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Abstract

Background: In randomised controlled trials with only few randomisation units, treatment allocation may be
challenging if balanced distributions of many covariates or baseline outcome measures are desired across all
treatment groups. Both traditional approaches, stratified randomisation and allocation by minimisation, have
their own limitations. A third method for achieving balance consists of randomly choosing from a preselected
list of sufficiently balanced allocations. As with minimisation, this method requires that heterogeneity between
treatment groups is measured by specified imbalance metrics. Although certain imbalance measures are more
commonly used than others, to the author's knowledge there is no generally accepted “gold standard”,
neither for categorical and even less so for continuous variables.

Methods: An intuitive and easily accessible web-based software tool was developed which allows for balancing multiple
variables of different types and using various imbalance metrics. Different metrics were compared in a simulation study.

Results: Using simulated data, it could be shown that for categorical variables, χ2-based imbalance measures seem to be
viable alternatives to the established “quadratic imbalance” metric. For continuous variables, using the area between
the empirical cumulative distribution functions or the largest difference in the three pairs of quartiles is recommended
to measure imbalance. Another imbalance metric suggested in the literature for continuous variables, the (symmetrised)
Kullback-Leibler divergence, should be used with caution.

Conclusion: The Shiny Balancer offers the possibility to visually explore the balancing properties of several well
established or newly suggested imbalance metrics, and its use is particularly advocated in clinical studies with
few randomisation units, as it is typically the case in cluster randomised trials.

Keywords: Randomisation, Minimisation, Treatment allocation, Covariate-adaptive, Imbalance measure,
Imbalance metric, Cluster randomised trial

Background
Small numbers of subjects combined with large numbers of
covariates may pose particular challenges for treatment al-
location in randomised controlled trials (RCTs) since sim-
ple randomisation does not necessarily ensure balance, i.e.
similar distributions of all important covariates, across all
treatment groups. The same difficulty may arise when bal-
ance is required with respect to baseline outcome measures

collected before randomisation. Situations with few alloca-
tion units can occur both in trials with individually rando-
mised designs, e.g. if interim analyses are planned with only
part of the subjects, or – perhaps even more commonly –
with cluster designs, e.g. in Primary Care research, where
cluster-RCTs with relatively few clusters but many potential
prognostic factors are a popular study design. In this latter
case of cluster (or group) randomised trials, balance may be
desired for cluster-level attributes as well as for cluster-level
aggregates of individual characteristics.Correspondence: thomas.grischott@usz.ch
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A recent overview of alternative randomisation methods
to achieve balance over all treatment arms, together with
their merits and disadvantages, can be found in [1]. The
two classic methods are stratified randomisation and
minimisation [2, 3]. For stratified randomisation, all vari-
ables need to be categorised, and randomised allocation is
then performed separately within all combinations of such
categories, the so-called strata. Unfortunately, even small
numbers of variables lead to rather large numbers of
sparsely populated strata, thus drastically limiting the ap-
plicability of this method.
Minimisation, on the other hand, involves the defin-

ition of imbalance measures for each variable (or type of
variable). Total imbalance of an allocation scheme is
usually defined to be the (unweighted or weighted) sum
of the imbalance contributions resulting from all vari-
ables [4, 5]. The randomisation units are sequentially al-
located to the treatment group where their allocation
leads to a smaller total imbalance. This allocation to the
“better” treatment can be done purely deterministically
or with a certain probability p > 50%. Choosing p close
to 1 results in high balance at the cost of “randomness”,
and in the extreme case of deterministic allocation, the
trial cannot rightly be called a “randomised” trial any-
more. Low values of p preserve much randomness in the
allocation procedure, thus minimising the possibility of
selection bias, but may lead to imbalanced allocation
schemes, similar to simple randomisation. Due to its
sequential nature, minimisation is more likely to be used
in trials with randomisation of sequentially included
individuals, rather than in cluster randomised designs
where all participating clusters are often identified
pre-randomisation.
A third method has been proposed by Raab and Butcher

in 2001 [6], by Moulton in 2004 [7], by Carter et al. in 2008
[8], and again under the name “studywise minimization” by
Perry et al. in 2010 [9]. A slightly modified approach, the
“best balance” allocation method, was recently presented by
de Hoop et al. [10]. According to these authors, the method
is applicable if all study subjects (units) with all their covari-
ate values are known at the time of allocation. First, the full
set of all possible allocation schemes is constructed, or, in
case this is computationally not feasible, a random subset
of the full set may be sampled instead. In the second step,
for each of the generated allocation schemes its total imbal-
ance is calculated. Next, a specified number or proportion
of sufficiently balanced allocation schemes is preselected. In
the fourth and last step, the researcher – or an independent
second party – choses the final allocation scheme at ran-
dom among those identified in the previous step.
An obvious advantage of this third approach is its su-

perior ability to achieve balance even with regard to a
large number of variables. This has been shown in simu-
lation studies [9, 11], but in fact, is inherent in the

design of the method. The researcher can not only be
sure that her/his final allocation scheme respects the
specified total imbalance level, but is also offered insight
into what range of imbalances is at all achievable. A
somewhat more subtle advantage lies in the fact that
preserving a controlled amount of randomness has de-
sirable implications for the later statistical analysis [12].
An in-depth evaluation of the method for the design and
analysis of cluster randomised trials can be found in two
recent articles by Li et al. [13, 14].
Despite its advantages, the method has not gained much

popularity yet [15]. This might be due to the lack of a plat-
form independent, intuitive and easy-to-use and at the
same time highly customisable software solution. Therefore,
the first aim of the present paper is to fill this gap by pro-
viding the web-based allocation tool Shiny Balancer and to
demonstrate its capabilities which partly exceed those of
similar existing tools. Possible uses cover balancing with
regard to multiple discrete or continuous covariates or
baseline outcome measures in individually randomised
trials as well as cluster attributes or cluster-level aggregates
of individual variables in cluster randomised trials. The
Shiny Balancer can be accessed through any web browser,
or (customised and) run locally on any computer with
RStudio [16] installed.
Historically, allocation by minimisation was first intro-

duced for categorical covariates. Taves [17] used the sum
(over all covariate levels) of absolute differences in num-
bers between the two treatment groups as his original
imbalance measure. (This is equivalent to the “average
imbalance” in the terminology of Perry et al. [9].) Pocock
and Simon [18] introduced the sum of the squared dif-
ferences as an alternative imbalance measure (called
“quadratic imbalance” by Perry et al. and others). Even
though other imbalance measures have been proposed
[9, 19], Pocock and Simon’s “quadratic imbalance” has
become established as the de-facto standard in minimis-
ing imbalance from categorical covariates. It is some-
times also called the “variance method of minimization”
[9]. However, there are still other conceivable and poten-
tially promising imbalance metrics which have neither
been suggested nor studied yet.
More recently, several attempts emerged in the litera-

ture to balance both categorical and continuous covari-
ates within a comprehensive framework [19]. Among the
suggested imbalance measures for continuous covariates
are the p-value of the Wilcoxon U test [20], the largest
difference of the three pairs of quartiles [21], the area
between the two empirical cumulative distribution func-
tions [22], and the Kullback-Leibler divergence [23]. For
a recent overview of proposed imbalance measures see
[19]. To the author’s knowledge, there is no general
consensus among experts as to which of these measures
is preferable.
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The second aim of this paper is therefore to compare
the established imbalance metrics for categorical vari-
ables among themselves and also with several newly sug-
gested ones, and to do the same with the imbalance
measures for continuous variables, again introducing
new suggestions. Comparisons will be done using the
source code of the Shiny Balancer with two simulated
sets of allocation units with matching covariables.

Implementation
The Shiny Balancer
The Shiny Balancer can be accessed via its URL [24]
using any web browser. Alternatively, the source code
can be downloaded (Additional file 1: app.R and help-
ers.R) and run on any computer with RStudio installed.
In the latter case, the following four standard libraries
need to be loaded: shiny, rhandsontable, xlsx, and flex-
mix. The first run of the software will tell if any of them
are missing.
Figure 1 shows the data input screen as the first of

three tabs of the Shiny Balancer. The adaptation of the

data table either manually or by importing a pre-existing
excel file is mostly self-explaining. The second col-
umn (Allocation) may contain treatment allocations
that have already been assigned previously. In this
case, treatment groups must be coded by A or B,
respectively.
Figure 2 shows the settings panel. For each type of

variable, a suitable imbalance metric together with the
weight of the respective variable(s) in the total imbalance
can be selected. Definitions of the various imbalance
measures will be given below in the next section. By set-
ting the weight of a specific variable type to the inverse
of the maximum imbalance as calculated in a previous
run (with all other weights set to 0), the range of imbal-
ance contributions from variables of that specific type
can be standardised to the interval from 0 to 1. For re-
producibility, a random seed may be set to initialise the
random generator.
Figure 3 shows the randomisation tab of the Shiny

Balancer. First, the relative size of treatment arm A
needs to be specified using the Allocation ratio slider.

Fig. 1 The data entry tab of the Shiny Balancer
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Pressing the Generate button then creates the desired
Number of schemes by repeatedly shuffling a vector
with As and Bs in the correct proportions. Since this
might result in the same allocation scheme generated
more than once, duplicate schemes can be removed
by selecting the designated tick box. After the re-
quired number of unconstrained random allocation
schemes with their respective imbalances have been
calculated, their cumulative distribution function is
plotted. Using the slider below the plotting area, a set
of sufficiently balanced allocation schemes can be pre-
selected, either via their number, proportion or max-
imum imbalance value.
Once the set of random allocation schemes has

been generated and a subset of acceptably balanced
schemes preselected, this subset may be saved using
the Save button in the bottom left corner. An inde-
pendent second party (or some defined external ran-
dom mechanism) can then choose the final allocation
scheme at random among those preselected.

Alternatively, the Shiny Balancer carries out this last
step itself if the Choose button is pressed. The alloca-
tion of the first 6 units is shown together with the
identifying number of the final allocation scheme in
the program interface, and the full final scheme can be
exported using the same Save button mentioned above.

Imbalance measures
For a specific allocation scheme with one single binary,
categorical or integer variable, let nAx and pAx be the num-
ber and proportion of units allocated to treatment A
which fall into category x, and assume nBx and pBx to be
defined similarly. Then:

1-PX2 The first imbalance metric, 1-pValue of
chi-squared test, is defined in the obvious way
via a 2 × k-contingency table containing all nAx
and nBx (where k is the number of levels). The
p-value was used (instead of the test statistic

Fig. 2 The settings tab of the Shiny Balancer
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itself ) to achieve an imbalance range from 0 to
1, and had to be subtracted from 1 to be in-
creasing with decreasing balance.

Eucl The Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xðpAx −pBx Þ2
q

corresponds

to the “quadratic imbalance” in Perry et al.’s termin-
ology [9], and to the “BB score” in de Hoop et al. [10]
and Li et al. [13].

Manh The Manhattan distance
P

x jpAx −pBx j corresponds
to the “average imbalance” in Perry’s terminology
and to the “range imbalance” in Zielhuis et al. [25].

Max The Maximum distance maxx jpAx −pBx j is similar to
the “maximal imbalance” by Perry et al. and to the
“TB score” according to Li’s terminology.

X2d The Chi-squared distance, here defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x
ðpAx −pBx Þ2
pAxþpBx

r

,

is a standardised version of the Euclidean distance.

Canb The Canberra distance
P

x
jpAx −pBx j
pAxþpBx

is termed “standard-

ized range” by Zielhuis.

Hell The Hellinger distance is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

P
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAx � pBx

pq
.

SBKL The somewhat freely named Symmetrised Bayes-
ian Kullback-Leibler divergence is defined as
P

x~p
A
x � ln ~p

A

x

~pB

x

þP
x~p

B
x � ln ~p

B

x

~pA

x

;where ~pA;Bx ¼ pA;Bx ðnA;Bx þ 1Þ
to ensure non-zero denominators.

1-PKS The 1-pValue of Kolmogorov-Smirnov test is again de-
fined in the obvious way via the maximal distance be-
tween the empirical distribution functions of the two
samples in treatment groups A and B, respectively.

For continuous variables, the imbalance measures are
defined as follows:

1-Pt 1-pValue of 2sided t test is defined in the obvious way.
1-PU 1-pValue of 2sided U test is – also rather obviously –

defined as 1 minus the p-value of the Mann-Whitney
U test for two independent samples. This imbalance
metric has been proposed by Frane [20].

Fig. 3 The result of a completed allocation procedure shown in the randomisation tab of the Shiny Balancer
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1-PKS 1-pValue of Kolmogorov-Smirnov test has already
been explained.

Mrdq For the Maximum relative difference of quar-
tiles, in both treatment groups the lower quar-
tiles qA0:25 and qB0:25 , the two medians mA and
mB, and the upper quartiles qA0:75 and qB0:75 are
calculated. The imbalance contribution from
the continuous variable is then given by

max f jqA0:25−qB0:25j
maxfjqA0:25j; jqB0:25jg

; jmA−mBj
maxfjmAj; jmBjg ;

jqA0:75−qB0:75j
maxfjqA0:75j; jqB0:75jg

g.
This measure corresponds to a suggestion by Su [21].

AbCDF The self-explaining Area between empirical
CDFs has been proposed as a measure of im-
balance by Lin and Su [22].

SKL The Symmetrised Kullback-Leibler divergence – as
proposed by Endo et al. [23] – is calculated by
estimating density functions pA(x) and pB(x) of
the samples in both treatment groups, followed
by numerical integration:
R
pAðxÞ � ln pAðxÞ

pBðxÞ dxþ
R
pBðxÞ � ln pBðxÞ

pAðxÞ dx

All imbalance measures can easily be modified or cus-
tomised in the source code (e.g. if the use of nAx and nBx
is preferred over pAx and pBx , or if different standardisa-
tions are to be used). Moreover, the source code con-
tains a template imbalance function for straightforward
inclusion of new imbalance metrics.

Simulation
In order to compare different imbalance measures, two
sets of test data were simulated, each containing four vari-
ables, i.e. one of each type. Data set 1 includes 14 random-
isation units to be allocated to equally sized treatment
arms. Data set 2 consists of 15 units to be allocated at a
ratio of one third to two thirds. Both the R code used to
generate the test data and the data sets themselves can be
found in the additional files section (Additional file 1:
simulations.R, testdataset1.xlsx, and testdataset2.xlsx).
For both sets of test data, 10′000 allocation schemes

were generated. After excluding duplicate schemes, 3′246
and 2′881 unique schemes remained, corresponding
to 3′246/3′432 = 94.6% and 2′881/3′003 = 95.9% of all
possible allocation schemes, respectively, which was
considered sufficient coverage.
For each variable in both data sets, its standardised

contributions to the total imbalances were calculated ap-
plying all type-matching imbalance measures to every
unique allocation scheme. Imbalance contributions ac-
cording to different imbalance measures were plotted
and compared pairwise using Spearman’s rank correl-
ation ρS.
Finally, to demonstrate the performance of the Shiny

Balancer when balancing jointly on more than one

variable, the 10 and 100 “best” allocation schemes (i.e.
those with the smallest total imbalance resulting from
standardised contributions of all variables) were calcu-
lated for both data sets and specifically selected quadru-
ples of imbalance measures. These best allocation
schemes, together with all schemes generated, were then
plotted as quadrangles in four-spoked radar charts, with
the spokes representing the standardised imbalance con-
tributions of the individual variables.

Results
The full results of the simulation study can be found online
(Additional file 1: results_xxx_tdsy.jpg, where xxx denotes
the variable type and y is the number of the data set).
Both of the two imbalance metrics offered by the Shiny

Balancer for binary variables, 1-PX2 and Eucl (Fig. 2), lead
to the same subset of allocation schemes with minimal
imbalance contribution. This optimal subset consists of
roughly 40% of all unique allocation schemes (41.4% in
data set 1, 39.2% in data set 2). Moreover, the imbalance
contributions according to both metrics can take the same
number of different values (4 different values in data set 1,
6 different values in data set 2). Spearman’s rank correl-
ation coefficient ρS between the imbalance contributions
of the two metrics is 1 (in both data sets), meaning that
both imbalance metrics rank all allocation schemes in
exactly the same order (Additional file 1: results_-
bin_tds1.jpg and results_bin_tds2.jpg).
The situation gets somewhat more interesting with cat-

egorical variables. Again, all (eight) imbalance metrics im-
plemented, 1-PX2, Eucl, Manh, Max, X2d, Canb, Hell, and
SKBL (Fig. 2), lead to the same subset of allocation schemes
with minimal imbalance contribution. This optimal subset
includes 23.4% of all unique allocation schemes simulated
for data set 1, and 12.0% in the case of data set 2. The num-
ber of different values which the imbalance contributions
can take differs between different metrics, with the number
being highest for the Symmetrised Bayesian Kullback-Lei-
bler divergence (SKLD) and the Hellinger distance (Hell) (7
and 7 different values with data set 1, 41 and 34 different
values with data set 2) and lowest for the Manhattan
(Manh) and Maximum (Max) distances (4 and 4 with data
set 1, 10 and 8 with data set 2). The highest average rank
correlation ρS of one specific imbalance measure with all
others can be observed for the 1-pValue of chi-squared test
(1-PX2) metric (0.98 in data set 1, 0.96 in data set 2),
followed by the Chi-squared distance (X2d) (0.96 in both
data sets). At the other end of the scale, the Maximum
distance correlates relatively poorly with its competing met-
rics (ρS = 0.93 in data set 1, and 0.89 in data set 2). From
all ρS < 1 in data set 2, it can be concluded that no two mea-
sures rank all the allocation schemes exactly in the same
order, but most discrepancies occur only at relatively high
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imbalance values (Additional file 1: results_cat_tds1.jpg;
Fig. 4).
Within the present context, integer type variables may

be treated in a similar manner to either categorical or
continuous variables, i.e. their imbalance contributions
can be calculated using either measures for categorical
or for continuous variables. The two choices offered by
the Shiny Balancer, 1-PKS and Eucl (Fig. 2), stand as ex-
amples for the two larger classes of possible imbal-
ance metrics. Measures for categorical variables must
be used with particular caution in situations with
small numbers of mostly different observed values,
since this will lead to sparsely populated categories.

This can be observed nicely in data set 2, where
using the Euclidean distance (Eucl) results in exactly
the same imbalance contributions from all 2′881
(unique) allocation schemes (Fig. 5).
Contrary to the other variable types, in the case of

continuous variables different imbalance measures do
not always lead to the same subset of “most balanced”
allocation schemes. As can be seen in Fig. 6, there
are, for example, allocation schemes which optimally
balance the continuous variable according to the im-
balance metric 1-pValue of 2sided t test (1-Pt) but
not according to the Maximum relative difference of
quartiles (Mrdq) or the Area between empirical CDFs

Fig. 4 Pairwise comparison of imbalance metrics for categorical variables using data set 2 (n: number of allocation schemes; ρS: Spearman’s rank
correlation coefficient; ρS : mean rank correlation coefficient)
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(AbCDF) criteria. This goes hand-in-hand with
smaller rank correlations (from 0.44 to 0.89 in data
set 1 and from 0.54 to 0.94 in data set 2). The two
imbalance measures which – consistently over both
data sets – correlate best with all other measures, are

the Area between empirical CDFs (ρS = 0.81 in data
set 1, and 0.84 in data set 2) and the Maximum rela-
tive difference of quartiles ( ρS = 0.77 in data set 1,
and again 0.84 in data set 2), while the metric which
correlates least with all others is the Symmetrised

Fig. 5 Comparison of imbalance metrics for integer variables (left: data set 1; right: data set 2; n: number of allocation schemes; ρS: Spearman’s
rank correlation coefficient)

Fig. 6 Pairwise comparison of imbalance metrics for continuous variables using data set 2 (n: number of allocation schemes; ρS: Spearman’s rank
correlation coefficient; ρS : mean rank correlation coefficient)
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Kullback-Leibler divergence (SKL) (ρS = 0.67 in data
set 1, and 0.71 in data set 2). Continuous variables
with near optimal balance according to this metric
can be almost anything from perfectly balanced to
surprisingly imbalanced with respect to other imbal-
ance measures (Additional file 1: results_con_tds1.jpg
and results_con_tds2.jpg). By contrast not surprisingly
at all, the number of distinct values which the imbal-
ance contributions can obtain is larger than in the
case of categorical variables. However, this number is
relatively small, compared to other metrics, for
1-pValue of 2sided U test (1-PU) (25 different values
with data set 1, 49 different values with data set 2),
for 1-pValue of Kolmogorov-Smirnov test (1-PKS) (7
different values with data set 1, 10 different values
with data set 2), and for Maximum relative difference
of quartiles (72 different values with data set 1, 62
different values with data set 2).
Figure 7 shows the performance of the Shiny Balancer

in balancing on all four variables in the two simulated data
sets. The imbalance contributions of each single variable
in optimal and almost optimal allocation schemes can be
compared to the minimum imbalance achievable when
balancing on the respective variable alone.

Discussion
While some imbalance measures like the “quadratic im-
balance” are preferably used in minimisation algorithms,
to the author’s knowledge no measure has been gener-
ally accepted as the “gold standard”, neither for categor-
ical variables and even less so for continuous variables.
In the present paper, comparisons are therefore not
made to some reference method but within a set of sev-
eral established or newly introduced imbalance mea-
sures. A strong rank correlation with other measures
and a high number of possible values (allowing for a

finer gradation when preselecting a set of sufficiently
balanced schemes) are considered necessary (but cer-
tainly not sufficient) criteria for an acceptable imbalance
metric. Of course, this approach incurs the (theoretical)
risk of wrongfully discredit an imbalance metric which
could in truth be the only one acceptable among several
inappropriate but highly correlated competitors.
In general and in addition to the recommendations

following below, it is suggested to experiment with dif-
ferent imbalance measures for each individual variable.
(This can be achieved by setting all other weights to 0.)
The range of the imbalance contributions from a specific
variable can be standardised by setting its weight to the
inverse of the maximum imbalance contribution ob-
tained from a previous simulation. Standardised imbal-
ance distributions should then be assessed visually with
regard to the number (i.e. the number of different imbal-
ance values) and heights (i.e. the number of allocation
schemes with the same imbalance value) of the steps in
the cumulative distribution function. When choosing the
appropriate imbalance metric, the statistical methods to
be used in the later analyses may also be taken into ac-
count. (If, for example, outcome measures will be com-
pared using χ2-tests then χ2-based metrics seem to be
natural choices to asses baseline imbalance.)
For binary variables, all implemented imbalance mea-

sures are equivalent. When there is no specific reason
for another choice, the use of 1-pValue of chi-squared
test is recommended because of its conceptual familiar-
ity and its intrinsic standardisation. This choice is also in
accordance with the next recommendation.
For categorical variables, both 1-pValue of chi-squared

test and the Chi-squared distance seem to be advisable
options. Both measures correlate highly with the other
measures, and the numbers of different values which the
imbalance contributions from these two measures can
take are still relatively high. However, if only the most

Fig. 7 Balancing on multiple variables in data set 1 (left) and data set 2 (right). Allocation schemes are represented by quadrangles whose
vertices indicate the standardised imbalance contributions from individual variables of given types according to the specified metrics. Black: 10
schemes with smallest total imbalance; dark grey: 90 “next best” schemes; light grey: all generated schemes

Grischott BMC Medical Research Methodology  (2018) 18:108 Page 9 of 11



balanced allocation schemes shall be considered for pre-
selection, then all implemented metrics may be used.
(Note that, contrary to the strategy presented here, the
usual minimisation algorithm does not guarantee that
the imbalance stays within controllable limits. At least in
theory, an imbalance sequence obtained from sequential
allocation by (stochastic) minimisation may instead
reach levels where the choice of imbalance metric does
in fact matter.)
When choosing the imbalance metric for an integer

variable, 1-pValue of Kolmogorov-Smirnov test seems to
be the safer choice. The Euclidean distance should only
be considered when the number of subjects is large and
when most integers in the range of interest were ob-
served multiple times. Careful inspections of the cumu-
lative imbalance distribution functions from different
imbalance metrics may be particularly useful here.
Among the imbalance metrics for continuous vari-

ables, the Area between empirical CDFs and the Max-
imum relative difference of quartiles are the metrics of
choice because of their superior correlations with other
measures. It is not recommend to use the Symmetrised
Kullback-Leibler divergence since variables with nearly
zero imbalance may be highly imbalanced according to
other metrics. In other words, the distributions of such a
variable’s values in the two treatment groups will seem
rather similar based on the Symmetrised Kullback-Lei-
bler divergence but might show high differences between
their means or medians, for example.

Strengths
Thanks to the graphic representation of the (cumulative)
distribution of all imbalances from a representative set
of all possible allocation schemes, the Shiny Balancer al-
lows the researcher deeper insight into what levels of
balance are achievable for the variables in her/his study.
The software tool includes both categorical and continu-
ous variables and thus extends the scope and capabilities
of “studywise minimization” [9] and “best balance” [10].
The Shiny Balancer also offers the possibility to experi-
ment with different imbalance measures from which the
researcher may then choose what seems best suited for
her/his study’s specific needs.
Contrary to what some authors wrote [2, 9], the al-

gorithm does not per se require that all randomisa-
tion units be enrolled in advance before the allocation
can be carried out. The proposed implementation of-
fers the possibility to take previously determined allo-
cations into account when calculating imbalances, and
can therefore be used to successively randomise sub-
sets of units (as soon as their attributes are known).
Carter et al. [8] offer some guidance to the minimum
number of units to be randomised (i.e. the “block

size” in a sequential blockwise allocation procedure)
as well as to the minimum size of the preselected set
of allocation schemes from which the final one will
be chosen.
It has been argued that using covariate-constrained

randomisation requires added statistical support during
the allocation process [2]. However, the author feels that
the intuitive design of the Shiny Balancer and its easy
accessibility via a web link render such assistance
unnecessary.

Limitations
In its present state, the Shiny Balancer allocates to two
treatment groups only. Weights cannot be specified for in-
dividual variables but instead for different types of vari-
ables only. In rare cases due to rounding effects, the
colouring of the displayed cumulative distribution func-
tion of all imbalance values does not perfectly match the
numbers below the slider. (In such cases, the numbers are
correct and to be trusted over the illustration.) For the
simulation part of this paper, the data sets used do not
claim representativity for all conceivable study settings.

Conclusions
The Shiny Balancer is an intuitive and easily access-
ible allocation tool that can handle both categorical
and continuous variables and offers the possibility to
visually explore the balancing behaviour of several
well established or newly suggested imbalance met-
rics. The simulations have shown that for categorical
variables, χ2-based imbalance measures seem to be vi-
able alternatives to the established “quadratic imbal-
ance” metric, and for continuous variables, the area
between the empirical cumulative distribution func-
tions or the largest difference in the three pairs of
quartiles should be considered to measure imbalance.
The Kullback-Leibler divergence, as proposed by Endo
et al. [23], should be used with caution.

Availability and requirements
Project name: Shiny Balancer
Project home page: http://ihamz.shinyapps.io/
ShinyBalancer
Operating system(s): Platform independent
Programming language: R
Other requirements: Any web browser, or RStudio with
libraries shiny, rhandsontable, xlsx, and flexmix
License: Beerware licence (revision 42)
Any restrictions to use by non-academics: Commer-
cial organisations are welcome to contact the author
prior to use.
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Additional file

Additional file 1: app.R Main application source code. helpers.R
Definitions of imbalance measures. simulations.R Simulation study code.
testdataset1.xlsx Data set 1 as Excel file. testdataset2.xlsx Data set 2 as
Excel file. results_bin_tds1.jpg Scatterplots and correlations for binary/
logical variable in data set 1. results_bin_tds2.jpg Scatterplots and
correlations for binary/logical variable in data set 2. results_cat_tds1.jpg
Scatterplots and correlations for categorical variable in data set 1.
results_cat_tds2.jpg Scatterplots and correlations for categorical
variable in data set 2. results_int_tds1.jpg Scatterplots and correlations
for integer variable in data set 1. results_int_tds2.jpg Scatterplots and
correlations for integer variable in data set 2. results_con_tds1.jpg
Scatterplots and correlations for continuous variable in data set 1.
results_con_tds2.jpg Scatterplots and correlations for continuous
variable in data set 2. (ZIP 7418 KB)

Abbreviations
1-PKS: 1-pValue of Kolmogorov-Smirnov test; 1-Pt: 1-pValue of 2sided t test;
1-PU: 1-pValue of 2sided U test; 1-PX2: 1-pValue of chi-squared test; AbCDF: Area
between empirical CDFs; Canb: Canberra distance; Eucl: Euclidean distance;
Hell: Hellinger distance; Manh: Manhattan distance; Max: Maximum distance;
Mrdq: Maximum relative difference of quartiles; SBKL: Symmetrised Bayesian
Kullback-Leibler divergence; SKL: Symmetrised Kullback-Leibler divergence; X2d:
Chi-squared distance
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