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Abstract

Background: Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a rare disease with
extreme between-subject variability, especially with respect to rate of disease progression. This makes modelling a
subject’s disease progression, which is measured by the ALS Functional Rating Scale (ALSFRS), very difficult.
Consider the problem of predicting a subject’s ALSFRS score at 9 or 12 months after a given time-point.

Methods: We obtained ALS subject data from the Pooled Resource Open-Access ALS Clinical Trials Database, a
collection of data from various ALS clinical trials. Due to the typical linearity of the ALSFRS, we consider several
Bayesian hierarchical linear models. These include a mixture model (to account for the two potential classes of “fast”
and “slow” ALS progressors) as well as an onset-anchored model, in which an additional artificial data-point, using
time of disease onset, is utilized to improve predictive performance.

Results: The onset-anchored model had a drastically reduced posterior predictive mean-square-error distributions,
when compared to the Bayesian hierarchical linear model or the mixture model under a cross-validation approach.
No covariates, other than time of disease onset, consistently improved predictive performance in either the
Bayesian hierarchical linear model or the onset-anchored model.

Conclusions: Augmenting patient data with an additional artificial data-point, or onset anchor, can drastically
improve predictive modelling in ALS by reducing the variability of estimated parameters at the cost of a slight
increase in bias. This onset-anchored model is extremely useful if predictions are desired directly after a single
baseline measure (such as at the first day of a clinical trial), a feat that would be very difficult without the onset-
anchor. This approach could be useful in modelling other diseases that have bounded progression scales (e.g.
Parkinson’s disease, Huntington’s disease, or inclusion-body myositis). It is our hope that this model can be used by
clinicians and statisticians to improve the efficacy of clinical trials and aid in finding treatments for ALS.
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Background
Amyotrophic Lateral Sclerosis (ALS), is a rare neuro-
degenerative disease which exhibits extreme between-
subject variability. Progression of ALS is typically mea-
sured by the ALS Functional Rating Scale (known as the
ALSFRS, or with additional respiratory questions, the re-
vised ALSFRS-R). The ALSFRS is a physician-reported
outcome on a scale of 0 – 40 which grades common activ-
ities of daily living like dressing, eating, and walking. An
ALSFRS score of 40 corresponds to normal function, and
this score will decrease as the disease progresses. The
ALSFRS, which is usually non-increasing, has been shown
to decrease in a linear fashion over the course of a typical
clinical trial (6 months to 1 year) [1, 2], although the lin-
earity is disputed over long periods of time [3].
Faster disease progression is consistently associated

with lowered survival [2, 4–8], although many of the
clinical measurements shown to be associated with sur-
vival (e.g. region of symptom onset and Riluzole use.
Riluzole is the only FDA-approved drug for ALS) are
not significantly associated with disease progression [9–
11]. As rates of progression on the ALSFRS are often
used in phase II and III clinical trials, more accurate pre-
dictive models would help researchers in improving trial
efficiency. For purposes of imputation and adaptive trial
simulation, it may be more desirable to consider predic-
tion of the actual ALSFRS as an endpoint, rather than
its slope. Furthermore, ALS patients and their doctors
may also gain more utility out of predicting individual
ALSFRS scores rather than slope.
Our aim was to develop a predictive Bayesian hier-

archical model which could be used to predict individual
ALSFRS scores after 1 year from trial beginning using at
most the first 3 months of clinical trial data. Our base-
line model is a Bayesian hierarchical linear model, which
is similar to a linear mixed effects model. We then com-
pared the predictive power of this baseline model to
those provided by a Bayesian mixture model and a
Bayesian onset-anchored hierarchical linear model. The
onset-anchored model leverages an additional data-point
for each patient which assumes maximum ALSFRS score

at the time of disease onset. Note that the approach of
using an onset-anchor is applicable in modelling other
diseases which utilize a bounded rating scale (Parkin-
son’s disease, Huntington’s disease, etc.). We additionally
consider variable selection to improve model predictive
accuracy, as well as consider model robustness when less
than 3 months of data are available.

Methods
Study population
The datasets analyzed during this study are available in
the Pooled Resource Open-Access ALS Clinical Trials
database (PRO-ACT) (https://nctu.partners.org/ProACT/)
[12]. In 2011, Prize4Life, in collaboration with the North-
east ALS Consortium, and with funding from the ALS
Therapy Alliance, formed the PRO-ACT Consortium. The
data available in the PRO-ACT Database has been volun-
teered by PRO-ACT Consortium members. As of December
2015, PRO-ACT had 4838 unique subjects, each having at
least one reported ALSFRS or ALSFRS-R score. As PRO-
ACT is a collection of data from clinical trials, we further
subset this data to only include subjects that were receiving
placebos. This resulted in 1301 subjects to be considered for
analysis. One patient was later dropped due to having no
data entered for self-reported disease onset time, bringing
the final number of subjects to 1300. For more demographic
information on these subjects, see Table 1.
For these 1300 subjects, we used ALSFRS scores to

measure disease progression. The ALSFRS score is
bounded between 0 and 40, and is typically non-
increasing. Patients with ALSFRS-R scores, the revised
ALSFRS, had their scores converted to the ALSFRS by
summing the scores from the first nine questions of the
ALSFRS-R (which concern motor and bulbar function)
as well as the score from the first respiratory question,
R1: Dyspnea.

Model comparison
Our objective was to build a predictive model with
which we could use the first 3 months of a subject’s data

Table 1 Demographic data for n= 1300 ALS subjects from the PRO-ACT database considered for analysis

Categorical Counts

Sex Male: 812 (63%) Female: 488 (37%)

Race White: 1218 (94%) Black: 22 (2%) Latino: 13 (1%)

Asian: 12 (1%) Indian: 1 (< 1%) Other: 34 (3%)

Riluzole Use Yes: 600 (46%) No: 358 (28%) Not Reported: 342 (26%)

Continuous Mean SD

Age (at trial start) 55.5 11.9

Self-Reported Disease Onset Time (days from trial start) − 658.4 456

Number of ALSFRS scores 9.3 4.5
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to determine their ALSFRS score at 1 year. As very few
subjects had a measurement at exactly 1 year, we instead
used the model to predict each subject’s first score after
day 365, denoted as FRS365. We chose to predict after
12 months because that is a commonly used endpoint in
ALS trials (specifically, only 4 of 18 recent ALS trials
had endpoints shorter than 1 year [13]; due to the linear-
ity of the ALSFRS decline over timespans shorter than 1
year it stands to reason that a linear model which per-
forms well at 12 months would perform well for shorter
endpoints). Three months was chosen as the cutoff be-
cause: 1) this was the window used in the DREAM ALS
Stratification Prize4Life Challenge [14]; 2) 3 months rep-
resented a reasonable amount of time for making
12 month predictions; and 3) is a time frame with utility
for both adaptive trial designs and for imputing missing
data. Ideally, this model would be accurate even when
less than 3 months of subject data are available.
Large amounts of variability are inherently associated

with any ALS model. Bayesian hierarchical models excel
at capturing many sources of variability, which can then
be reported via posterior predictive credible intervals. A
credible interval is preferable for its interpretability: in
the framework of a Bayesian model, there is a 95%
chance that a subject’s FRS365 is within the 95% credible
interval. Note that while the gold standard for confi-
dence intervals is 90% or 95%, this is done to control the
type I error rate. A credible interval, being a statement
of probability, has no such restriction, and thus is useful
with even lower credible levels, such as 70% or 80% [15].
We considered three types of models, which are de-

scribed below: A Bayesian hierarchical linear model, a
Bayesian hierarchical mixture model, and a Bayesian onset-
anchored hierarchical linear model. Note that these models
are all linear with respect to time. This is largely because a
patient in PRO-ACT typically has only one ALSFRS meas-
urement per month, which causes more complicated
models, such as 3-parameter sigmoidal curves, to suffer
from convergence problems. Linearity is also convenient
because the slope parameter can be used as a simple-to-
interpret measure of the disease’s rate of progression.
The models were compared by the distribution of their

posterior mean-square-error (MSE) resulting from a
cross-validation analysis. Cross-validation entails splitting
the data in to a training set with which to build the model,
and a validation set with which to assess the model’s pre-
dictive power [15]. We looked at 10 randomly-sampled
validation sets for each model, and found the results off
the cross-validation to be very robust across the various
training/validation splits. The posterior distribution of the

MSE, denoted gMSE , is defined as follows: for each subject
i, take the square of the difference between their true
FRS365, i and their posterior predictive distribution for

FRS365, i, denoted gFRS365;i . Sum this over all subjects in

the validation set, adjusting for the size of the validation

set. In other words gMSE ¼ Pn
i¼1

ðgFRS365;i−FRS365;iÞ
2

n .
In order to be in the validation set, subjects needed at

least one ALSFRS score after 1 year from baseline.
Again, as the ALSFRS score at 1 year was not specifically
observed for most patients, we instead predicted FRS365,
the subject’s first score after 365 days. Of subjects who
had at least 1 year of data, average FRS365 was 386.7 days,
with standard deviation of 23.7 days and maximum of
577 days. The same training and validation sets were
used to validate all three models.
All analysis was done using R [16], OpenBUGS [17],

and the R package R2openBUGS [18]. Pseudo-code
which describes the model in more detail is provided in
the Additional file 1.

Bayesian hierarchical linear model
Since ALS seems to progress linearly over most of the
1 year time frames in the PRO-ACT database, we started
with a linear hierarchical Bayes mixed effects model with
weak and uninformative priors. Specifically, the ALSFRS
for subject i at time t is modeled as

ALSFRSi tð Þ � T 3 ai þ bit; σ
2

� �

Truncated to ALSFRSi(t) ∈ [0, 40], which is easily done
in OpenBUGS. T3 denotes the centered non-
standardized t-distribution with 3 degrees of freedom
and non-standardized variance σ2. Note that a standard-
ized t-distribution with 3 degrees of freedom would in-
stead have a variance of 1. Parameters ai and bi are the
subject-specific intercept and slope term. A t-
distribution with 3 degrees of freedom was chosen be-
cause a normal distribution was too narrow in the tails.
Additionally, we observed that the residuals from simple
linear regression on subjects (with sufficient amounts of
data) followed a T3 distribution extremely well (see
Fig. 1). To further justify this, we also observed a
massive decrease in model deviance information criteria
(DIC) when using T3 versus the normal distribution. A
reduction of more than 10 to DIC is typically associated
with improved model fit; using the T3 over the normal
resulted in a DIC reduction of over 1700.
Continuing the model description, the hyperpara-

meters ai and bi, in turn, have the following
distributions:

ai � N p0; σ
2
0

� �

bi � N p1; σ
2
1

� �

Where ai is truncated to ai ∈ [0, 40] and bi is truncated
to bi ∈ (−∞, 0]. Weak priors from the literature and dis-
cussions with clinicians were assumed for p0 and p1.
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Specifically Castrillo-Viguera et al. [19] reported that the
ALSFRS-R decline in one database is roughly − 0.92 units
per month with standard error of 0.08. This translates to
roughly an ALSFRS decline of −.025 per day, and leads
us to the following priors:

p0 � N 33; 32
� �

p1 � N −0:025; 0:32
� �

Where the increased error in p1 allows for more
strength in the analysis to come from the data. Generally
subjects with low baseline ALSFRS scores are not en-
rolled in clinical trials, and the prior for p0 was chosen
to reflect this while still allowing a wide range of poten-
tial starting ALSFRS values. Uninformative priors were
assigned to the remaining variables: σ2; σ20; and σ21 are
each given the prior Γ−1(0.001,1000), which is equivalent
to 1

σ2 � Γð0:001; 0:001Þ.
Such a Bayesian model, aside from the weakly in-

formed priors on pi, was suggested by Gomeni et al. [20]
. A key advantage to hierarchical modelling in this way
is that it allows for shrinkage of error resulting from
sample means [21, 22], and also lets subjects with fewer
data points “borrow” information from the remaining
population. The Bayesian analysis also has advantages
with respect to interpretability (especially in a clinical

setting). This model will be referred to as the “linear
model”.

Bayesian hierarchical linear mixture model
A mixture model is useful when each subject belongs to
one of several groups, each group having their own spe-
cific progression distributions. Specifically, Gomeni et al.
[20], suggested that ALS subjects could be classified as
either “fast” or “slow” progressors. To model this, we as-
sume each subject is either a fast or slow progressor, and
assume that each group has their own average rate of
disease progression (parameterized by the mean of the
subject-specific slope). We further assume the slope par-
ameter for fast progressors is strictly steeper (more
negative) than those of slow progressors.
The ALSFRS for subject i at time t is still ALSFRSi(t)~-

T3(ai + bit, σ
2) truncated to ALSFRSi(t) ∈ [0, 40], but now

we let bi � NðΛ; σ21Þ truncated to bi ∈ (−∞, 0]. This
starts the mixture process, with Λ being either Λ1 or Λ2

= (Λ1 + c), where c is a positive constant, with probability
Pr(Λ =Λi) = πi. Finally, we use the following priors:
πi~Dirichlet(1, 1), Λ1 � Nð0; σ2Λ1

Þ . The error terms σ2;

σ21; σ
2
0; σ

2
Λ1

are all assigned uninformative priors of
Γ−1(0.001,1000) and we assign c~N(0,100) truncated to
c ∈ [0,∞) . All other priors and parameters are specified
as in the linear model (2.2.1). This model shall be re-
ferred to as the “mixture model”.

Fig. 1 QQ plots for the residuals obtained from fitting simple linear regression models on subjects that had at least 5 ALSFRS measurements
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Bayesian onset-anchored hierarchical linear model
This model resembles the linear model in structure, but
uses an idea first introduced by Proudfoot et al. [23].
The idea was to create an additional artificial data-
point, referred to as the “onset-anchor”. We do this by
assuming that each subject had an ALSFRS score of 40
(the maximum possible score) at their time of disease
onset (see Fig. 2). Aside from this artificial data point,
the parameters and model specification remain identical
to those given in the linear model. This model is referred
to as the “onset-anchored model”.
Assuming the maximum possible ALSFRS score at dis-

ease onset time was an idea first introduced by Proud-
foot et al. [23]. They used this assumption to create a
slope between the onset anchor and the first observed
ALSFRS score, which was then used as a predictor for
measuring a patient’s disease progression. Our onset-
anchored model, however, treats this additional artificial
data-point as an observed value (specifically, a leverage
point) in the modelling framework.
Considering the simplicity of this approach, the

addition of a non-random leverage point to aid in model
prediction is a surprisingly novel technique. This
method will, however, result in a biased linear regression
model: specifically we would not expect that the differ-
ence between the observed FRS365 and mean of the pos-
terior predictive distribution of FRS365 to be zero on

average (in other words EðgFRS365;i−FRS365;iÞ is not ne-
cessarily zero). Recall that the SE of any prediction is
composed of the sum of the square of the prediction
bias and the prediction variance. In order for this biased
model to predict FRS365 well, the reduction in prediction

variance needs to dramatically outweigh the increase in
prediction bias.

Covariate selection using the onset-anchored model
After choosing a “winner” from the three models men-
tioned above (the onset-anchored model), we wished to
determine which clinical features, if any, improved pre-
dictive accuracy when used as covariates in the model.
Clinical features considered were height, symptom onset
time, sex, age, race, individual sub-questions of the
ALSFRS, forced vital capacity (FVC, both liters and per-
cent predicted of normal), respiratory rate, weight, Rilu-
zole use (yes/ no), and site of onset (bulbar/ limb). Many
lab measurements are included in PRO-ACT, yet due to
their sparse nature, only lab features which were present
in at least 90% of the subjects were considered. Albumin
has been shown to be associated with ALS survival [24]
and was included for analysis even though it was only
present in 86% of subjects. The following lab features
were considered in our analysis: chloride, serum aspar-
tate aminotransferase (AST), glucose, sodium, blood
urea nitrogen, potassium, bilirubin, alanine transaminase
(ALT), creatinine, and albumin.
Many of these features were repeated measures. To

use them as covariates, they were truncated to at most
3 months (for both the training and the testing set) and
then collapsed to slope and intercept (baseline) mea-
sures. Specifically, we performed a linear regression on
the feature with respect to time (truncated at 3 months),
and extracted the ordinary least squares estimates for
the slope and intercept. While true baseline data would
be preferable over the ordinary least squares intercept
estimator, baseline data was frequently not available.
Therefore the ordinary least squares intercept estimator
was chosen for homogeneity. Collapsing longitudinal
predictors has been successfully employed in other ALS
predictive models [25, 26], and greatly simplifies the
modeling process. All features were normalized using
their sample means and variances for ease of analysis
and interpretability.
As we were more interested in predictive power, our

criteria for feature selection was improvement to the
average MSE resulting from predicting FRS365 in 100
replicates of cross validation using repeated random sub
samples (Monte Carlo cross-validation). This method
was chosen rather than choosing covariates based on
statistical significance as given by a small p-value. Devi-
ance information criterion (DIC) was also considered in
assessing whether features improved the model or not.
The specifics of our covariate random sub-sampling

cross validations are as follows: For the covariate of
interest, a single replicate (of 100) first begins by ran-
domly subsetting the overall data in to 300 subjects with
non-missing entries. While multiple imputation could be
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Fig. 2 Ordinary least-squares estimates for two models: the linear
model uses data from zero to 3 months only, while the onset-
anchored model includes an additional artificial data-point. This time
point is given as (x, y)= (time-point of disease onset-time, maximal
ALSFRS of 40)
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used here, we chose to only use complete cases to dras-
tically reduce computation time as well as eliminate po-
tential convergence problems. Of this subset, we
randomly chose a validation and testing set (30 subjects
in validation, 270 in testing), built onset-anchored
models both using and not using the covariate, and
compared the average difference in posterior MSE. This
is a single replicate, and we repeat this 100 times for
each covariate. We then analyzed the average effect of
including the covariate over these 100 replicates (for
each covariate). Specifically, we considered the two
onset-anchored models (for the full model specification,
see Additional file 1):
Covariate onset-anchored model:

ALSFRSi tð Þ � T 3 b0i þ b1it; σ
2

� �

;ALSFRSi∈ 0; 40½ �
b0i � N p00 þ p01Xi; σ

2
0

� �

; b0i∈ 0; 40½ �
b1i � N p10 þ p11Xi; σ

2
1

� �

; b1i∈ −∞; 0ð �
Baseline (no covariate) onset-anchored model:

ALSFRSi tð Þ � T 3 b0i þ b1it; σ
2

� �

;ALSFRSi∈ 0; 40½ �
b0i � N p00; σ

2
0

� �

; b0i∈ 0; 40½ �
b1i � N p10; σ

2
1

� �

; b1i∈ −∞; 0ð �
Where Xi is the subject-specific covariate, ti is time for

subject i. The slope of subject i is b1i which, in the co-
variate model, is a function depending on Xi. Similarly,
b0i is the subject-specific intercept. As per hierarchical
modelling, we assume priors only for the hyperpara-
meters pjk (j = 0, 1 and k = 0, 1). As per the linear model,
the following weak priors were assumed:

p00 � N 33; 32
� �

p10 � N −0:025; 0:32
� �

Uninformative priors were assigned for the remaining
parameters in both models: σ2 and σ2i are given
Γ−1(0.001,1000); p01 and p11 are given N(0,1002) (see
Additional file 1).

Results
We investigated the predictive power of three types of
Bayesian hierarchical models: linear, mixture, and onset-
anchored. In a Bayesian framework, when cross-
validating a model, the resultant MSE has a posterior
distribution which takes in to account all of the sources
of variation within the model. Specifically, these sources
of variation include 1) variation within the model; 2)
variation of the posterior parameters; and 3) the vari-
ation of the posterior predictive distribution. Therefore
it is important to not only lower the MSE but to also

decrease its variance. Of the three models, the onset-
anchored model not only had the smallest MSE but also
had the MSE with the smallest variance (Fig. 3). Note
that the DIC between the onset-anchored model and the
standard linear model cannot be compared, because the
additional data-point in the onset-anchored model re-
sults in a different likelihood.
The MSE for the onset-anchored model is not only

smaller in terms of expectation (In Fig. 3 the means of
the MSE for the onset-anchored, mixture model, and
linear model were 51.1, 68.5, and 73.7 respectively) but
also has the smallest variance. We also considered a
mixture model which utilized the additional data-point
given by the onset-anchor. This complex model per-
formed about as well as the more parsimonious onset-
anchored model, which can be seen by their nearly over-
lapping MSE distributions in Fig. 3.
Since from Fig. 1 shows that the onset-anchored

model to be the winner, we decided to check the robust-
ness of this result by repeated random sub-sampling
cross validation (25 replications). We specifically com-
pared the posterior mean MSE between the linear and
onset-anchored models for randomly selected training/
testing splits. On average, the onset-anchored model had
a posterior mean MSE that was 20.7 (standard deviation
4.1) less than the linear model (a figure is provided in
the Additional file 1).
We next attempted to find which covariates or fea-

tures could consistently improve the MSE of the onset-
anchored model, or decrease the DIC. While many
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Fig. 3 Comparison of posterior MSE distribution for four types of
hierarchical models: linear, onset-anchored, mixture, and mixture
with the additional data-point used in the onset-anchored model.
This is from a single replicate of the cross-validation analysis, but this
separation of distributions is typical
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clinical and lab predictors had nonzero effects on the
posterior slope and intercept (meaning p11 and/ or p01
were nonzero), very few predictors consistently im-
proved the MSE, and among those that did, the im-
provement to the MSE was very small (Table 2). Some
variables, such as FVC: Subject Liters (slope) and FVC:
Percent Normal (slope) reduced DIC (each reduced DIC
by about 3.45), however they did not contribute towards
a meaningful improvement in predictive power. Of the
53 covariates tested, only “disease onset time” resulted
in an improvement to the MSE which was on average
greater than 1%. This is most likely due to disease onset
time giving a slight bias correction to the model. The
next best covariates were subject’s 3-month slope of
FVC (in raw liters) and 3-month slope of the first ques-
tion from the ALSFRS: Q1, Speech.
Recall that several of these clinical values have been

found to be associated with survival, including Forced
Vital Capacity (FVC), age of onset, and site of onset
(bulbar or limb, which can help differentiate subtypes of
ALS). However, none of these covariates have been con-
sistently useful for modelling ALSFRS progression [9],
and this is consistent with our findings. Riluzole use, in
particular, worsened MSE by a median of 0.09% (see
Additional file 1 for expanded Table 2). Again, this is
not surprising as Riluzole has only a weak effect on sur-
vival and has not been shown to be consistently associ-
ated with decreased disease progression [10, 27].
To appropriately predict the ALSFRS for a given sub-

ject after 1 year from trial onset using data collected up
to 3 months after trial onset, a measure of uncertainty
must be reported as well. Since a Bayesian analysis in-
stead was performed, we can obtain 95% credible inter-
vals for each subject’s predicted FRS365 (equivalently the

posterior predictive interval for gFRS365 ). Figs. 4 and 5
give a sample of posterior distributions from a cross-

validation for nine randomly-selected subjects’ gFRS365, as
well as their 95% credible intervals and true FRS365 (the
subject’s first score at, or after, 365 days). To further
demonstrate the improved predictive power of the
onset-anchored model, this is done for both the standard
linear model (Fig. 4) as well was the onset-anchored
model (Fig. 5). It can be noted that the credible intervals
for the linear model are very wide, encompassing nearly
the full range of the disease. As the time of data collec-
tion used to make the prediction increases from
3 months, this prediction becomes more accurate.
The performance of the onset-anchored model is

vastly superior to that of the linear model when the
length of time for data collection is short. Figure 6
shows that the onset-anchored model, using only base-
line data, typically outperforms a linear model using
many months of subject data. Figure 6 also shows that
the onset-anchored model performs well even when the

window for data capture is restricted less than 3 months,
including when only a baseline measurement is available
for each subject. Finally, it also shows that as the more
data is used to build the prediction, the benefit of in-
cluding an anchor decreases. These models do not in-
clude any longitudinal covariates that were tested
previously, so we are not relying upon measurements
that do not exist yet.
Recall that, while MSE of prediction is drastically re-

duced when using the onset-anchored model, it is in fact
a biased model. The additional data-point causes the
model to typically underestimate the rate of disease pro-
gression, resulting in a higher predicted FRS365 than ob-
served. Using the onset-anchored model resulted in a
prediction bias of, on average, about 2 (on the ALSFRS
scale). For comparison, the linear model was typically
unbiased.
Finally, one way to measure progression of ALS is by

the slope of the ALSFRS. An advantage to using the
Bayesian hierarchical framework is that the ALSFRS
slope for subject i, defined previously as b1i, is specified
in the model likelihood and therefore has a posterior
distribution. Thus, one can then obtain a posterior esti-
mate and credible interval for subject i′ s slope from this
distribution. In other words, when using this model one
can easily predict slope for a given subject in addition to
FRS365. Examples of the posterior predictive distribu-
tions for the ALSFRS slope using the onset-anchored
model and 3 months of data, with 90% credible intervals,
is provided in Fig. 7 for the same nine subjects used in
Figs. 4 and 5. Also included in Fig. 7 are the posterior
predictive slopes from the linear model. It should be
noted that, on average, the MSE of predicting slope is
smaller when using the onset-anchored model versus the
linear model (using 3 months of data to predict slope at
1 year). As the onset-anchored model performs well
even when using only baseline data, subject slopes could
be predicted using this model as soon as a baseline
ALSFRS score has been established.

Discussion
We explored three different Bayesian hierarchical pre-
dictive models with the goal of modelling ALS disease
progression. These models were linear, mixture, and
onset-anchored. The onset-anchored model, which uses
an additional data-point by assuming the maximum
ALSFRS score at time of disease onset (e.g. 40), is the
best model in terms of predictive accuracy via cross-
validation. This is especially noticeable when the window
for data capture is very small, such as only using a base-
line ALSFRS score.
While linear over the course of a typical clinical trial,

progression of the ALSFRS could become curvilinear
over long periods of time. This is further reinforced by
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Table 2 Median reduction to MSE, in percentage, for covariates which improved the MSE in the onset-anchored model. The inter-
quartile range (IQR) for the percent reduction as well as average difference in DIC is shown as well

Covariate Name Median % MSE reduction (negative values signify an
increase to the MSE)

IQR for % MSE
reduction

Mean DIC adjustment (larger values result
in larger DIC)

Onset Time 0.0174 0.027 2.8

FVC: Subject Liters
(slope)

0.0095 0.02 −3.5

Q1: Speech (slope) 0.0081 0.0187 0.8

Diagnosis Time 0.0059 0.0183 −2.1

Q7: Turning in
Bed(slope)

0.0052 0.0182 −3.5

Q8: Walking (slope) 0.0052 0.0254 −2.2

AST (slope) 0.0043 0.0179 −0.3

Q5: Cutting (slope) 0.0043 0.0202 −1.5

Q6: Dressing/Hygiene
(slope)

0.0039 0.0223 −1.9

ALT (slope) 0.0034 0.0166 0.1

Q2: Salivation (slope) 0.0032 0.0195 1.7

Q9: Climbing Stairs
(slope)

0.003 0.0232 −2

AST (intercept) 0.0028 0.0162 0.8

FVC: Percent Normal
(slope)

0.0025 0.0225 −3.4

Race 0.0021 0.0156 −0.1

ALT (intercept) 0.0021 0.0182 −0.7

Bilirubin Total (slope) 0.0019 0.0196 −0.5

Respiratory Rate
(intercept)

0.0017 0.0146 0.3

Q2: Salivation
(intercept)

0.0013 0.0203 −1.4

Creatinine (intercept) 0.0011 0.0152 −0.7

Age 0.001 0.0185 −2.1

Q1: Speech (intercept) 0.001 0.0224 2.2

Potassium (slope) 0.001 0.0136 −0.9

Onset Site: Bulbar 0.001 0.0171 −0.5

Height 0.0009 0.0169 0.8

Weight (slope) 0.0009 0.0174 −1.7

Sodium (intercept) 0.0008 0.0188 1

Bilirubin Total
(intercept)

0.0008 0.0183 0.8

Sex 0.0006 0.0169 −0.4

Q10: Respiratory
(slope)

0.0006 0.0153 0.8

Q4: Handwriting
(slope)

0.0006 0.0206 −0.7

Weight (intercept) 0.0006 0.0181 −0.5

Q5: Cutting (intercept) 0.0002 0.0224 −4.1
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Fig. 4 Posterior predictive distributions for a random sample of subjects’ FRS365 obtained through cross-validation utilizing the standard
linear model
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Fig. 5 Posterior predictive distributions for a random sample of subjects’ FRS365 obtained through cross-validation utilizing the
onset-anchored model
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the fact that it is bounded between 0 and 40, and is
typically non-increasing. Predictive models that at-
tempt to account for this non-linear progression suf-
fer from a disparity between the number of subject-
specific data-points and the necessary number of
model parameters. We hypothesize that using the

onset-anchor helps to “balance” this prediction (see
Fig. 2), while also enabling shrinkage on the slope es-
timator. The result is a model that has reduced vari-
ability of parameter estimates (at the cost of a small
increase in bias), which enables a large reduction in
overall prediction MSE.
Using 3 months of subjects’ data, we found that very

few clinical features improved prediction as measured by
the MSE of repeated cross-validation analysis. Among
those features that did consistently improve the MSE,
the improvement was rarely more than a 1% reduction.
This corroborates findings by Creemers et al. [9] who
found the quality of evidence among disease progression
prognostic factors to be low at best. The covariate which
offered the largest and most consistent improvement to
the model’s prediction was disease onset time. As disease
onset time is also a key part of the onset-anchor model,
this stresses its importance, supporting other studies
which have shown that onset time is strongly associated
with disease progression as well as survival [5, 6, 25].
We found that the onset-anchored model performs

well when predicting ALSFRS scores after 1 year even
when less than 3 months of data is available. This is still
true when the prediction is to be made for 6 months ra-
ther than 1 year; thus ALS trials which have endpoints
earlier than 1 year can still benefit from the onset-
anchored model. The predictive performance for
6 month prediction was proportional to that given in
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Fig. 6; when less than 2 months of data is available the
onset-anchor model outperforms the linear model.
From a practical point of view, a model which only re-

quires time of disease onset and at most 3 months of pro-
gression data eases both patient and clinician burden by
requiring less overall measurements. The Bayesian model-
ing approach proposed here can help inform the design of
adaptive studies, and be used as an imputation scheme to
conduct trials more quickly [28–30]. Finally patients with
ALS are routinely interested in charting their own pro-
gression, as well as trying interventions which might in-
clude treatments for spasticity or pain, or supplements
geared towards slowing disease progression. In conjunc-
tion with a self-administered ALSFRS, the onset-anchored
model then becomes a predictive tool that an ALS patient
can use aid them in tracking their disease and assess the
utility of self-administered interventions.
While the idea of using an additional data point as used

by the onset-anchored model is simple, it is surprisingly
novel. Assuming minimal disease progression at disease
onset time (utilizing the upper bound of the ALSFRS) is a
sort of intelligent imputation, but differs from traditional
imputation in that we are not filling in missing data
“gaps”. This is because none of the patients actually have
an observed ALSFRS score at disease onset time.
Creating biased models to improve predictive MSE is

not uncommon, and is used in ideas like fixed-point re-
gression or ridge regression. However, using an artificially
created data-point and treating it as observed data is
something that, to the best of our knowledge, is some-
thing that has never been used before. We have found no
literature where it is theoretically discussed or practically
used. This methodology could be applied to any longitu-
dinal data where the onset time of the process being mod-
elled is known. Other diseases which have bounded rating
scales which measure progression, including Parkinson’s
disease or Huntington’s disease, might benefit tremen-
dously from predictions that utilize an onset-anchor.
One limitation to the current study is that subjects who

died before the clinical trial had progressed a full year were
not candidates for cross validation, and hence did not dir-
ectly contribute to the MSE. However, the Bayesian frame-
work allows these subjects to be included in building the
model, where their often increased rates of disease progres-
sion contribute to the variability of the model. Specifically,
subjects who died prior to 1 year still contributed towards
key model variables, including the distributions of rate of
progression, effects of covariates, and variability measures
throughout the model. Subjects who died prior to 1 year
also had, on average, a lower predicted FRS365 than subjects
who survived past 1 year. This is expected since a faster
progression is associated with lowered survival.
Another limitation is the width of the posterior predict-

ive distributions among individual subjects’ FRS365. These

distributions express a combination of variation within
the model, variation of the posterior parameters, and vari-
ation of the posterior predictive distribution. Due to the
heterogeneity of ALS, it is not unexpected that FRS365 can
range widely at the individual-patient level. This will re-
main a limitation of any predictive model until better fac-
tors which are more strongly associated with disease
progression (rather than survival) are discovered.
The onset-anchored model’s inherent bias is another

limitation of the model. This is the typical concern with
any biased linear model, but in this case we can see that
the reduction in the onset-anchored model’s MSE is
worth the tradeoff. Problems associated with the bias in-
clude the interpretation of the 95% posterior predictive
intervals of FRS365, (which are correct 73% of the time),
as well as the underestimation of slope parameters. A
possible solution might be to investigate a bias-
correction term which would utilize disease-onset time
as well as the number of days after the start of the trial
that is associated with FRS365 (such as including an over-
all error term to disease onset time).
One final limitation worth pointing out is that disease

onset time, a critical feature of the onset-anchored
model, is a problematic variable. This variable typically
comes from patient memory, and as a result is subject to
recall bias. Proudfoot et al. point out that while this bias
exists, using patient-recalled onset time is still a useful
predictor for disease progression [23], and this is corrob-
orated by our model.
Continuing this last point, we attempted to incorporate

the recall bias of disease onset time in the onset-anchored
model by including a normally distributed random error
term associated with onset time (with vague priors on the
parameters). We compared the models with and without
this random error (similar to our covariate analysis), and
found that including this random error typically improved
the MSE by 5.8% (with interquartile range of 4.2%). This
improvement is especially impressive when one recalls
that the “best” covariate (disease onset time) only im-
proved the model MSE by 1.7%. However, we only observe
this improvement when the error term is shared across all
subjects; if each subject is given their own individual error
term then the models perform exactly the same. This
leads us to believe that this error term is serving as a bias-
correction term to the model.

Conclusions
In this paper we considered the problem of predicting
an ALS patient’s ALSFRS score at 1 year, given up to
3 months of data. Three different Bayesian hierarchical
predictive models were considered: linear, mixture, and
onset-anchored. The onset-anchored model, which le-
verages an additional artificial data-point which assumes
the maximum ALSFRS score of 40 at the patient’s time
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of disease onset, is the best model with respect to pre-
dictive accuracy under cross-validation. The onset-
anchored model is simple to implement, and is poten-
tially applicable to various other diseases which measure
progression by bounded rating scales.
The effect of many covariates (lab values, demographic

information, etc.) on these predictions was assessed via re-
peated cross-validation. The result is that time of disease
onset is the only covariate which provides a consistent im-
provement to predictions, but this is a very small improve-
ment. This highlights the urgent need to develop a better
understanding of the mechanism behind ALS progression.
The onset-anchored model has an added benefit over

the other models in that it allows predictions as early as
directly after the baseline measure. In other words, as
soon as the first ALSFRS measure is taken in a clinical
trial, the model can be utilized for endpoint prediction
of the ALSFRS. We hope this model can be used by cli-
nicians and statisticians to improve the efficacy of clin-
ical trials and aid in finding treatments for ALS.

Additional file
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covariate table. (DOCX 18 kb)
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