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Abstract

Background: In pharmacoepidemiology, the prescription preference-based instrumental variables (IV) are often
used with linear models to solve the endogeneity due to unobserved confounders even when the outcome and the
endogenous treatment are dichotomous variables. Using this instrumental variable, we proceed by Monte-Carlo
simulations to compare the IV-based generalized method of moment (IV-GMM) and the two-stage residual inclusion
(2SRI) method in this context.

Methods: We established the formula allowing us to compute the instrument’s strength and the confounding level in
the context of logistic regression models. We then varied the instrument’s strength and the confounding level to cover
a large range of scenarios in the simulation study. We also explore two prescription preference-based instruments.

Results: We found that the 2SRI is less biased than the other methods and yields satisfactory confidence intervals.
The proportion of previous patients of the same physician who were prescribed the treatment of interest displayed a
good performance as a proxy of the physician’s preference instrument.

Conclusions: This work shows that when analysing real data with dichotomous outcome and exposure, appropriate
2SRI estimation could be used in presence of unmeasured confounding.

Keywords: Instrumental variable, Nonlinear least squares, Logistic regression, Physician’s prescription preference,
Pharmacoepidemiology, Observational studies, Simulation study

Background
In observational studies, unobserved confounding may
biase the estimation of target effect. Over the last decade,
this issue has recieved a growing attention in the field
of epidemiological studies attempting to assess adverse
effects of drugs with a few works focusing on instrumental
variable (IV) approaches. Instrumental variable estima-
tion is a well known approach for assessing endogeneity in
statistical modelling [1, 2]. Endogeneity often arises when
a causal model is poorly specified therby introducing a
structural bias in the estimation of its parameters. This
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may result from a measurement error in variables [3], an
unobserved variable [4] or an inverse causality between
the outcome and some regressors. The general IV method
of estimation attempts to remove this bias by using struc-
tural equations which incorporate instrumental variables
in the model. Several theoretical approaches have been
developed to build estimators of parameters and to study
the properties of these estimators in causal models with
endogeneity (see [5]). A well-known example is the case of
linear models in which IV estimation leads to estimators
with good properties of convergence such as consistency
discussed in [6]. The structural bias can be completely
removed in this case.
In pharmacoepidemiology, we most often deal with

binary covariables (drug exposure), binary responses
(adverse event indicator) and confounding variables
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which are variables that are correlated with exposure and
response. A nonlinear model should be the first choice
in this context to match with the specific nature of the
variables. However, to quantify the risk of the adverse
effect of a treatment in the presence of unobserved con-
founding, researchers investigating the IV-based estima-
tion often model the probability of dichotomous events
as a linear function of covariables, thus ignoring the basic
features of a probability. Terza and colleagues [7] investi-
gated the influences of mispecification on the estimation
when a linear IV model is used in an inherently non-
linear regression setting with endogeneity. A substantial
bias was demonstrated in their results. In the context of
pharmacoepidemiology modelling, endogeneity is often
due to unobserved confounding and various nonlinear
IV methods such as the Generalized Method of Moment
(GMM;[8, 9]) or the two-stage residual inclusion (2SRI;
[10]) can be used to solve this issue. However in a review
of IV methods, Klungel and colleagues [11] claimed that
the GMM estimator with the logistic regression model is
not consistent for causal Odd Ratio (OR) estimation owing
to the non-collapsibility of the OR. Consistency is also
not guaranteed for the 2SRI when the regression mod-
els are nonlinear in both stages. For these nonlinear IV
methods, theoretical results exist under very restricted
assumptions which do not cover the possible frameworks
of real data. Overall, in the context of binary outcome
several simulation studies investigate mainly 2-stage IV
methods with the first step being linear and the second
step being logistic as in [12]. A few articles concern double
probit models (Chapman et al. [13]). Very few address the
comparison of GMM and 2-stage approaches and none
study GMM, 2-stage double logistic using the prescription
preference-based instrumental variables.
In a simulation study, we compare the IV-based GMM

and the 2SRI methods to the conventional method which
does not account for endogeneity. These comparisons are
based on the estimation of the regression coefficient of the
exposure varible in nonlinear logistic model. Our numer-
ical comparison of the methods involves several scenarios
with different confounding levels and different instrument
strengths for which computation formulas are established
in the context of dichotomous outcome and exposure. We
recall the general formula of the covariance matrix for the
two-step estimation methods and give the corresponding
expression for two-stage nonlinear least squares method
in the context of logistic regressions.
The paper is organized as follows: we specify the model

and describe the methods of estimation that will be anal-
ysed. Then we describe the simulation design, the criteria
for evaluating the performances of the methods and the
results of our simulations. The final sections discuss the
results and make some concluding remarks. Details on
the computation of the covariance matrix of the 2SRI

method, the instrument’s strength and the confounding
level are to be found in the appendices, as well as a detailed
description of the simulation model and supplementary
results.

Methods
Model
We consider a general model with dichotomous outcome
and exposure that can be written as

Y = F(β0 + Tβt + X1β1 + X2β2 + Xuβu) + e (1)

E(T |Z,X1,X2,Xu) = r(α0 +Zαz +X1α1 +X2α2 +Xu)

(2)

with Y and T as binary outcome (event or not) and
treatment (T1 or T2) respectively, X1,X2 some covari-
ables and Xu an unobserved confounder of the outcome
and treatment. The function F(.) = r(.) denotes the
logistic distribution function also known as expit(.) :
expit(.) = exp(.)/(1+exp(.)) and e denotes the error term.
The parameter β = (β0,βt ,β1,β2) denotes the vector
of unknown parameters to be estimated. Without a con-
founding variable, all observed regressors are exogenous.
In this case, the true model is written

Y = F(β0 + Tβt + X1β1 + X2β2) + e (3)

and conventional regression methods are suitable for esti-
mating the parameters β . We will denote (3) the con-
ventional model. If this model is adjusted to data in the
presence of an unobserved confounder, the estimated
coefficients would lead to a bias with a level depend-
ing on the confounding level. As the confounder Xu is
not independent of treatment, the residuals of the con-
ventional model are associated with the treatment. This
causes endogeneity so a single regression of the outcome
on observed covariables will fail to estimate βt efficiently.
A common strategy is to consider another regression
model that links the endogenous variable with others.
Equation (2) defines the auxiliary model that predicts
treatment T as a function of covariables X1, X2, the con-
founder Xu and another variable Z. Variable Z denotes
the instrumental variable (or instrument) related to the
treatment, i.e. a variable correlated with the treatment and
which has no direct association with the outcome.
The bias due to the unobserved confounder can signif-

icantly be reduced by means of the two-stage regression
model using a valid instrument. As defined by Johnston
and colleagues [14] andGreenland [15], a valid instrument
must not be correlated with an unobserved confounder
or with the error term in the true model (1). Formally,
we assume that the instrument Z meets the following
assumptions:
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• Cov(Z,Y |T ,Xu,X1,X2) = 0,
• Cov(Z,T) �= 0,
• Cov(Z,Xu) = 0, Cov(Z,X1) = 0 and Cov(Z,X2) = 0.

We also assume that the confounderXu is not associated
with the covariables X1 and X2, that is Cov(Xu,X1) = 0
and Cov(Xu,X2) = 0. The main goal is to estimate βt ,
the treatment coefficient which is the basis of risk evalua-
tion; however an estimation of βt is obtained in general by
estimating vector β which is discussed below.
As already proved in the simple case of a linear model

(for which the functions F and r are equal to identity in
Eqs. (1) and (2)), a high association between the treatment
and an instrument should improve the IV estimation of β .
Finding a strong instrument is then a crucial step in all
procedures of instrumental variable estimation.
In what follows, we first present some specific instru-

mental variables often used in pharmacoepidemiology,
then discuss some IV estimators of β to obtain an estimate
of βt before addressing the properties of these estimators.

Instrument in pharmacoepidemiology
An instrumental variable can be determined in many
ways, provided that it meets the assumptions listed above.
One of the problems is to find a valid instrument with
a reasonable strength. The strength of an instrumental
variable can be defined as resulting from the level of its
association with the endogenous treatment. As such, it
could be quantified by using the correlation coefficient
between the treatment and the related instrument. In the
wide range of pharmacoepidemiologic applications, we
can summarize the various instrumental variables in three
categories:
Geographical variation. Proximity to the care provider

can positively influence access to treatment of a patient
compared to others who live far away from health ser-
vices. To account for this difference between patients,
some researchers (see [16]) consider the distance between
a patient and a care provider as an instrumental variable.
Although this seems realistic as there is no direct associa-
tion between this distance and the occurrence of disease,
the presence or absence of health services can be associ-
ated with some socioeconomic characteristics. The latter
are often considered as unmeasured confounders that call
into question the suitability of using this instrument.
Calendar time. The use of calendar time as an instru-

ment in pharmacoepidemiology often relies on the occur-
rence of an event that could change the attitude of the
physician or patient regarding a treatment. This could be
a change in guidelines for example or a change due to the
arrival of a new drug on the market. The time from that
event to the date of treatment defines the calendar time
which clearly affects the outcome of the treatment since
the change in physician or patient attitude will be more

pronounced immediately after the event has occurred
than later. An example of use of calendar time as an
instrument can be found in [17].
Physician’s prescription preference. The most often

used instrumental variables in pharmacoepidemiology are
preference-based [18–20]. The issue is to compare the
effectiveness of two treatments T1 and T2 when the
assignment of treatment to the patient is not random-
ized. This is the case in observational studies where the
prescriber of the treatment (the physician) introduces
an effect that influences the outcome via the prescribed
treatment. This effect results in the instrumental vari-
able that reflects the influence of care-providers on the
patient-treatment relationship. Brookhart and colleagues
[21] define this instrumental variable as the “Physician’s
Preference” (PP) and propose to use the treatment pre-
scribed by a physician to its previous patient as a proxy of
this IV for his/her new patient.
The instrumental variable

(
Z∗
i
)
of the ith patient will

then be the treatment prescribed to the previous patient
of the same physician. As a physician’s preference could
change over time, Abrahamowicz and colleagues [22]
introduce a new procedure to detect the change point
and build a new proxy of PP that includes not only the
treatment prescribed to the previous patient but all the
previous prescriptions since the change point.
Those instrumental variables and some others are pre-

sented in a more detailed form in [23], [24, 25] or in
[26] with enlightening discussion on their validity. In this
work, we carry out a simulation study to examine how
the proxy Z∗ of physician’s preference performs in the
context of logistic regression. We also examine the physi-
cian’s preference-based IV in the continuous form (see
[22]), i.e. the proportion (pr) of all previous patients of
the same physician who were prescribed the treatment
of interest. This corresponds to the empirical estimator
of the probability for a physician to prefer the treatment of
interest.

IV Estimation of βt

Estimating βt in model (1) with an unobserved con-
founder Xu amounts to estimating vector β and taking
the corresponding component of treatment T . Below, we
present two methods that can provide consistent esti-
mation of β and then that of βt : the two-stage residual
inclusion (2SRI) method and the generalized method of
moment (GMM).
The two-stage residual inclusion method is a modified

version of the two-stage least squares (2SLS) method used
to estimate the parameters in linear models with instru-
mental variables. As mentioned by Greene [5], the first
stage of the 2SLS method predicts the endogenous vari-
able (the treatment here) using the instruments and other
covariables (Eq. (2)). In the second stage, the endogenous
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variable is just replaced by its prediction from the first
stage. This method is called two-stage predictor substitu-
tion (2SPS) when the first stage is nonlinear. Unlike the
2SLS, the residuals of the first regression serve as a regres-
sor in the second stage of 2SRI method. This method
also generalizes to the nonlinear models i.e. when first
and second stages are nonlinear. The rationale of this
approach can be intrinsically related to the form of the
true model: sometimes, the prediction equation of the
outcome includes the error term of the auxiliary regres-
sion. An example is the case when the confounder is the
only source of error in the auxiliary regression as con-
sidered in [27]. In a linear model, both 2SPS and 2SRI
approaches are equivalent.
The GMM is an alternative method for obtaining a reli-

able estimator of parameter β in a model with an endoge-
nous variable. It is based on the classical assumption

E(e|T ,X1,X2,Xu) = 0 (4)
of the error term in Eq. (1). This assumption does not
hold in general because the confounder Xu is unobserved
(i.e. E(e|T ,X1,X2) �= 0). In this case, the treatment
is endogenous and its coefficient βt cannot be consis-
tently estimated. One suppose in general that there exists
some observable instruments w1 such that E(e|w) = 0
with w = (w1,X1,X2). Typically, w corresponds to
the vector of exogenous and endogenous variables with
endogenous regressors replaced by their corresponding
instruments. Using the law of iterated expectation, the last
condition implies

E(e.w) = 0. (5)

The method of moment solves the empirical version of
(5) in β , i.e. 1

n
∑n

i=1 eiwi = 0 where n is the sample size, ei
is the ith component of e and wi the ith row of w. In turn,
the GMMminimizes the quadratic form

q(β) =
(
1
n

n∑

i=1
eiwi

)′

�

(
1
n

n∑

i=1
eiwi

)

(6)

where � denotes a weighting matrix. As discussed in [28],
there are several choices for matrix � leading to different
estimators of β . The optimal approach is to define � as
the inverse of the asymptotic covariance matrix (depend-
ing on β) of the estimator. Some alternative procedures
are also suggested by Hansen and colleagues [29].

Properties
The properties of the 2SRI are addressed by Terza in [27]
when the residual also acting as unobserved confounder in
the first-stage regression (at Eq. (2)) is additive. Under this
assumption and using nonlinear least squares regression
in each stage, they show the consistency of the estima-
tor β̂ from the second stage. Since the confounder is not

additive in the model (2), the first stage estimate of a 2SRI
will not be consistent, nor will β̂ . The residual from the
first-stage is indeed an unknown function of an unob-
served confounder. Then there is a bias that depends on
the form of this unknown function when one applies the
2SRI method to the structural model at Eqs. (1) and (2).
The derivation of the covariance matrix of 2SRI estima-
tor follows a two-step regression covariance matrix of
the form

Var(β̂) =
(
A−1
22 S2A

−1′
22

)
/n +

(
A−1
22 A21A−1

11 S1A
−1′
11 A′

21A
−1′
22

)
/n

−
(
A−1
22 S21A

−1′
11 A′

21A
−1′
22

)
/n,

(7)

where the computation of matrices A and S is given in
Appendix A.
The GMM is a well documented estimation procedure.

Both in linear and nonlinear models, several results on
the estimator have already been established. In the liter-
ature on econometric analysis, the nonlinear GMM with
an instrumental variable has received particular atten-
tion. In the pioneering work by Amemiya [30], the author
demonstrated the consistency and derived the asymp-
totic distribution of the nonlinear two-stage least squares
estimator (NL2SLS).
This result provided an important insight into how to

handle nonlinear models with endogeneity. Later, Hansen
[31] showed the asymptotic properties (consistency and
asymptotic distribution) of the GMM to be a kind of gen-
eralization of the NL2SLS. More recently, Cameron and
Trivedi [28] reviewed the method and gave details on
the computation of the estimator’s covariance matrix in
some specific cases. Despite the different results on the
GMM with an instrumental variable, its performances in
terms of bias and variance depend on the validity and
strength of the instrument and the nature of the variables
in the model. The computation of the covariance matrix
of GMM is given in [28] and implemented in dedicated
softwares of which [32] is a good example.
Below, we investigate the performances of these meth-

ods with numerical experiments.

Simulation design and data generation
A numerical experiment was conducted to investigate and
compare several methods of IV estimation in the context
of a dichotomous outcome and exposure with endogeneity
in pharmacoepidemiology. In this experiment, we cover
a wide range of possible scenarios. We choose values of
parameter α = (α0,αz,α1,α2) corresponding to some val-
ues of correlation between the variable T∗ = α0 + PPαz +
X1α1 + X2α2 + Xu and the Physician’s prescribing Pref-
erence instrument PP. In fact, we keep α0, α1 and α2
fixed and only αz varies from a scenario to the other. The



Koladjo et al. BMCMedical ResearchMethodology  (2018) 18:61 Page 5 of 14

computation of this correlation is given in Appendix B.
It somewhat reflects the strength of the instrument when
the confounder and other covariables are kept fixed. For
each value of the instrument’s strength, there are three
levels of confounding measured by the standard deviation
σu of the confounding variable Xu, σu ∈ {0.5, 1, 1.5} which
leads to a set of correlations between T∗ and Xu. We then
have nine scenarios of strengths and confounding level.
For each scenario, we generate ns = 1000 Monte Carlo

samples of size n, n = 10000, 20000 and 30000. The num-
ber of patients per physician is kept fixed and equals 100;
the confounder Xu and covariates X1 and X2 are assumed
to have the normal distributions N(0, σu), N(−2, 1) and
N(−3, 1) respectively and the physician’s prescribing pref-
erence has the Bernoulli distribution B(0.7). We first sim-
ulate the covariables X1 and X2, the confounder Xu and
the physician’s prescribing preference which is the same
for all the patients of the same physician. Using the already
fixed values of parameters α, the probability pi that patient
i will be prescribed the drug of interest is calculated by
inverting the logit function, i.e. pi = F(α0 + PPiαz +
X1iα1+X2iα2+Xui). Treatment Ti of patient i is then gen-
erated as a Bernoulli realisation with parameter pi. The
same procedure as for the treatment is used to simulate for
each patient i, the corresponding outcome yi. We fixed the
parameter α such that the proportion of exposed patients
ranges between 2 and 6% and the prevalence of the event
of interest is chosen to be smaller than 5% to reflect a
real-life situation of a new treatment (not frequently pre-
scribed) and rare adverse event. With the fixed value of β ,
we compute the probability F(β0 +Tiβt +X1iβ1 +X2iβ2 +
Xuiβu) of the event for patient i and then simulate his out-
come yi. We also explored a more balanced situation in
term of exposure frenquencies (between 26 and 45%).
Finally, proxy Z∗ of PP is the treatment given to the

previous patient and the continuous instrument pr is
the proportion of patients of the same physician who
were previously prescribed the treatment of interest.More
details on the simulation model and the data generating R
code are given in Appendix D.

Estimation methods
For the true and conventional models which do not
assume endogeneity, the classical one-step regression
method without instrumental variable is used. The esti-
mations are performed with the existing regression func-
tions (glm and nls) implemented in R statistical software
(R Development core team 2008) in the R package stats.
For the 2SRI method, a two-step regression is used

following the procedure outlined in the section dedi-
cated to IV estimation procedure. Recall that the covari-
ance matrices of β̂ from the second step regression for
both methods retrieved from the software results will
not be valid since their calculation ignores the fact that

some estimated parameters from the first-stage regression
are included in the second stage. Then, we re-evaluated
these covariance matrices using the sequential two-step
estimation procedure taking into account the fact that
an estimated variable is used in the second step. The
computation of these covariance matrices is given in
Appendix A.
For the GMM, the R package gmmproposed by Chaussé

[32] is a very helpful tool for computating parameters
and estimating covariance. The user needs to implement
the sample version of the moment condition function at
Eq. (5) and its gradient if possible; if not, a numerical
approximation of the gradient function will be used by the
gmm function to perform the estimation.
From these estimations, we calculate the asymptotic

covariance matrices and the corresponding confidence
intervals whose levels are evaluated below.

Evaluation criteria
To evaluate the performances of the various methods,
we consider several criteria including the percentage of
relative bias (rB in %) defined as

rB = 100 ∗ 1
ns

ns∑

j=1

(
β̂

(j)
t
βt

− 1
)

;

the asymptotic standard deviation estimated by the
square root of the Monte-Carlo mean of variance ¯̂σ 2 =
1
ns

∑ns
j=1 σ̂ 2

j , with σ̂ 2
j the asymptotic variance of β̂

(j)
t and

theMonte-Carlo estimator of the true varianceVar(β̂t) =
1

ns−1
∑ns

j=1

(
β̂

(j)
t − ¯̂

tβ
)2
. We also consider the square root

of the mean squares error rMSE given by

rMSE =
√√
√
√ 1

ns

ns∑

j=1

(
β̂

(j)
t − βt

)2
,

and the lower and upper non-coverage probabilities (in %)

defined as

Erinf = 100 ∗ 1
ns

ns∑

j=1
1[

βt<IC(j)
inf

]

and

Ersup = 100 ∗ 1
ns

ns∑

j=1
1[

βt>IC(j)
sup

]

where IC(j) =
[
IC(j)

inf ; IC
(j)
sup

]
denotes the confidence inter-

val of βt from the jth Monte-Carlo sample using the
asymptotic distribution of β̂

(j)
t . The nonparametric boot-

strap based estimate of variance and non-coverage prob-
abilities are also investigated in these simulations and the
results are analysed below. We complete all these crite-
ria by the equivalent of the first-stage F-statistics in linear
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regression (see [33]) testing instrument exclusion in the
treatment choice model.

Results
Table 1 summarizes the performances of each method in
terms of relative bias (rB), the standard deviation (sd), the
square root of mean squares error (rMSE) and the non-
coverage probabilities (pval = Erinf + Ersup). It presents
the results related to instrument pr. There were only
slight differences between the results with instrument pr
and those with Z∗, so we omitted the results related to
instrument Z∗. For some samples, the GMM fails to con-
verge owing to singularity problems in the covariance
matrix. The estimations from these samples are simply
removed (cases marked ‘−’ in Table 1) for all methods. For
the other scenarios, infinite variance estimate or outlier
coefficient estimate may be observed; the corresponding
samples were dropped for the calculation of the criteria.
Table 2 shows the number of samples leading to an out-
lier estimation (rB > 100% or infinite variance) among
the 1000 simulated samples. Figure 1 complements the
results in Table 1 by displaying the boxplot distributions
of rB. Each series of letters a,b,c and d corresponds to the
results related to an instrument strength with each letter
corresponding to a method as detailed in the legend of
Fig. 1. In Table 1 the sd values refer to the Monte-Carlo-
based standard deviation. Except for the GMM estimator
where outlier values for the asymptotic variance were
observed, the Monte-Carlo-based standard deviation, the
bootstrap-based estimate (not shown) and the asymptotic
estimate were very close.
As expected, the relative bias shows that the estima-

tion from the true and conventional models are insensitive
to instrument strength but the confounding level affects
the estimation in the conventional model: the relative bias
increases with level of confounding. In the presence of
a strong instrument, the 2SRI tends to improve the esti-
mate when the level of confounding increases. This trend
is reversed when the instrument is weak, i.e. the relative
bias and the confounding level have the same direction
of variation. The percentage of relative bias of the GMM
does not seem too sensitive to instrument strength: it
just changes slightly when the strength of the instrument
grows. However, this bias increases with the magnitude of
confounding, which shows the impact of endogeneity on
this method (See Fig. 1).
For the standard deviation (sd) and the square root of

the mean squares error (rMSE), the asymptotic results
(n = 30000) show that both criteria decrease when
the level of confounding or instrument strength grows,
this being the case for all methods except the GMM for
which the rMSE decreases very slowly or remains almost
constant in some cases. This trend confirms the already
obverved low sensitivity of the GMM to the strength of

the instruments used in this simulation. Even though the
2SRI has the larger sd than the other methods in all sce-
narios with an impact on rMSE in several cases, rMSE for
2SRI method seems improved with high confounding and
a strong instrument.
Concerning the non coverage probabilities (pval), the

true model estimation and the 2SRI displayed an esti-
mated non-coverage probability around the nominal level
of 5% in almost all scenarios. Their values ranged from
4 to 6% and reached 7% in rare cases. The non-coverage
probability was very large for the other methods, even
with large samples: the results showed an overestimation
of the coefficient of treatment for the GMM and con-
ventional approaches. Even at low confounding levels, the
conventional method yields very poor coverage probabil-
ities which is coherent with what was observed for the
relative bias.
We observe that the metric of the instrument we use

retains the same direction of variation with the F-statistics
eequivalents (Tables 3 and 4 of Appendix C). Finally,
Table 5 in Appendix D summarizes the performances
of each method for more balanced exposure frequencies
and large sample size (n = 30000). In general, perfor-
mances are less good in comparison with small exposure
frequency situation. One could also note that numerical
problems arise more often (see Table 6 of Appendix D).
Nevertheless, 2SRI is better in term of relative bias and
non coverage probability than the conventional method
and GMM.
Overall, the results are satisfactory for the 2SRI

approach which achieves a similar level of performance
to the true model regarding estimation of the confi-
dence interval in the imbalanced situation. We close this
section by pointing out the strong numerical instabil-
ity observed when computing the GMM estimator dur-
ing these simulations. This could explain the modest
performance displayed by the GMM in the simulation
results.

Discussion
In this paper, we focus on the effectiveness of regression
coefficient estimation in a context of endogeneity, partic-
ularly the endogeneity due to unobserved confounding.
We are interested in the coefficient of an endogenous
treatment which is the basis of risk assessment in phar-
macoepidemiology. Linear models are often used in this
context to model the probability of dichotomous events
(see [7]). Through a simulation study, we investigate the
behavior of parameter estimation in nonlinear models
specifically logistic regression using some IV-based meth-
ods that could potentially be used to overcome the endo-
geneity issue. The simulation study also made it possible
to assess two preference-based instrumental variables in
pharmacoepidemiology.
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Table 1 Performances of methods using instrument pr

Instrument strength

Weak Mod Strong

Level Method rB sd rMSE pval rB sd rMSE pval rB sd rMSE pval

30000

High Tr 0.19 0.12 0.12 0.05 0.21 0.10 0.10 0.06 0.14 0.08 0.08 0.04

Conv 29.28 0.12 0.89 1.00 27.53 0.10 0.83 1.00 25.10 0.08 0.76 1.00

2SRI − 11.44 0.86 0.92 0.06 − 3.44 0.73 0.74 0.04 1.92 0.58 0.58 0.04

GMM 29.37 0.23 0.91 0.38 28.39 0.19 0.87 0.77 26.69 0.13 0.81 0.93

Med Tr 0.23 0.13 0.13 0.06 0.12 0.10 0.10 0.05 0.19 0.09 0.09 0.05

Conv 15.95 0.13 0.50 1.00 14.90 0.11 0.46 1.00 13.10 0.10 0.40 1.00

2SRI − 9.75 0.97 1.01 0.07 − 6.35 0.80 0.82 0.05 − 3.40 0.66 0.66 0.05

GMM 15.35 0.18 0.49 0.29 15.72 0.17 0.50 0.56 15.28 0.15 0.48 0.89

Low Tr 0.10 0.14 0.14 0.06 − 0.13 0.11 0.11 0.04 0.18 0.10 0.10 0.04

Conv 4.92 0.15 0.21 0.72 4.39 0.12 0.18 0.67 3.95 0.12 0.17 0.56

2SRI − 6.32 1.04 1.06 0.06 − 5.49 0.86 0.87 0.04 − 4.23 0.73 0.75 0.04

GMM 3.80 0.14 0.18 0.30 4.15 0.14 0.19 0.39 4.61 0.12 0.18 0.84

20000

High Tr 0.27 0.14 0.14 0.04 0.05 0.12 0.12 0.05 0.30 0.10 0.10 0.06

Conv 29.53 0.14 0.90 1.00 27.51 0.11 0.83 1.00 25.21 0.11 0.76 1.00

2SRI − 11.03 1.05 1.10 0.05 −5.51 0.91 0.92 0.04 1.34 0.70 0.70 0.04

GMM 29.01 0.22 0.90 0.32 28.03 0.17 0.86 0.72 27.28 0.19 0.84 0.92

Med Tr 0.09 0.16 0.16 0.06 0.22 0.13 0.13 0.06 0.19 0.11 0.11 0.07

Conv 15.94 0.16 0.50 0.99 15.06 0.14 0.47 1.00 13.31 0.13 0.42 0.99

2SRI − 10.08 1.19 1.23 0.06 −6.69 1.00 1.02 0.05 − 3.67 0.79 0.80 0.04

GMM 15.01 0.18 0.48 0.25 15.64 0.19 0.50 0.53 15.40 0.17 0.49 0.85

Low Tr − 0.24 0.12 0.12 0.06 0.11 0.14 0.14 0.06 − − − −
Conv 3.58 0.15 0.19 0.42 4.71 0.16 0.21 0.61 − − − −
2SRI 0.04 0.88 0.89 0.04 −5.92 1.09 1.10 0.04 − − − −
GMM 4.41 0.16 0.22 0.79 4.15 0.16 0.20 0.39 − − − −

10000

High Tr 0.03 0.21 0.21 0.05 0.49 0.16 0.16 0.05 0.43 0.14 0.14 0.06

Conv 29.69 0.20 0.91 1.00 28.22 0.16 0.86 1.00 25.70 0.15 0.79 1.00

2SRI − 14.47 1.64 1.70 0.07 −2.71 1.27 1.27 0.04 1.19 1.04 1.04 0.05

GMM 28.86 0.25 0.90 0.30 28.61 0.24 0.89 0.68 27.45 0.22 0.85 0.90

Med Tr − − − − 0.58 0.18 0.18 0.04 0.48 0.15 0.16 0.05

Conv − − − − 15.83 0.19 0.51 0.97 13.78 0.17 0.45 0.93

2SRI − − − − −7.42 1.41 1.43 0.05 −3.57 1.13 1.13 0.03

GMM − − − − 15.74 0.23 0.52 0.50 15.66 0.21 0.51 0.80

Low Tr − − − − 0.08 0.20 0.20 0.05 −0.36 0.17 0.17 0.07

Conv − − − − 5.27 0.22 0.27 0.55 3.88 0.20 0.23 0.37

2SRI − − − − −6.12 1.61 1.62 0.05 −4.37 1.31 1.31 0.04

GMM − − − − 3.77 0.24 0.27 0.36 3.85 0.21 0.24 0.74

Legend: Tr = True model, Conv = Conventional model, 2SRI = Two-Stage Residual Inclusion, GMM = Generalized Method of Moment. Low, Med (Medium), High denote the
level of confounding whereas Weak, Mod (Moderate), Strong stand for instrument strength. For the criteria, rB = relative bias (%), sd = standard deviation, rMSE = root Mean
Squares Error and pval = non-coverage probabilities. The numbers 10000, 20000 and 30000 stand for different sample sizes

The results reported from the simulation study show
that the 2SRI using nonlinear regression at each stage is
an interesting alternative for estimating the coefficient

of the endogenous treatment in a logistic regression
model. It is very simple to implement and yields sat-
isfactory results regarding the bias and the confidence
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Table 2 Number of samples among 1000 leading to outliers in
GMM estimation

n Level Weak Mod Strong

30000

High 155 61 31

Med 78 65 43

Low 41 149 65

20000

High 149 70 64

Med 64 72 43

Low 25 124 −
10000

High 95 58 37

Med − 78 55

Low − 110 44

Legend: Low, Med (Medium), High denote level of confounding whereas Weak,
Mod (Moderate), Strong stand for instrument strength. The number n with values
10000, 20000 and 30000 stands for the sample size

interval estimate. It was found to yield the most accu-
rate estimate of non-coverage probabilities and thus a
more accurate estimate of confidence intervals among
the IV-based methods that were compared. However, the
conventional approach behaved better than the 2SRI in
some cases, especially when the confounding level was

weak. We believe that in these cases, the level of con-
founding is not sufficiently high to require the use of an
instrument in the estimation. However, to our knowledge
there is still no way to assess the level of unmeasured con-
founding. For the GMM, the estimation procedure was
remarkably unstable. That instability may be attributable
to the dichotomous nature of the variables (outcome and
exposure) in the context of pharmacoepidemiology with
the preference-based instrument. This situation makes
the GMM approach is not to be recommended in this
context unless another instrument has proved to behave
satisfactorily with this method.
Concerning the instruments under investigation in this

study, the proportion of all previous patients of the same
physician who were prescribed the treatment of interest
proved to be a good proxy of the physician’s preference
instrument. This instrument was previously considered
by Abrahamowicz and colleagues [22] for investigating
the detection of a possible change point in the physician’s
preference and their results also seemed satisfactory. This
proxy of the physician’s preference instrument is thus a
credible alternative to the well known other proxy based
only on the single patient of the same physician who was
prescribed the treatment of interest.
Even though this work throws light on the performances

of IV estimators in the context of a nonlinear model with
endogeneity, more work is needed to explore the behavior
of these estimators in other contexts when the prevalence
of exposure and/or outcome varies.

Fig. 1 Relative bias (rB) of the methods. a: True model b: conventional model; c : 2SRI with instrument pr; d: GMM with instrument pr. Low, Medium
and High indicate the corresponding level of confounding and the instrument strength grows from a, b, c, d sequence to the next (from left to right)
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Conclusions
In observational studies, when assessing the effect of drug exposure on a dichotomous outcome, investigators could use
appropriate 2SRI estimation to account for unmeasured confounding. This work showed that two logistic regressions
as well as a physician’s preference proxy for IV yeald satisfactory results.

Appendix A: Asymptotic variance of the nonlinear 2SRI
Using the sequential two-step estimation procedure, the nonlinear 2SRI estimator minimizes the least squares criterion

Q(β) = 1
2n

n∑

i=1

(
yi − Fα̂

(
X

′
iα̂β

))2
(8)

where α̂ denotes the nonlinear least squares estimator of α from the first stage. If we set ηiβ = X ′
iα̂β , the first-order

condition in β is given by

−1
n

n∑

i=1

∂Fα̂

∂ηiβ
(ηiβ)

∂ηiβ
∂β

(
yi − Fα̂(ηiβ)

) = 0. (9)

Given that α̂ is a consistent estimator of α0, the Taylor-lagrange expansion of (9) arround the true value (α0,β0) gives

0 = 1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

(
yi − Fα(ηiβ)

)
(αc;βc) +

(
1
n

n∑

i=1

∂2Fα

∂ηiβ∂η
′
iβ

(ηiβ)
∂ηiβ
∂α

∂ηiβ

∂β
′

(
yi − Fα(ηiβ)

)
)

(αc;βc)

(α̂ − α0)+
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂2ηiβ

∂α∂β
′
(
yi − Fα(ηiβ)

) − 1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂α

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(αc;βc)

(α̂ − α0)+
(
1
n

n∑

i=1

∂2Fα

∂ηiβ∂η
′
iβ

(ηiβ)
∂ηiβ
∂β

∂ηiβ

∂β
′

(
yi − Fα(ηiβ)

) − 1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(αc;βc)

(β̂ − β0)

for some (αc;βc) between (α̂; β̂) and (α0;β0). Under the assumption E

(
∂Q
∂β

)

β0
= 0 the terms involving the residuals

(
yi − Fα(ηiβ)

)
in the above expansion, except the first, all tend in probability to zero and we obtain

√
n(β̂ − β0) ≈

(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)−1

(α0;β0)

(
1√
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

(
yi − Fα(ηiβ)

)
)

(α0;β0)

−
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)−1

(α0;β0)

(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂α

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(α0;β0)

(α̂ − α0).

The quantity
√
n(β̂ − β0) may then be written

√
n(β̂ − β0) ≈

(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)−1

(α0;β0)

(
1√
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

(
yi − Fα(ηiβ)

)
)

(α0;β0)

−
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)−1

(α0;β0)

(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂α

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(α0;β0)

×
(
1
n

n∑

i=1

∂r
∂ηiα

(ηiα)
∂ηiα
∂α

∂ηiα
∂α′

∂r
∂ηiα

(ηiα)

)−1

α0

(
1√
n

n∑

i=1

∂r
∂ηiα

(ηiα)
∂ηiα
∂α

(Ti − r(ηiα))

)

α0

with ηiα = w′
iα. The latter is derived from the asymptotic approximation of

√
n(α̂ −α0) using a similar Taylor-Lagrange

expansion for the first-stage nonlinear least squares regression.
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The previous expansion leads to the covariance matrix
of β̂ of the form

Var(β̂) = 1
n

(
A−1
22 S2A

−1′
22 +A−1

22 A21A−1
11 S1A

−1′
11 A

′
21A

−1′
22

−A−1
22 S21A

−1′
11 A

′
21A

−1′
22

)
.

(10)

Under the assumption of independence between obser-
vations, the matrices involved in this covariance matrix
are given by

A11=p lim
(
1
n

n∑

i=1

∂r
∂ηiα

(ηiα)
∂ηiα
∂α

∂ηiα
∂α′

∂r
∂ηiα

(ηiα)

)

α0

A21=p lim
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂α

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(α0;β0)

A22=p lim
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(α0;β0)

S1=p lim
(
1
n

n∑

i=1

∂r
∂ηiα

(ηiα)
∂ηiα
∂α

U2
iα

∂ηiα
∂α′

∂r
∂ηiα

(ηiα)

)

α0

S2 = p lim
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

U2
iβ

∂ηiβ
∂β ′

∂Fα

∂ηiβ
(ηiβ)

)

(α0;β0)

S21=p lim
(
1
n

n∑

i=1

∂Fα

∂ηiβ
(ηiβ)

∂ηiβ
∂β

UiβUiα
∂ηiα
∂α′

∂r
∂ηiα

(ηiα)

)

(α0;β0)

where p lim denotes the limite in probability,Uα = T−Pα ,
Uβ = y − Pβ , with Pα = r(wα) and Pβ = Fα(Xβ).
An estimation of this covariance matrix can be obtained

using the plug-in estimator of each matrix involved in its
expression. Let Pα̂ = r(wα̂), P

β̂
= Fα̂(Xβ̂), Uα̂ = T − Pα̂

and U
β̂

= y − Pα̂ , then the corresponding estimator of
matrices at equation (10) are such that

Â11 = 1
n
[Pα̂(1 − Pα̂)w]

′
[Pα̂(1 − Pα̂)w] ,

Â21 = β̂u
n

[
P2

β̂

(
1 − P

β̂

)2
X

]′

[Pα̂(1 − Pα̂)w]

Â22 = 1
n

[
P

β̂

(
1 − P

β̂

)
X

]′ [
P

β̂

(
1 − P

β̂

)
X

]
,

Ŝ1 = 1
n
[Pα̂(1 − Pα̂)Uα̂w]

′
[Pα̂(1 − Pα̂)Uα̂w]

Ŝ2 = 1
n

[
P

β̂
(1 − P

β̂
)U

β̂
X

]′ [
P

β̂

(
1 − P

β̂

)
U

β̂
X

]
,

Ŝ21 = 1
n

[
P

β̂

(
1 − P

β̂

)
U

β̂
X

]′
[Pα̂(1 − Pα̂)Uα̂w] .

Appendix B: Instrument strength and confounding
level
We give bellow the computation of instrument strength
and confounding level

• Instrument strength
The strength of an instrument results from the
correlation between it and the corresponding
endogenous variable. In the model considered here,
the strength of an instrument Z is given by

Corr(T ,Z) = Cov(T ,Z)√
Var(T)

√
Var(Z)

. As the treatment

has a causal link with other covariables Z, X1, X2 and
Xu, we have

Var(T) = VarZ[E(T |Z,X1,X2,Xu)]
+ EZ[Var(T |Z,X1,X2,Xu)] .

If we consider only the explanatory effect of the
instrument in treatment T and replace other
covariables and the confounder by their average
effect, we have
Var(T) = VarZ

(
1

1+AZ

)
+ EZ

(
AZ

(1+AZ)2

)
with

AZ = exp(−(α0 + Zαz + μ1α1 + μ2α2 + μu)),
μ1 = E(X1), μ2 = E(X2) and μu = E(Xu). This
variance may then be written

Var(T) = EZ

(
1

1 + AZ

)2
−

(
EZ

(
1

1 + AZ

))2

+EZ

(
AZ

(1 + AZ)2

)
(11)

= EZ

(
1 + AZ

(1 + AZ)2

)
−

(
EZ

(
1

1 + AZ

))2
(12)

= EZ

(
1

1 + AZ

)
−

(
EZ

(
1

1 + AZ

))2
. (13)

Considering a dichotomous instrument Z having the
Bernoulli distribution B(p), we have
EZ

(
1

1+AZ

)
= p

1+A1
+ 1−p

1+A0
, where Aj, j = 0, 1 is AZ

with Z replaced by j. We finally obtain

Var(T) =
(

p
1 + A1

+ 1 − p
1 + A0

)(
1−

(
p

1 + A1
+ 1 − p

1 + A0

))
.

We also have

E(T) = EZ(E(T |Z,X1,X2,Xu)) (14)

= EZ

(
1

1 + AZ

)
(15)

= p
1 + A1

+ 1 − p
1 + A0

(16)

and then E(Z)E(T) = p2
1+A1

+ p(1−p)
1+A0

. Furthermore,
E(ZT) = EZ(E(ZT |Z,X1,X2,Xu)) =
EZ(ZE(T |Z,X1,X2,Xu)) which leads to
E(ZT) = EZ

(
Z

1+AZ

)
= p

1+A1
. The covariance

between Z and T is then given by
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Cov(Z,T) = E(ZT) − E(Z)E(T) (17)

= p
1 + A1

− p2

1 + A1
− p(1 − p)

1 + A0
(18)

= p(1 − p)
(

1
1 + A1

− 1
1 + A0

)
.(19)

The correlation between Z and T is

Corr(T ,Z) =
(

1
1+A1

− 1
1+A0

) √
p(1 − p)

√(
p

1+A1
+ 1−p

1+A0

) (
1 −

(
p

1+A1
+ 1−p

1+A0

)) .

(20)

Then for a given instrument Z with p fixed in (20),
α0, αz, α1 and α2 can be chosen to reach a value of AZ
that leads to a desired value of Corr(T ,Z).
Another criterion that could be used to quantify an
instrument’s strength is the correlation between
T∗ = α0 + Zαz + X1α1 + X2α2 + Xu and the
instrument Z. Since Cov(Z,T∗) =
Cov(Z,α0 + Zαz + X1α1 + X2α2 + Xu) = αzVar(Z)

and Var(T∗) =
α2
zVar(Z) + α2

1Var(X1) + α2
2Var(X2) + Var(Xu),

under the assumptions on these variables, we have

Corr(Z,T∗) = αz
√
p(1 − p)

(
α2
z p(1 − p) + α2

1σ
2
1 + α2

2σ
2
2 + σ 2

u
)1/2

(21)

where σ 2
i = Var(Xi) and σ 2

u = Var(Xu).
• Confounding level

A straightforward calculation as above leads to the
following correlation between T∗ and Xu that
expresses the level of confounding.

Corr(Xu,T∗) = σu
(
α2
z p(1 − p) + α2

1σ
2
1 + α2

2σ
2
2 + σ 2

u
)1/2 .

(22)

Appendix C: F-statistics for each scenario
The following tables display the equivalent of the first-
stage F-statistics in linear regression (see [33]) testing
instrument exclusion in the treatment choice model.

Appendix D: Description of simulationmodel and
parameters values, results of the second scenario
For all scenarios, the model generating the binary out-
come is the index function

Yi = 1(Y ∗
i − εi > 0),

with Y ∗
i = β0 + Tiβt + X1iβ1 + X2iβ2 + Xuiβu and εi

the standart logistic distribution. Ti is the observed binary

Table 3 Monte-carlo mean of F-statistics in each scenario using
the proportion of patients who received the same treatment as
proxy of instrument

n Level Weak Mod Strong

30000

High 14.14 101.32 432.00

Med 16.95 105.93 458.32

Low 17.65 108.05 465.88

20000

High 11.47 69.15 290.29

Med 13.49 71.53 302.10

Low 15.93 75.59 315.68

10000

High 8.96 36.64 147.29

Med 11.76 39.26 152.53

Low 12.48 42.80 161.04

Legend: Low, Med (Medium), High denote level of confounding whereas Weak,
Mod (Moderate), Strong stand for instrument strength. The number n with values
10000, 20000 and 30000 stands for the sample size

treatment of the individual i, X1i and X2i some character-
istics of patient i and Xui the unmeasured confounding
factor. Besides β0 the intercept, β0, βt , β1, β2 and βu are
parameters related to T , X1, X2 and Xu respectively. We
fixed these parameters β0 = −0.6, βt = 3, β1 = 1, β2 = 1,
and βu = 1 to keep the prevalence of event less than 5%.
The treatment choice for the ith patient was generated

from a Bernoulli model with success probability pi which
depends on the patient’s characteristics X1 ∼ N(−2, 1)

Table 4 Monte-carlomeanof F-statistics in each scenario using the
treatment prescribed to the last patient as proxy of instrument

n Level Weak Mod Strong

30000

High 8.13 13.99 45.30

Med 12.18 15.66 49.45

Low 13.50 16.18 50.83

20000

High 8.47 10.94 32.26

Med 11.98 12.11 32.99

Low 13.35 13.79 31.93

10000

High 8.25 8.07 18.48

Med 10.69 9.80 18.88

Low 14.17 10.38 19.76

Legend: Low, Med (Medium), High denote level of confounding whereas Weak,
Mod (Moderate), Strong stand for instrument strength. The number n with values
10000, 20000 and 30000 stands for the sample size



Koladjo et al. BMCMedical ResearchMethodology  (2018) 18:61 Page 12 of 14

Table 5 Performances of methods using instrument pr

Instrument strength

Weak Mod Strong

Level Method rB sd rMSE pval rB sd rMSE pval rB sd rMSE pval

High Tr 1.62 0.23 0.24 0.06 0.52 0.26 0.24 0.04 1.93 0.40 0.32 0.06

Conv 46.14 0.23 1.40 1.00 42.40 0.26 1.29 1.00 39.62 0.39 1.23 1.00

2SRI 14.98 0.66 0.85 0.13 9.41 0.47 0.53 0.09 8.49 0.44 0.53 0.10

GMM 72.01 315.65 5.06 0.27 75.50 109.91 4.70 0.32 71.32 60.00 4.25 0.40

Med Tr 0.58 0.25 0.23 0.05 1.25 0.31 0.30 0.07 1.61 0.48 0.32 0.04

Conv 25.40 0.25 0.80 0.96 23.98 0.31 0.78 0.85 21.37 0.48 0.72 0.63

2SRI 9.93 0.66 0.70 0.07 6.90 0.54 0.61 0.08 5.45 0.54 0.54 0.09

GMM 36.76 47.90 43.89 0.40 32.85 32.04 2.17 0.51 44.82 41.87 3.36 0.35

Low Tr 0.66 0.26 0.26 0.07 1.51 0.33 0.28 0.04 2.20 0.55 0.35 0.05

Conv 7.86 0.26 0.35 0.15 7.96 0.33 0.37 0.11 7.72 0.55 0.41 0.10

2SRI 6.43 0.71 0.74 0.07 5.76 0.64 0.62 0.06 5.91 0.66 0.67 0.10

GMM 22.04 31.69 2.42 0.49 26.15 31.68 3.49 0.64 43.12 25.42 4.14 0.46

Legend: Tr = True model, Conv = Conventional model, 2SRI = Two-Stage Residual Inclusion, GMM = Generalized Method of Moment. Low, Med (Medium), High denote the
level of confounding whereas Weak, Mod (Moderate), Strong stand for instrument strength. For the criteria, rB = relative bias (%), sd = standard deviation, rMSE = root Mean
Squares error and pval = non-coverage probabilities

and X2 ∼ N(−3, 1), on a binary instrument Z ∼ b(0.7)
and on the confounding factor Xu ∼ N(0, σu). The proba-
bility pi is given by pi = F(α0+Ziαz+X1iα1+X2iα2+Xui),
where F denotes the logistic distribution function. The
standard deviation σu of the confounding factor takes val-
ues 0.5, 1 and 1.5 corresponding to Low,Medium and high
level of confounding respectively. For a fixed level of con-
founding, we varied only αz value over {1, 2, 3} of which
each element corresponds to an instrument strength: 1
for “Low” instrument, 2 for “Moderate” and 3 for “High”
instrument. All other parameters in the treatment choice
model remain constant (α0 = 0.2, α1 = 2 and α2 = 1.2).
The data are generated using the R function sim2Logit2().
We investigated the performances of methods in the

context of rare exposures (2 to 6%), and rare events (less
than 5%). To check whether the results obtained remain
valid in the context of higher exposure (near 50%), we
design new simulations in which only the intercepts α0
and β0 are modified in the previous design. We held
all other parameters constant and fixed α0 = 5 and

Table 6 Number of samples among 500 leading to outliers in
GMM estimation

n Level Weak Mod Strong

High 241 208 155

Med 220 188 185

Low 124 127 145

Legend: Low, Med (Medium), High denote level of confounding whereas Weak,
Mod (Moderate), Strong stand for instrument strength

β0 = −2.3. The prevalence of exposure ranged then
between 26% and 45% whereas that of event is maintained
lower than 6%. We present in Table 5 the results from this
second scope over 500Monte Carlo samples of size 30000.
Table 6 displays the number of Monte Carlo samples with
outliers.
This function allows to simulate a compound logistic

model with covariates
sim2Logit2 <- function(n,m,sigma,alpha,beta,

k=100) {

# This function allow to simulate a

compound logistic model with covariates

# Input

# n : The sample size (an integer

multiple of k)

# sigma : the standart deviation of the

confounder

#

# alpha: coefficients of variables in

auxiliary model

# beta : coefficients of variables in

causal model

# Output: The data frame with all

variables

# Physician’s labels : k patients per

physician

Ph <- rep(1:(n/k),each=k)

nPh <- length(unique(Ph))
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pP <- rbinom(nPh,size=1,prob=m[2])

# Generating the treatment TT

# PP <- rbinom(n,size=1,prob=m[2])

# pass? de 0.5 ? 0.7

PP <- rep(pP,each=k)

x1 <- rnorm(n,mean = m[3],sd=1) # pass?

de 3 ?

x2 <- rnorm(n,mean = m[4],sd=1) # pass?

de 1.5 ?

xu <- rnorm(n,mean = m[5],sd=sigma)

ZZ <- as.matrix(cbind(rep(1,n),PP,x1,

x2,xu))

probTT <- inv.logit(ZZ%*%alpha)

TT <- rbinom(n,size=1,prob=probTT)

tt <- TT[1:k]

fs <- function(i) return(sum(tt[1:

(i-1)])/(i-1))

prop <- c()

J <- 1:k

while(max(J)<=n) {

tt <- TT[J]

prop <- c(prop,NA,sapply(2:k,FUN=fs))

J <- J + k

}

# Generating the outcome y

XX <- as.matrix(cbind(rep(1,n),TT,x1,

x2,xu))

y <- 1*(XX%*%beta - rlogis(n)>0)

z <- rep(NA,n)

for(i in 2:n)

{if(Ph[i]==Ph[i-1]) z[i] <- TT[i-1]}

data <- data.frame(XX,PP,z,prop,y)

colnames(data) = c(’const’,’TT’,’x1’,’x2’,

’xu’,’PP’,’z’,’prop’,’y’)

return(data)

}
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