0.0295 0.1663 0.0285 0.1604 94.4

SSA (ASR) 9.97 -0.0026 0.1834 0.0336 0.1817 94.7

Abbreviations ASR adjusted sequence ratio, CCO case-crossover, IRR incident rate ratio, OR odds ratio, SCCS self-controlled case series, SSA sequence symmetry analysis

Takeuchi et al. BMC Medical Research Methodology  (2018) 18:4 Page 8 of 15



would not be influenced by probabilistic censoring be-
cause the method only uses information from before the
first event in each subject. On the other hand, the simu-
lation for Scenario 5 showed severe bias and under-
coverage of 95% CI in the SSA estimates.

Patient restriction based on event history
When patients who experienced the event of interest be-
fore their first exposure were excluded from the study
population, we observed substantial bias and severe
undercoverage of 95% CI in the SCCS estimates (Table

Table 4 Results of Simulations for Scenario 2

Setting Results of simulations

Methods
(Effect measures)

βX EtC (Days)
a βC3 Mean of estimates

(Ratio scale)
Bias (Log
scale)

Empirical standard
error

Mean squared
error

Mean standard
error

Coverage
(%)

SCCS (IRR) log(1.0) 15 log(5.0) 1.09 0.0903 0.1540 0.0318 0.1531 88.6

CCO (OR) 1.11 0.1017 0.2336 0.0649 0.2297 93.1

SSA (ASR) 1.01 0.0145 0.2556 0.0655 0.2583 96.1

SCCS (IRR) log(3.0) 3.32 0.1012 0.0909 0.0185 0.0890 77.0

CCO (OR) 3.35 0.1101 0.1963 0.0506 0.1894 92.3

SSA (ASR) 3.07 0.0227 0.2159 0.0471 0.2102 94.8

SCCS (IRR) log(10.0) 11.09 0.1036 0.0507 0.0133 0.0510 46.4

CCO (OR) 11.35 0.1269 0.1774 0.0475 0.1751 91.0

SSA (ASR) 10.19 0.0193 0.1858 0.0349 0.1909 96.1

SCCS (IRR) log(3.0) 5 3.05 0.0171 0.0946 0.0092 0.0963 94.5

CCO (OR) 3.11 0.0367 0.2012 0.0418 0.1993 94.8

SSA (ASR) 3.06 0.0213 0.2291 0.0529 0.2263 95.1

SCCS (IRR) 10 3.15 0.0501 0.0911 0.0108 0.0930 90.0

CCO (OR) 3.20 0.0643 0.1947 0.0420 0.1942 94.4

SSA (ASR) 3.09 0.0286 0.2226 0.0503 0.2193 95.1

SCCS (IRR) 20 3.50 0.1552 0.0845 0.0312 0.0852 55.0

CCO (OR) 3.54 0.1658 0.1830 0.0610 0.1849 88.5

SSA (ASR) 3.06 0.0203 0.2055 0.0426 0.2010 95.1

SCCS (IRR) 30 3.81 0.2401 0.0794 0.0639 0.0790 14.7

CCO (OR) 3.54 0.1661 0.1719 0.0571 0.1714 86.4

SSA (ASR) 3.05 0.0155 0.1916 0.0369 0.1869 94.6

SCCS (IRR) 15 log(0.2) 2.92 −0.0273 0.0977 0.0103 0.0981 95.2

CCO (OR) 2.96 −0.0129 0.2017 0.0408 0.1991 94.9

SSA (ASR) 3.06 0.0197 0.2392 0.0576 0.2316 95.1

SCCS (IRR) log(0.5) 2.94 −0.0206 0.0972 0.0099 0.0976 95.3

CCO (OR) 2.98 −0.0058 0.2001 0.0401 0.1986 95.3

SSA (ASR) 3.04 0.0137 0.2265 0.0515 0.2295 95.4

SCCS (IRR) log(2.0) 3.06 0.0209 0.0941 0.0093 0.0946 94.3

CCO (OR) 3.11 0.0371 0.1968 0.0401 0.1956 95.0

SSA (ASR) 3.06 0.0206 0.2249 0.0510 0.2230 94.6

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, IRR Incident rate ratio, OR Odds ratio, SCCS Self-controlled case series, SSA Sequence symmetry analysis
aLength of the period in which the time-varying covariate C3(t) has an effect
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7) for Scenario 6. As in Scenario 5, CCO design was un-
affected by patient restriction in Scenario 6 because only
patients who had experienced an exposure either during
the control or case periods (e.g. before the first event)
contributed to this analysis.

Misspecification of the risk period duration
As shown in Table 8, an inadequately short risk period
(5 days) led to severe bias in the CCO design estimates,
but did not generate substantial bias in the SCCS and
SSA estimates. While the coverage of 95% CI of SCCS

Table 5 Results of Simulations for Scenario 3

Setting Results of simulations

Methods
(Effect measures)

βX EtC (Days)
a βC2C3 Mean of estimates

(Ratio scale)
Bias (Log
scale)

Empirical standard
error

Mean squared
error

Mean standard
error

Coverage
(%)

SCCS (IRR) log(1.0) 15 log(5.0) 1.43 0.3587 0.1255 0.1445 0.1214 18.7

CCO (OR) 1.45 0.3691 0.1979 0.1754 0.1981 53.6

SSA (ASR) 1.04 0.0432 0.2104 0.0461 0.2077 94.5

SCCS (IRR) log(3.0) 4.32 0.3656 0.0719 0.1388 0.0711 0.3

CCO (OR) 4.37 0.3762 0.1720 0.1711 0.1696 39.6

SSA (ASR) 3.12 0.0392 0.1735 0.0316 0.1704 94.5

SCCS (IRR) log(10.0) 14.43 0.3664 0.0427 0.1361 0.0413 0.0

CCO (OR) 14.38 0.3632 0.1612 0.1579 0.1598 36.9

SSA (ASR) 10.18 0.0178 0.1589 0.0256 0.1557 95.4

SCCS (IRR) log(3.0) 5 3.18 0.0584 0.0923 0.0119 0.0910 87.7

CCO (OR) 3.23 0.0730 0.1870 0.0403 0.1913 94.9

SSA (ASR) 3.11 0.0344 0.2224 0.0506 0.2152 94.9

SCCS (IRR) 10 3.67 0.2021 0.0803 0.0473 0.0806 30.0

CCO (OR) 3.73 0.2185 0.1799 0.0801 0.1799 79.3

SSA (ASR) 3.12 0.0385 0.1898 0.0375 0.1920 95.2

SCCS (IRR) 20 4.94 0.4978 0.0640 0.2519 0.0638 0.0

CCO (OR) 4.73 0.4562 0.1545 0.2320 0.1578 14.0

SSA (ASR) 3.09 0.0299 0.1585 0.0260 0.1531 94.2

SCCS (IRR) 30 5.85 0.6673 0.0542 0.4482 0.0543 0.0

CCO (OR) 4.51 0.4075 0.1320 0.1834 0.1323 10.5

SSA (ASR) 3.05 0.0162 0.1296 0.0171 0.1309 95.3

SCCS (IRR) 15 log(0.2) 3.06 0.0195 0.0976 0.0099 0.0947 93.7

CCO (OR) 3.08 0.0267 0.2001 0.0409 0.1949 94.6

SSA (ASR) 3.05 0.0174 0.2276 0.0521 0.2229 94.3

SCCS (IRR) log(0.5) 3.16 0.0528 0.0944 0.0117 0.0924 89.1

CCO (OR) 3.21 0.0685 0.1979 0.0438 0.1932 94.1

SSA (ASR) 3.10 0.0340 0.2236 0.0511 0.2187 95.1

SCCS (IRR) log(2.0) 3.61 0.1843 0.0857 0.0413 0.0833 40.4

CCO (OR) 3.67 0.2010 0.1859 0.0750 0.1838 82.7

SSA (ASR) 3.09 0.0281 0.2006 0.0410 0.1971 95.3

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, IRR Incident rate ratio, OR Odds ratio, SCCS Self-controlled case series, SSA Sequence symmetry analysis
aLength of the period in which the time-varying covariate C3(t) has an effect
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and SSA maintained nominal levels (0.95), that of CCO
design was close to 0%. In contrast, an excessively long
risk period (25 days) produced similar bias in the esti-
mates of all three methods (Table 8); the coverage of
95% CI for all methods were below nominal levels.

Precision of the self-controlled methods
In all the simulation scenarios, the empirical and esti-
mated SEs of the estimates were consistently smaller in
SCCS than in CCO design and SSA (Tables 3–8). As the
bias in all three methods was negligible in Scenario 1
(Table 3), SSA had the highest MSE, followed by CCO

design and SCCS. In Scenario 2, where SCCS produced
non-negligible bias, the MSE was still smaller in SCCS
than in CCO design and SSA in many settings (Table 4).
However, the estimates from SCCS suffered from severe
bias in Scenario 3 (Table 5). These settings resulted in a
lower MSE in the SSA estimates than the other two
methods, except when EtC was set at 5 days. Similarly, if
there was no considerable bias in the estimates in
Scenario 4 and the simulation scenario involving the mis-
specification of the risk period duration, the MSE was
highest for SSA, followed by CCO design and SCCS
(Tables 6 and 8). In Scenarios 5 and 6, the MSE was lowest

Table 6 Results of Simulations for Scenario 4

Settings Results of simulations

Methods
(Effect measures)

αTR βTR Mean of estimates
(Ratio scale)

Bias (Log
scale)

Empirical standard
error

Mean squared
error

Mean standard
error

Coverage
(%)

SCCS (IRR) log(1.001) log(1.0) 3.00 0.0007 0.0579 0.0034 0.0585 95.3

CCO (OR) 3.07 0.0232 0.1213 0.0152 0.1198 94.7

SSA (ASR) 3.01 0.0044 0.1693 0.0287 0.1680 95.0

SCCS (IRR) log(1.0) log(1.001) 3.00 0.0006 0.0569 0.0032 0.0574 95.0

CCO (OR) 3.03 0.0111 0.1245 0.0156 0.1225 94.6

SSA (ASR) 3.01 0.0030 0.1487 0.0221 0.1464 94.7

SCCS (IRR) log(1.001) log(1.001) 3.79 0.2341 0.0318 0.0558 0.0314 0.0

CCO (OR) 3.07 0.0241 0.0665 0.0050 0.0676 94.4

SSA (ASR) 3.00 −0.0007 0.1053 0.0111 0.1035 94.9

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, IRR Incident rate ratio, OR Odds ratio, SCCS Self-controlled case series, SSA Sequence symmetry analysis

Table 7 Results of Simulations for Scenarios 5 and 6

Results of simulations

Scenarios Methods
(Effect measures)

Settings Mean of estimates
(Ratio scale)

Bias (Log
scale)

Empirical standard
error

Mean squared
error

Mean standard
error

Coverage
(%)

5 SCCS (IRR) PC
a = 0.3 3.02 0.0055 0.1019 0.0104 0.0983 93.9

CCO (OR) 3.02 0.0053 0.2065 0.0426 0.1974 94.2

SSA (ASR) 4.39 0.3799 0.2764 0.2206 0.2628 72.8

SCCS (IRR) PC
a = 0.6 3.06 0.0202 0.1046 0.0113 0.1001 93.1

CCO (OR) 3.02 0.0053 0.2065 0.0426 0.1974 94.2

SSA (ASR) 7.87 0.9647 0.3638 1.0630 0.3397 0.1

SCCS (IRR) PC
a = 1.0 3.13 0.0421 0.1088 0.0136 0.1027 90.3

CCO (OR) 3.02 0.0053 0.2065 0.0426 0.1974 94.2

SSA (ASR) NA NA NA NA NA NA

6 SCCS (IRR) Restricted to patients
who did not experience
the event before the
first exposure

5.03 0.5164 0.1040 0.2775 0.1002 0.0

CCO (OR) 3.02 0.0053 0.2065 0.0426 0.1974 94.2

SSA (ASR) NA NA NA NA NA NA

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, IRR Incident rate ratio, NA Not applicable, OR Odds ratio, SCCS Self-controlled case series, SSA
Sequence symmetry analysis
aProbability of censoring upon event occurrence
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for SCCS when there was no considerable bias in esti-
mates (Table 7).

Case study results
Among the 114,783 patients in our electronic medical
records database who had an observation period of at
least 90 days, 7367 were prescribed macrolides and
14,915 patients experienced LI. The results of the case
study are shown in Table 9. In the analyses of 15-day
risk period, 942, 129 and 130 patients contributed the
estimation of SCCS, CCO and SSA. For all different risk
period durations (15, 30, and 45 days), the highest effect
measure was obtained from CCO design (OR: 4.38, 3.88
and 3.23, respectively), followed by SCCS (IRR: 3.54,
2.65 and 2.23, respectively) and SSA (ASR: 2.61, 1.98
and 1.75, respectively). In our database, long-term time
trends in both macrolide administration and LI were
thought to be unlikely. Therefore, given a sufficient
number of observed events, the SSA results would be
the most reliable estimates if other drugs act as short-
term time-varying confounders, interact with unmeas-
ured genetic variants, or both. Notably, the longer the

specified risk period duration, the more attenuated the
relative risks that were estimated from all three methods.
As shown in the simulation study with erroneously long
risk periods, the longer risk periods may also bias these
estimates toward lower (i.e., conservative) values. The
objective of the case study was to illustrate the applica-
tions of the three self-controlled methods. Due to the
fundamentally different underlying assumptions among
these methods (Table 1), some of these assumptions (e.g.
an event has no effect on the probability of subsequent
exposure) may not be satisfied in the electronic medical
records data.

Discussion
In this study, we used large-scale simulation data to
compare the effects of time-invariant and time-varying
confounders, time trends in exposures and events, re-
stricted follow-up time based on event occurrence, pa-
tient restriction based on event history, and
misspecification of risk period durations on estimates
among three self-controlled methods. In cases of low
levels of bias in the estimates, SCCS had the lowest
MSE. The estimators of CCO design were robust against
censoring based on event occurrence or the exclusion of
patients who experienced a pre-exposure event. The
SSA estimators were less sensitive to short-term time-
varying confounding, long-term time trends, and errone-
ously short risk periods. In contrast, the censoring of
patients based on event occurrence introduced severe
bias to the SSA estimates. Even in the presence of
variations in the point estimates (the width of ratio-
scaled differences ranged from 1.48 to 1.90) in the case
study, a statistically significant increase in LI incidence
was observed in the 15-, 30-, and 45-day periods after
the initiation of macrolides in all three methods. The ob-
served differences in estimates among the three methods
were insufficiently large to affect decisions regarding the
risk of LI due to macrolide use.
The findings that the bias in SCCS and CCO design

estimates increased with the addition of the C2-C3(t)

Table 8 Results of Simulations to Evaluate the Influence of Misspecified Risk Periods

Settings Results of simulations

Methods
(Effect measures)

Days of risk Mean of estimates
(Ratio scale)

Bias (Log scale) Empirical standard
error

Mean squared
error

Mean standard
error

Coverage
(%)

SCCS (IRR) 5 2.89 −0.0377 0.1729 0.0313 0.1661 95.0

CCO (OR) 0.99 −1.1068 0.2420 1.2835 0.2406 0.5

SSA (ASR) 3.14 0.0466 0.4511 0.2056 0.4076 94.6

SCCS (IRR) 25 2.19 −0.3134 0.0907 0.1065 0.0878 4.4

CCO (OR) 2.21 −0.3056 0.1616 0.1195 0.1605 50.3

SSA (ASR) 2.23 −0.2981 0.1891 0.1246 0.1829 60.2

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, IRR Incident rate ratio, OR Odds ratio, SCCS Self-controlled case series, SSA Sequence symmetry analysis

Table 9 Results of the Case Study

Days of risk Methods
(Effect measures)

Point estimates
(Ratio scale)

95% CI

15 SCCS (IRR) 3.54 3.05–4.11

CCO (OR) 4.38 2.81–6.82

SSA (ASR) 2.61 1.78–3.84

30 SCCS (IRR) 2.65 2.33–3.00

CCO (OR) 3.88 2.65–5.69

SSA (ASR) 1.98 1.44–2.72

45 SCCS (IRR) 2.23 1.99–2.51

CCO (OR) 3.23 2.30–4.53

SSA (ASR) 1.75 1.32–2.34

Abbreviations ASR Adjusted sequence ratio, CCO Case-crossover, CI Confidence
interval, IRR Incident rate ratio, OR Odds ratio, SCCS Self-controlled case series,
SSA Sequence symmetry analysis
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interaction in Scenario 2 emphasized the importance of
time-invariant confounders in self-controlled methods
(Table 4). The presence of such an interaction may vio-
late the conditional Poisson modelling assumption of
SCCS [14] and the conditional logistic modelling as-
sumption of CCO design. The interaction term between
C2 and C3(t) may not be cancelled out in the conditional
likelihood equations of SCCS and CCO design because
the distributions of C3(t) are unbalanced between the
risk/case periods and the control periods. When time-
varying confounders modify the effect of time-invariant
factors on an outcome (e.g., when a transient infectious
disease modifies the effect of genetics as a trigger of liver
disease), or vice versa, the influence of these factors
would be non-negligible in SCCS and CCO design.
As shown in Appendix B, the estimator from the SSA

method can essentially be considered a hazard ratio esti-
mator from a Cox model stratified at the patient level.
An important condition of the proportionality of hazards
between the exposed and non-exposed periods is that
any covariate that affects event occurrence must be in-
variant during the exposed and non-exposed periods
(i.e., a time-constant baseline hazard). If this condition is
not met, the estimator would suffer from bias due to
model misspecification (although proportionality of non-
constant hazards is possible in theory, it is unlikely in
practice). In our simulation study, however, these pos-
sible misspecification effects are likely to be minimal be-
cause 1) the time-varying confounder C3(t) rarely
changed status (0 to 1 or 1 to 0) during the 30-day
period, and 2) even if C3(t) changed status during the
30-day period, the days of C3(t) = 1 are likely to be bal-
anced between the pre- and post-exposure periods. Since
this simulation data are considered to be realistic, the
SSA method is expected to be robust to the effects of
similar types of unmeasured time-varying confounding.
C3(t) may affect exposure during EtC days after its onset,
and its effect may be nullified after EtC days had elapsed.
This means that the onset days of C3(t) were uniformly
distributed over EtC days before exposure, and that the
days in which the effect ended were also uniformly dis-
tributed over the same period. Therefore, even if C3(t)
affected exposure, the distribution of the days of C3(t) =
1 would be the same between EtC days before and after
exposure onset, which in turn would nullify the bias
arising from C3(t) (Tables 4 and 5). Hence, even if a
time-varying covariate (e.g., an acute condition) leads to
both higher exposure and event probabilities, this would
simply imply that there are more periods with exposure
and events. Consequently, this would not be expected to
affect SSA estimates, which are essentially based on a
“what comes first” comparison. Although the SSA
method is robust to this type of unmeasured time-
varying confounding, it may be affected when the

magnitude of time-varying confounding changes grad-
ually over time.
As shown in Table 5, the estimates of SCCS were con-

siderably biased in the presence of time trends in both
exposure and event onset. This finding was not consist-
ent with the results of a previous simulation study that
the SCCS method was relatively robust to time trends in
both exposures and events [12]. This discrepancy may
be partially explained by the previous study’s use of
shorter observations (500 days compared to 1800 days
in our study), lower baseline incidence (2*10−7, which is
100 times smaller than our baseline rate), and lack of
consideration to multiple exposures. In contrast, the es-
timates of CCO design and SSA in our study were less
sensitive to the time trends in exposure and event onset
(Table 6) because these two methods analyze short-term
periods (30 days for each patient). Although previous
studies showed that exposure time trends introduced
bias to CCO design estimates [16, 17], the magnitude of
bias would not be considerable for moderate time-trend
effects (as set in this study). Moreover, since the time
trends in exposures or events were constant for all pa-
tients in Scenario 3, NSR could be used to adjust for the
effects of these trends on SSA estimates.
The severe overestimation of the SSA estimates in

Scenario 5 may be the manifestation of selection bias
due to the probabilistic censoring of some patients who
would experience their first exposure after the first event
(Table 7), which led to a reduction in the denominator
for CSR calculation. This indicates that the SSA method
may be unsuitable for situations where patients could be
censored due to the event of interest (e.g. myocardial in-
fraction or intracerebral hemorrhage). In contrast, SCCS
estimators were less sensitive to patient restriction even
when all patients were censored at the occurrence of
their first event. However, SCCS estimators could be-
come severely biased in Scenario 6 (Table 7) when pa-
tients who had experienced the event before their first
exposure were excluded from the study population. It
should be noted that these events have no effect on the
probabilities of future exposures or events occurrence in
this scenario. These findings suggest that among the
three methods, CCO design may be suitable for analyses
of events that have a possible effect on the occurrence of
future exposures or events.
The specification of risk periods of exposure is crucial

to all three methods, but different indications can be ap-
plied. For example, erroneously short periods introduced
bias only to CCO design estimates, whereas erroneously
long risk periods introduced bias to the estimates from
all methods (Table 8). If erroneously short risk periods
are specified in CCO design, a section of the case pe-
riods that have a higher likelihood of exposure would be
incorrectly classified as control periods. Although similar
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misclassifications (true risk periods incorrectly defined
as control periods) can also occur for SCCS, these would
not cause considerable bias because the control periods
are substantially longer than the risk periods. There was
a lack of such misclassifications in SSA because this
method compares the incidence rate between pre- and
post-exposure periods. In contrast to erroneously long
risk periods, there were misclassifications where control
periods were incorrectly defined as risk/case periods for
all methods, which led to an over-specification of the
risk period (Table 8). Since the overall duration of risk
periods was substantially shorter than that of control pe-
riods in SCCS, the merging of control periods with risk
periods biased the estimates toward lower values.
Similarly, such misclassification of risk periods also
caused underestimations in CCO design and SSA be-
cause these two methods compared the incidence be-
tween two periods of the same length.
This study has several limitations. First, the scenarios

used were restricted to transient exposure effects, had
only a few confounders, no censoring, and no effect
modification. Nevertheless, the relatively simple scenar-
ios examined here were suitable for facilitating an under-
standing of the lesser-known effects of these factors on
each estimation method. Second, we did not evaluate
multiple definitions of the various periods used in the
three methods. For example, the risk periods of SCCS
can be divided into more than one interval [11], and
multiple control periods can be set in CCO designs [7].
However, because the observed bias for SCCS and CCO
design could be explained by the asymmetrical distribu-
tion of C3(t), this bias would not be eliminated by
changing the definition of the periods without further
information on the covariates. Finally, because the
electronic medical records used in this case study were
obtained from one university hospital, the exposures and
events that occurred outside of the hospital (such as at a
patient’s home or other clinics) could not be recorded.

Conclusion
Our simulation study showed that the estimations of
SCCS, CCO design and SSA depended on various
underlying assumptions, and that the violation of these
assumptions could lead to non-negligible bias in the
resulting estimates. All three methods indicated that
macrolide use was significantly associated with an
increased risk of LI in the case study, despite small vari-
ations in estimates across the methods. Pharmacoepide-
miologists should select the appropriate self-controlled
method based on how well the relevant key assumptions
are satisfied with respect to the available data. Moreover,
if several self-controlled methods produce different
estimates for the same data, analysts should carefully

consider the presence of factors that may have intro-
duced bias to the estimates.
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