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Abstract

Background: In the presence of an intermediate clinical event, the analysis of time-to-event survival data by
conventional approaches, such as the log-rank test, can result in biased results due to the length-biased characteristics.

Methods: In the present study, we extend the studies of Finkelstein and Nam & Zelen to propose new methods for
handling interval-censored data with an intermediate clinical event using multiple imputation. The proposed methods
consider two types of weights in multiple imputation: 1) uniform weight and 2) the weighted weight methods.

Results: Extensive simulation studies were performed to compare the proposed tests with existing methods
regarding type I error and power. Our simulation results demonstrate that for all scenarios, our proposed methods
exhibit a superior performance compared with the stratified log-rank and the log-rank tests. Data from a randomized
clinical study to test the efficacy of sorafenib/sunitinib vs. sunitinib/sorafenib to treat metastatic renal cell carcinoma
were analyzed under the proposed methods to illustrate their performance on real data.

Conclusions: In the absence of intensive iterations, our proposed methods show a superior performance compared
with the stratified log-rank and the log-rank test regarding type I error and power.
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Background
In clinical trials and longitudinal studies, a subject under
study may experience an intermediate clinical event (IE)
before the event of interest. The occurrence of the IE may
induce changes in the survival distribution. An example of
a length-biased problem due to the IE is the heart trans-
plantation study [1]. It is necessary to know whether a
heart transplant would be beneficial. The waiting time
of subjects who eventually have a heart transplant must
be long enough to receive treatment, whereas there is no
requirement for not having a heart transplant.
To resolve length-biased problems due to the IE, the

time-dependent Cox regression and landmark studies
were conducted [1, 2]. The score tests based on counter-
factual variables were derived by Lefkopoulou and Zelen
[3] and Nam and Zelen [4]. Moreover, when the primary
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outcome is interval-censored, the situation is more com-
plicated. Interval-censored data are data for which the
exact failure times are not known but are known to have
occurred between certain time points. Extensive studies
are available regarding statistical approaches for analyzing
interval-censored data. A non-parametric maximum like-
lihood estimation (NPMLE) of the survival function using
the Newton-Rapshon algorithm has been proposed [5].
Alternatively, a self-consistent expectation maximization
was suggested to compute the maximum likelihood esti-
mators [6]. Dempster et al. [7] and Finkelstein [8] used the
discrete-time proportional hazards model to implement
the estimation of weighted log-rank tests for interval-
censored data. A log-rank-type test was studied under the
logistic model by applying Turnbull’s algorithm to esti-
mate the pseudo-risk and failure sets [9]. Furthermore,
Zhao and Sun [10] improved on the previous study by
considering a multiple imputation (MI) technique to esti-
mate the covariance matrix of the generalized log-rank
statistics. A log-rank type test was proposed similar to a
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previous study but used different covariance matrix esti-
mator [11]. Kim et al. [12] studied another log-rank type
test that did not use an iterative algorithm. A uniform
weights algorithm was proposed where a subject con-
tributed uniformly to each mass point sk ; point of the
set, which consisted of all the distinct endpoints of the
observed intervals.
A few methods have been suggested for left truncated

and interval-censored (LTIC) data. Turnbull’s character-
ization was corrected to accommodate both truncation
and interval-censoring time points [13]. It was extended to
the regression model under the proportional assumption
[14]. Pan and Chappell noted that NPMLE is inconsis-
tent for the early times with LTIC data, while conditional
NPMLE is consistent [15]. The estimation of the param-
eters in the Cox model with LTIC data and a rank-based
test of survival function in LTIC were studied [16, 17].
However, the length-biased problem was not considered
in those methods.
Most existing methods for interval-censored data use

intensively iterative computation. To avoid this, an impu-
tationmethod was considered in this study.We can obtain
complete or (left-truncated and) right-censored data after
imputation of the (left-truncated and) interval-censored
data. Subsequently, standard statistical methods can be
applied to the imputed data. For right-censored data, a
semiparametric algorithm was proposed [18], motivated
by the data augmentation algorithm [19]. Pan proposed
a MI using Cox regression for interval-censored data
by adapting previous method [20]. They repeated the
algorithm until the coefficient βh converged, where h
denotes the number of iterations. A two-sample test with
interval-censored data was studied via MI based on the
approximate Bayesian bootstrap [21]. TheMI for interval-
censored data with auxiliary variables was studied [22].
Zhao and Sun [10] and Kim et al. [12] used MI tech-
niques for computing the variance of test statistics. A
log-rank test via MI was proposed [11]. After estimat-
ing the NPMLE using Turnbull’s algorithm, they imputed
the exact time for all data points including right-censored
data from the conditional probability of NPMLE. The
methods of MI using Cox regression were extended to
accommodate left-truncation [23, 24].
The purpose of this paper is to suggest new methods for

analyzing LTIC data using MI.
This study is organized as follows. First, we introduce

the notations and framework for interval-censored sur-
vival data. In the theoretical model and study hypotheses
section, we explain a statistical procedure to compare two
survival functions in the presence of the IE. Then, we
propose our method with extensive simulation studies.
The simulations are conducted to evaluate the properties
of multiple imputation. An analysis of the Randomized
Phase III SWITCH study was undertaken in the real

example section, and we conclude the study with a short
discussion.

Methods
Notation and framework
The survival time of a subject who experienced the IE
implied that the survival time should exceed the waiting
time for the IE. This reflects the length bias phenomenon;
namely, a subject has to live long enough to experience the
IE.We assume that the IE is binary and that only two treat-
ment groups exist. Let W and T be positive real-valued
random variables representing the waiting time until the
occurrence of the IE and the time to an event of inter-
est, respectively. We assume the independent of the event
time T and waiting timeW. Define a binary random vari-
able Z to be Z = I{W ≤ T}. The random variables
T0 and T1 are defined as the times to the event of inter-
est conditional on Z = 0 and 1, respectively, namely,
T = (1−Z)T0+ZT1. The density probability functions of
W, T0, and T1 are defined as g(w), q0(t), and q1(t), respec-
tively; moreover, the corresponding survival distribution
functions are G(w) = Pr(W > w),Q0(t) = Pr(T0 > t),
and Q1(t) = Pr(T1 > t), respectively. The model with
Z = 1 implied that the waiting time was observed before
the failure time T. Therefore, T1 was left truncated at the
waiting time W. {Bi, 1 ≤ i ≤ N} were considered as the
truncation sets, specifically, Bi = (Wi,∞), where N is
number of total subjects.
We further assume that the time to the event of inter-

est T is interval-censored. Therefore, for the ith subject,
we did not observe T exactly but observed T ∈ Ai, where
Ai = (Li,Ri] is the interval in which the event of interest
occured. If Ri = ∞, we call it a right-censored observa-
tion. If Li = Ri, we call it an exact observation. Let δi = 1,
if the ith subject has experienced the event of interest;
otherwise, it was considered 0. We consider the set of N
independent pairs {Ai,Bi}. We assume Ai ⊆ Bi.
We now characterize the following union set C̃k with

all observed points including left-truncated points, which
may have a positive mass as mentioned by Frydman [13],
where k = 0, 1. For the survival distribution of T0, Li and
Ri of a subject who does not experience the IE is included
in the set C̃0. When the IE occurs (Z = 1), the waiting
timeW is a change point of distribution for survival. Thus,
the information of the event exceeding W can no longer
be observed. Therefore, the waiting time W for the IE is
included in C̃0 for T0 as the right-censoring time, but the
event time exceedingW is not included in set C̃0.

C̃0 = {0} ∪ {Li; 1 ≤ i ≤ N ,Zi = 0}
∪{Ri; 1 ≤ i ≤ N ,Zi = 0} ∪
{Wi; 1 ≤ i ≤ N ,Zi = 1} ∪ {∞}
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For the survival distribution of T1, Li and Ri of a subject
who experienced the IE and the waiting time W as a left-
truncated time are included in the set C̃1. The subject who
does not experience the IE is not included in set C̃1.

C̃1 = {0} ∪ {Li; 1 ≤ i ≤ N ,Zi = 1} ∪ {Ri; 1 ≤ i ≤ N ,Zi = 1}∪
{Wi; 1 ≤ i ≤ N ,Zi = 1} ∪ {∞}

Theoretical model and study hypotheses
Nam and Zelen [4] studied a length-biased problem with
right-censored data in the presence of the IE. A subject
who does not experience the IE means that the wait-
ing time W for the IE has been right-censored; namely,
f (t, z = 0) = q0(t)G(t). A subject experiences the IE at
W, the survival distribution is changed at w and the event
occurs at t; namely, f (t,w, z = 1) = Q0(w)g(w)

q1(t)
Q1(w)

. The
hypothesis H0 : q0A(t) = q0B(t), q1A(t) = q1B(t) ver-
sus the general alternative, which is the complement of
H0, could be considered, where A,B are two populations.
Notably, the hypotheses were independent of the waiting
time distribution.
They derived the score test using a proportional haz-

ards model for comparing two sample survival functions.
The score test could be written using the counting process
notation. Define QkA(t) = QkB(t)βk for k = 0, 1, N(t) =
I(T ≤ t, δ = 1),Z(t) = I(W ≤ t) and R(t) = I(T ≥ t),
where δ = 1 if observation is non-censored, and 0 other-
wise. Let si = xizi(ti)dNi(ti), ni = ∑N

j=1 xjRj(ti)zj(ti), and
Ni = ∑N

j=1 Rj(ti)zj(ti), where x = 1 if the observations
were from A; otherwise, it was 0. The statistics Ŝ1 can be
written as

Ŝ1 =
N∑

i=1
xizi(ti)dNi(ti) −

N∑

i=1
pidNi(ti), pi = ni/Ni

and under the null hypothesis has mean zero and variance
V

(
Ŝ1

)
= ∑N

i=1 pi(1 − pi)dNi(ti). The statistics Ŝ0 can be
written as

Ŝ0 =
N∑

i=1
xi(1 − zi(ti))dNi(ti) −

N∑

i=1
πidNi(ti), πi = mi/Mi,

where ri = xi(1 − zi(ti))dNi(ti),mi = ∑N
j=1 xjRj(ti)(1 −

zj(ti)), and Mi = ∑N
j=1 Rj(ti)(1 − zj(ti)). The variance is

V
(
Ŝ0

)
= ∑N

i=1 πi(1 − πi)dNi(ti). Hence, an appropriate
chi-square statistic with 2 degrees of freedom for testing
H0 is given by χ2

2 = Ŝ21/V
(
Ŝ1

)
+ Ŝ20/V

(
Ŝ0

)
.

Proposedmethods
Multiple imputation converts interval-censored data to
right-censored data so that standard methods can be
applied. This method can simplify complicated situations.
We propose two methods: 1) uniform weight method

and 2) weighted weight method. The uniform method
closely follows the method of Kim et al. [12] and the
weighted method closely followed that of Huang et al. [11]
to accommodate for left truncation. After imputation, the
score statistics χ2

2 were used [4].

Uniformweightmethod
Kim et al. [12] assumed that the true failure time of a sub-
ject may be uniformly distributed over {sj, Li < sj ≤ Ri,
for j = 1, ...,m}. They calculated a pseudo-risk and failure
set based on uniform weights. They used the MI tech-
niques to estimate the variance matrix. In this study, we
used the MI techniques for deriving the test statistics and
their variance-covariancematrix including the imputation
of a true failure time under the same assumption.We used
a moderate imputation number (M = 10) [20].
Step 0: Set r = 1, where r denotes an imputation number.
Step 1. Characterize the set C̃k

i for each of Tk
for k = 0, 1. The distinct endpoints set Ck

i ={
skj , Li < skj ≤ Ri, for j = 1, ...,m

}
in which all the time

points C̃k are ordered and labeled 0 = sk0 < sk1 < ... <

skm = ∞ for i = 1, ...,N , j = 1, ...,mk , k = 0, 1.
Step 2: If the ith observation is interval-censored, a value
randomly sampled from a set Ck

i is generated. Notably,
after imputing the exact time, T (r)

0 is the right-censored
data, while T (r)

1 is left-truncated and right-censored data.
For making T (r)

0 , we censored the data atWi if Zi = 1. For
making T (r)

1 , we only used the data with Zi = 1.

T(r)
0i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Li if δi = 0,Zi = 0
Wi if Zi = 1
sample from the set

{s0j , Li < s0j ≤ Ri, for j = 1, ...,m} if δi = 1,Zi = 0

T(r)
1i =

⎧
⎪⎨

⎪⎩

Li if δi = 0,Zi = 1
sample from the set

{s1j , Li < s1j ≤ Ri, for j = 1, ...,m} if δi = 1,Zi = 1

Step 3. Based on the rth imputed (left-truncated) right-
censored data, compute the Nam and Zelen’s statistics and
their variance S(r)

k ,V
(
Ŝk

)(r)
for k = 0, 1, respectively.

Step 4. Repeat Steps 2 and 3 M(> 0) times and obtain M

pairs of
(

S(r)
k ,V

(
Ŝk

)(r)
)

, where r = 1, ...,M, k = 0, 1.

Step 5: Compute the sum of the average within-
imputation covariance associated with Sk and the
between-imputation variance of Sk .

S̄k = 1
M

M∑

r=1
S(r)
k ,

V1(Ŝk)mi = 1
M

M∑

r=1
V̂ (r)
Sk +

(

1+ 1
M

)
1

M−1

M∑

r=1

(
S(r)
k −S̄k

)2
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In the present study, we applied two types of vari-
ances. The first is as described above: adding within-
and between variances. The second is the subtraction of
the two variances, which works well when the rate of
follow-up loss is high [11]. The second term is formed as

V2
(
Ŝk

)

mi
= 1

M
∑M

r=1 V̂
(r)
Sk − 1

M−1
∑M

r=1

(
S(r)
k − S̄k

)2
.

Thus, we can test H0 based on

χ2
2 = S̄0

2
/Vl

(
Ŝ0

)

mi
+ S̄1

2
/Vl

(
Ŝ1

)

mi
for l = 1, 2,

where the distribution follows a chi-square with 2 degrees
of freedom.

Weighted weightmethod based on NPMLE
We propose another weighted weight method based on
NPMLE. We estimated the NPMLE from the original
data set by Turnbull’s algorithm and used the NPMLE as
weights for the imputation. The data were LTICwhen hav-
ing the IE; therefore, we characterized the set that may
have a positive mass including truncated points, same as
the above method.
Step 1. Estimate the NPMLE from the original data set.
Step 2. Using the NPMLE as weight, impute the data
conditional on

{
Li < T (r)

i ≤ Ri
}
.

T(r)
0i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Li if δi = 0,Zi = 0
Wi if Zi = 1
sample from the distribution NPMLE
using the NPMLE as weight if δi = 1,Zi = 0

T (r)
1i =

⎧
⎪⎨

⎪⎩

Li ifδi = 0,Zi = 1
sample from the distribution NPMLE
using the NPMLE as weight ifδi = 1,Zi = 1

Steps 3–5. Same as the part of the uniformweightmethod.
Based on the rth imputed (left-truncated) right-censored
data, we can calculate the average Nam and Zelen statis-
tics and variance using the weighted weight method.

Results
Data generation
We generated the true failure time T0 and waiting time
W from the survival distribution below: Q0g(t0) =
e−λ0g t ,Gg(w) = e−μgw for g = A,B.
Note that the probability of experiencing the IE is θg =

μg
μg+λ0g

. If W > T0, then T = T0. If W ≤ T0, a random
variable T1 is generated from the truncated probability
distribution function q1g(t)/Q1g(w) with W ≤ T1, where
Q1g(t) = e−λ1g t for g = A,B. Therefore, T1 should
be larger than W, so that we can generate Q1g(t) ∼
U(0,Q1g(W )). The value of λ1g is chosen from the mean
time to failure, m1g , g = A,B. In our simulations, θA =
0.5, θB = {0.3, 0.4, 0.5}, λ0A = λ0B = 1,m1A = 1
and 2,m1B = {1, 1.25, 1.5, 2}. Define a censoring indicator

δ that takes values 0 or 1 and follows a Bernoulli distribu-
tion with a censoring probability cp. cp is set as 0 or 0.3.We
could obtain the data set as {Ti,Wi, δi,Zi, xi}, where x = 1
if observations from A; otherwise, it was 0.
To generate interval-censored data, we first generated

(Ti, δi) as above, where Ti and δi are independent. We
assumed that each subject was scheduled to be examined
at p different visits. The first scheduled visit time E is
generated from U(0,ψ). For a subject having the IE, the
first scheduled visit time E is equal to or greater than the
waiting time W (E ∼ U(W ,W + ψ)). The length of the
time interval between two follow-up visits was assumed
as a constant, ψ = 0.5. The survival time Ti is observed
in one of intervals (0,Ei] , (Ei,Ei + ψ), ..., (Ei + pψ ,∞).
Let Ek denote the kth scheduled visit. At each of these
time points, it was assumed that a subject could miss the
scheduled visit. In such cases, Li is defined as the largest
follow-up visit Ek among scheduled visit points less the Ti.
Also, Ri is defined as the smallest follow-up visit Ei among
scheduled visit points greater than Ti. If δi = 0, the obser-
vation onTi is right-censored. If δi = 1, the observation on
Ti is observed on (Li,Ri]. For right-censored data (δi = 0),
we set Li as it is, but Ri is set to infinity.
In the present study, we did not restrict the number of

follow-up visits because a subject having the IE should
survive during the waiting time and have more chance
to follow up for longer. We assumed that every subject
visits at the first visit time point, E. After that, there is
a probability that a subject might not comply with the
follow-up visits. We assume that a subject might miss any
of the follow-up visits and is more likely to miss later visits
(such as 0.1 for the first year, and 0.2 thereafter, using the
Bernoulli distribution).
For comparison, we included the log-rank test and the

stratified log-rank test (the stratum is experiencing the IE
or not) along with our proposed tests. For the log-rank
and stratified log-rank test, the true failure times were
used rather than the interval-censored ones. We used two
variance forms, which were formed by (1) adding and
(2) subtracting within and between variance. The sample
sizes were selected as 50, 100 and 200 for each group. The
results reported are based on 1000 replications for each
scenario.

Simulation results
The results of the simulations are summarized from
Tables 1, 2 and 3. Tables 1 and 2 show the estimate
of the upper 5% of each of the five tests under the
null hypothesis, whereas Table 3 shows the power under
the alternative hypothesis for each scenario. The pro-
posed methods show the appropriate 5% significant level
under all scenarios. For the variance with adding form (1),
the methods marginally overestimate the variance; thus,
the effect sizes are less than 0.05 for most of scenarios.
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Table 1 Empirical 5%-level tests by varying θB ,m1A , andm1B with θA = 0.5 when all events are observed in some intervals and when
there are some missed visits with a probability of 0.1 for the first year and then of 0.2 thereafter

(θA , θB) (m0A ,m0B) (m1A ,m1B) I II III-(1) III-(2) IV-(1) IV-(2)

n = 50

(0.5, 0.5) (1, 1) (2, 2) 0.054 0.058 0.048 0.052 0.044 0.056

(0.5, 0.5) (1, 1) (1, 1) 0.055 0.050 0.042 0.052 0.044 0.053

(0.5, 0.4) (1, 1) (2, 2) 0.073 0.105 0.045 0.051 0.045 0.056

(0.5, 0.4) (1, 1) (1, 1) 0.060 0.124 0.042 0.058 0.042 0.060

(0.5, 0.3) (1, 1) (2, 2) 0.098 0.212 0.048 0.059 0.044 0.057

(0.5, 0.3) (1, 1) (1, 1) 0.057 0.236 0.046 0.057 0.047 0.055

n = 100

(0.5, 0.5) (1, 1) (2, 2) 0.051 0.048 0.051 0.058 0.052 0.058

(0.5, 0.5) (1, 1) (1, 1) 0.053 0.067 0.040 0.046 0.041 0.046

(0.5, 0.4) (1, 1) (2, 2) 0.069 0.148 0.044 0.049 0.046 0.049

(0.5, 0.4) (1, 1) (1, 1) 0.047 0.173 0.040 0.045 0.040 0.050

(0.5, 0.3) (1, 1) (2, 2) 0.137 0.372 0.049 0.056 0.050 0.060

(0.5, 0.3) (1, 1) (1, 1) 0.049 0.462 0.042 0.060 0.046 0.062

n = 200

(0.5, 0.5) (1, 1) (2, 2) 0.059 0.057 0.054 0.060 0.056 0.057

(0.5, 0.5) (1, 1) (1, 1) 0.055 0.042 0.042 0.049 0.043 0.056

(0.5, 0.4) (1, 1) (2, 2) 0.096 0.221 0.054 0.058 0.054 0.062

(0.5, 0.4) (1, 1) (1, 1) 0.061 0.282 0.045 0.053 0.044 0.052

(0.5, 0.3) (1, 1) (2, 2) 0.232 0.621 0.051 0.056 0.050 0.056

(0.5, 0.3) (1, 1) (1, 1) 0.053 0.747 0.045 0.051 0.043 0.052

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method. (1) added within and between variance, (2) subtracted within and between
variance

For the variance with subtracting form (2), the methods
slightly underestimate the variance.
The stratified log-rank test was unsatisfactory if the pro-

portion of experiencing the IE was different between the
two groups (such as θA is not equal to θB.). The log-rank
test satisfied the nominal significance level if the sur-
vival functions were not changed after experiencing the IE
regardless of the proportion. The change in survival dis-
tribution after experiencing the IE (such as, m0A was not
equal to m1A.) in addition to the difference in the pro-
portion of the IE, which caused the log-rank test to be
inappropriate. The comparison of uniform and weighted
weights multiple imputation methods did not show signif-
icant differences.
When θA = θB = 0.5, the simulation results con-

firmed that all tests gave the correct 5% significance
level. Hence, the power calculations were restricted
to this case. The value of the other parameters was
m0A = m0B = 1,m1A = 2. Only the mean time to fail-
ure was changed for m2B. The increase in sample size or
a decrease in the value of the censoring fraction cp caused
increase in the difference of mean time to failure, thus

indicating that the power of the tests could be improved.
In all cases, the proposed methods have superior power
by taking advantage of the knowledge of the IE.

Real data example
In this section, we illustrate the proposed method using
real data from a randomized clinical trial evaluating
the efficacy of tyrosine kinase inhibitors sorafenib and
sunitinib in the treatment of patients with metastatic
renal cell carcinoma. The primary endpoint was total
progression-free survival (PFS), which was defined
as the interval between the randomization (the start
date of first-line therapy) to disease progression or
death during second-line therapy. For subjects who
did not switch to per-protocol second-line therapy,
the first-line events were used. Subjects without
tumor progression or death during second-line ther-
apy were censored. The details of the study have been
published [25].
We chose this study to illustrate our methods because

it presented interesting aspects of IE. The proportion
that was administered a second-line therapy was higher
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Table 2 Empirical 5%-level tests by varying θB ,m1A , andm1B with θA = 0.5 when censoring fraction is 0.3, and there are some missed
visits with a probability of 0.1 for the first year and then of 0.2 thereafter

(θA , θB) (m0A ,m0B) (m1A ,m1B) I II III-(1) III-(2) IV-(1) IV-(2)

n = 50

(0.5, 0.5) (1, 1) (2, 2) 0.050 0.056 0.049 0.055 0.045 0.055

(0.5, 0.5) (1, 1) (1, 1) 0.065 0.060 0.044 0.058 0.043 0.055

(0.5, 0.4) (1, 1) (2, 2) 0.058 0.100 0.051 0.060 0.049 0.062

(0.5, 0.4) (1, 1) (1, 1) 0.052 0.090 0.042 0.053 0.048 0.053

(0.5, 0.3) (1, 1) (2, 2) 0.079 0.162 0.049 0.054 0.052 0.055

(0.5, 0.3) (1, 1) (1, 1) 0.047 0.200 0.048 0.058 0.043 0.054

n = 100

(0.5, 0.5) (1, 1) (2, 2) 0.052 0.055 0.045 0.049 0.048 0.051

(0.5, 0.5) (1, 1) (1, 1) 0.044 0.052 0.044 0.054 0.044 0.054

(0.5, 0.4) (1, 1) (2, 2) 0.075 0.105 0.052 0.056 0.053 0.057

(0.5, 0.4) (1, 1) (1, 1) 0.052 0.133 0.045 0.060 0.049 0.060

(0.5, 0.3) (1, 1) (2, 2) 0.110 0.258 0.046 0.058 0.046 0.054

(0.5, 0.3) (1, 1) (1, 1) 0.052 0.336 0.041 0.052 0.042 0.051

n = 200

(0.5, 0.5) (1, 1) (2, 2) 0.059 0.059 0.042 0.047 0.045 0.048

(0.5, 0.5) (1, 1) (1, 1) 0.050 0.054 0.052 0.059 0.050 0.056

(0.5, 0.4) (1, 1) (2, 2) 0.078 0.180 0.048 0.054 0.050 0.053

(0.5, 0.4) (1, 1) (1, 1) 0.057 0.219 0.044 0.050 0.043 0.051

(0.5, 0.3) (1, 1) (2, 2) 0.168 0.485 0.047 0.051 0.050 0.052

(0.5, 0.3) (1, 1) (1, 1) 0.060 0.582 0.040 0.049 0.043 0.050

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method (1) added within and between variance, (2) subtracted within and between
variance

in sorafenib-sunitinib (So-Su) compared with sunitinib-
sorafenib (Su-So) (57% vs 42%, P value <0.01). The total
PFS and PFS of first-line treatment did not show a sig-
nificant difference (So-Su vs. Su-So: 12.5 mo vs. 14.9 mo
(P value = 0.5), 5.9 mo vs. 8.5 mo (P value = 0.9), respec-
tively), whereas the PFS of second-line therapy showed
a shorter duration in Su-So (5.4 mo vs. 2.8 mo, P value
<0.001). Receiving the second-line therapy might be con-
sidered as experiencing the IE to compare the difference
in survival functions by utilizing the knowledge of the pro-
portion of having second-line therapy and the duration
of first- and second-line therapy with different hazards
assumption.
Since it is difficult to obtain raw data in this study,

we extracted numerical data from the Kaplan–Meier
(KM) graph on the total, first-line, and second-line PFS
[25] by using WebPlotDigitizer v.3.9 (http://arohatgi.info/
WebPlotDigitizer/). With the obtained proportion and
numbers at risk tables, we can obtain the observed data as
{Ti,Wi, δi,Zi, xi} [26]. Similar KM graphs were obtained
with the regenerated data. The interval of radiological
assessment follow-up was 12 weeks. As in simulations,

we assumed several scheduled visits and loss rates of
radiological assessment to make interval-censored data of
(Li,Ri].
The proposed methods show a significant difference

between the two arms (P value <0.01) unlike the log rank
test and the stratified log rank test (P value >0.5). We
also applied the methods based on the Cox model and
obtained similar results [23, 24].
The hypothesis on (β0,β1) is separable as noted [4].

Therefore, we can test differences in the distributions for
each parameter, namely, H0 : β1 = 0 versus H1 : β1 	= 0.
One degree of freedom is used in a chi-square test χ2

1 =
Ŝ21/V

(
Ŝ1

)
of this hypothesis. In this case, we do not reject

the null hypothesis of β0 = 0 (P value = 0.6) but reject
the null hypothesis of β1 = 0 (P value <0.001), which is
similar to a previous study [25].

Discussion
We propose a general method of comparing two
interval-censored samples in the presence of the IE.
The occurrence of IE occurs may change the survival
distribution. The focus of the current study is to compare

http://arohatgi.info/WebPlotDigitizer/
http://arohatgi.info/WebPlotDigitizer/
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Table 3 Empirical power of tests by varyingm1B when censoring fraction is 0% and 30% and when there are some missed visits with a
probability of 0.1 for the first year and then of 0.2 thereafter

(θA , θB) (m0A ,m0B) (m1A ,m1B) I II III-(1) III-(2) IV-(1) IV-(2)

Censoring fraction = 0%

n = 50

(0.5, 0.5) (1, 1) (2, 1.5) 0.120 0.108 0.111 0.136 0.110 0.128

(0.5, 0.5) (1, 1) (2, 1.25) 0.222 0.181 0.250 0.283 0.245 0.281

(0.5, 0.5) (1, 1) (2, 1.0) 0.386 0.320 0.480 0.513 0.484 0.509

n = 100

(0.5, 0.5) (1, 1) (2, 1.5) 0.181 0.146 0.201 0.214 0.204 0.216

(0.5, 0.5) (1, 1) (2, 1.25) 0.373 0.315 0.471 0.501 0.474 0.505

(0.5, 0.5) (1, 1) (2, 1.0) 0.647 0.564 0.824 0.841 0.826 0.841

n = 200

(0.5, 0.5) (1, 1) (2, 1.5) 0.310 0.289 0.364 0.387 0.360 0.384

(0.5, 0.5) (1, 1) (2, 1.25) 0.652 0.575 0.808 0.821 0.812 0.821

(0.5, 0.5) (1, 1) (2, 1.0) 0.925 0.860 0.991 0.991 0.990 0.991

Censoring fraction = 30%

n = 50

(0.5, 0.5) (1, 1) (2, 1.5) 0.101 0.099 0.110 0.120 0.110 0.119

(0.5, 0.5) (1, 1) (2, 1.25) 0.161 0.147 0.204 0.220 0.200 0.218

(0.5, 0.5) (1, 1) (2, 1.0) 0.266 0.229 0.388 0.417 0.391 0.414

n = 100

(0.5, 0.5) (1, 1) (2, 1.5) 0.113 0.114 0.145 0.160 0.143 0.155

(0.5, 0.5) (1, 1) (2, 1.25) 0.258 0.218 0.380 0.407 0.376 0.402

(0.5, 0.5) (1, 1) (2, 1.0) 0.474 0.400 0.707 0.724 0.704 0.723

n = 200

(0.5, 0.5) (1, 1) (2, 1.5) 0.248 0.202 0.297 0.312 0.301 0.310

(0.5, 0.5) (1, 1) (2, 1.25) 0.507 0.432 0.695 0.711 0.695 0.706

(0.5, 0.5) (1, 1) (2, 1.0) 0.802 0.720 0.957 0.960 0.956 0.959

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method (1) added within and between variance, (2) subtracted within and between
variance

two survival functions incorporating the information
of the IE.
In the present study, we propose non-iterative multi-

ple imputation methods for the analysis of left-truncated
and interval-censored survival data. In the uniformweight
method, the true failure time of a subject is assumed uni-
formly distributedover {sj, Li < sj ≤ Ri, for j = 1, ...,m} [12].
We used an MI technique for the derivation of test statis-
tics and its variance-covariancematrix including imputing
a true failure time, while Kim et al. used a MI technique to
estimate variance matrix. Uniform weight assumption in
the characterized set is convenient to implement in prac-
tice. We also propose a weighted weight method based
on NPMLE. After characterizing the set that may have a

positive mass including truncated points [13], Turnbull’s
algorithm was used to estimate the NPMLE. The perfor-
mance of imputation procedures highly depends on the
performance of the NPMLE. In the case of left-truncated
and interval-censored data, NPMLE is not consistent,
whereas conditional NPMLE is still consistent [15]. How-
ever, the problem is limited to the early time point. In
the present study, we did not use any special correction
because our purpose was not to obtain the exact NPMLE.
The simulation did not show considerable differences
compared with the uniform weight methods.
We applied the methods based on the Cox model to the

real example, and the results were similar to the proposed
methods [23, 24]. We applied two forms of variance that
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were formed by addition and subtraction. Both variance
methods were efficient, but the first one was marginally
overestimated, and the second one was slightly underes-
timated. This phenomenon is the same as described by
Huang et al. [11] since the follow-up loss rate in each visit
was not high.
We assumed that the IE was exactly as observed. Further

studies are needed if the IE is considered as interval-
censored.

Conclusions
To avoid the length-biased problem, we recommend
incorporating the information of the IE in the analysis. In
the absence of intensive iterations, our proposed method
exhibits a superior performance compared with the strat-
ified log-rank and the log-rank test regarding the type I
error and power.
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