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Background: The aim of this study was to quantify and compare the diagnostic value of The Western Electric (WE)
statistical process control (SPC) chart rules and the Anhoej rules for detection of non-random variation in time series
data in order to make recommendations for their application in practice.

Methods: SPC charts are point-and-line graphs showing a measure over time and employing statistical tests for

In this study we used simulated time series data with and without non-random variation introduced as shifts in process
centre over time. The primary outcome was likelihood ratios of combined tests. Likelihood ratios are useful measures of
a test’s ability to discriminate between the true presence or absence of a specific condition.

Results: With short data series (10 data points), the WE rules 1-4 combined and the Anhoej rules alone or combined
with WE rule 1 perform well for identifying or excluding persistent shifts in the order of 2 SD. For longer data series, the
Anhoej rules alone or in combination with the WE rule 1 seem to perform slightly better than the WE rules combined.
However, the choice of which and how many rules to apply in a given situation should be made deliberately
depending on the specific purpose of the SPC analysis and the number of available data points.

Conclusions: Based on these results and our own practical experience, we suggest a stepwise approach to SPC analysis:
Start with a run chart using the Anhoej rules and with the median as process centre. If, and only if, the process shows
random variation at the desired level, apply the 3-sigma rule in addition to the Anhoej rules using the mean as process
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Background
Over the past decade, the term “improvement science”
has gained attention and sparked debate [1]. In healthcare,
improvement science is viewed by many as the natural
successor or supplement to evidence based medicine: If
evidence based medicine is about doing the right things
then, improvement science is about doing things right,
and one is meaningless without the other [2].

In a systematic review The Health Foundation con-
cludes that: “Improvement science is about finding out
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how to improve and make changes in the most effective
way. It is about systematically examining the methods
and factors that best work to facilitate quality improve-
ment” [1].

Following this, change and improvement are closely
related in that improvement is always the result of
change. However, not all changes result in improvement.
In order to know that improvement is happening, we
must be able to measure the quality characteristics of
the processes we are trying to improve. As improvement
always happens over time, time is an essential part of
the analysis, and since measurement is subject to vari-
ation whether or not improvement is happening, the
aim of the analysis is to discriminate between naturally
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occurring variation in data over time (noise, random or
common cause variation) and variation that is the result
of changes to a process (signal, non-random or special
cause variation).

Statistical process control (SPC) comprises a set of
tools including run and control charts, which help to
distinguish signal from noise in time series data.

Statistical process control charts

SPC charts are point-and-line graphs showing measures
over time and employing statistical tests for identifica-
tion of non-random variation.

SPC charts assume that, if the process in question is
random, the data points will be randomly distributed
around the process centre expressed by the mean or me-
dian and nearly all of them will appear between limits
estimating the random variation inherent in the process
( [3] p. 182-183). These limits are called control limits
and are added as horizontal lines to the chart. Control
limits are usually positioned at a distance of +3 times
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the estimated within sample standard deviation (SD)
from the centre line ([3] p. 190). Consequently, control
limits are also referred to as 3-sigma limits. Figure la
shows an example of a process containing random vari-
ation only.

The calculation of sigma limits depends on assump-
tions regarding the theoretical distribution of data, and
many types of control charts exist for different types of
measure and count data [3, 4].

Control chart theory is a vast area, and we recommend
the reader to consult the specialist literature. Moham-
med gives a concise introduction to the application of
control charts in healthcare [4]. The books by Mont-
gomery [3], Wheeler [5], and Wheeler & Chambers [6]
have over many years and several editions become books
of authority on SPC theory and practice.

Statistical Process Control is not about statistics, it is
not about “process-hyphen-control”, and it is not about
conformance to specifications. [...] It is about the
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Fig. 1 Example control charts. a random variation. b Non-random variation caused by a large, possibly transient, shift in data identified by one data
point being outside the upper control limit. ¢ Non-random variation caused by a sustained moderate shift in data identified by an unusually long run
of 13 data points below the centre line (Western Electric rule 4 and Anhoej rule 1) and unusually few crossing (Anhoej rule 2)
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continual improvement of processes and outcomes.
And it is, first and foremost, a way of thinking with
some tools attached. (Donald Wheeler [5], p. 152).

Testing for non-random variation
Non-random variation may take many forms depending
on the nature of its underlying causes.

Originally, SPC charts were designed to quickly identify
sudden, larger (> 2 SD) and possibly transient shifts in data.
For this purpose, testing for one or more data points out-
side the control limits is sufficient (Fig. 1b). However, using
this test only, other types of non-random variation may go
unnoticed for longer periods of time (Fig. 1c) ([3], p., 183).

The focus of this study is the ability to identify persist-
ent shifts in data over time suggesting significant and
lasting process improvement or deterioration. For this
purpose, a number of additional control chart tests have
been developed.

The Western electric rules

The best known tests for non-random variation are
probably the Western Electric (WE) rules described in
the Statistical Quality Control Handbook from 1956 ([7],
p. 23-27). The WE rules consist of four simple tests that
can be applied to control charts by visual inspection to
identify non-random patterns in the distribution of data
points relative to the control and centre lines:

1. One or more points beyond a 3-sigma limit.

2. Two out of three successive points beyond a 2-
sigma limit (two thirds of the distance between the
centre line and the control line).

3. Four out of five successive points beyond a 1-
sigma limit.

4. Eight or more successive points on one side of the
centre line.

When using the WE rules, it is generally recom-
mended that control charts should have between 20 and
30 data points ([3], p., 231). With fewer data points, they
lose sensitivity (more false negatives), and with more
data points they lose specificity (more false positives).

The Anhoej rules

The Anhoej rules have been proposed and validated in
two previous publications [8, 9] and are the default tests
used in SPC charts produced with the gicharts2 package
for R [10]. The Anhoej rules consist of two tests that are
based solely on the distribution of data points in relation
to the centre line:

1. Unusually long runs: A run is one or more
successive data points on the same side of the
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centre line. Data points that fall on the centre line
do neither break nor contribute to the run. The
upper 95% prediction limit for longest run is
approximately log,(n) + 3 (rounded to the nearest
integer), where n is the number of useful data
points. For example, in a run chart with 24 data
points a run of more than 8 would suggest a shift in
the process.

2. Unusually few crossings: A crossing is when two
successive data points are on opposite sides of the
centre line (ignoring data points on the centre line).
In a random process, the number of crossings is
expected to follow a binomial distribution with a
probability of success of 0.5, b(n — 1, 0.5). Thus, in
a run chart with 24 useful data points, fewer than 8
crossings would suggest that the process is shifting.

The two rules are closely related — when runs get lon-
ger, the number of crossings get fewer and vice versa —
and while they often signal together, either of them is
diagnostic of non-random variation.

Critical values for longest run and number of crossings
may be calculated using the formulas provided or looked
up in a statistical table [8].

The Anhoej rules were developed to reliably identify
persistent shifts in data over time regardless of the
underlying theoretical distribution of data and without
the need to calculate sigma limits. Essentially, the
Anhoej rules constitute an augmented version of the
WE rule 4 and to, some extent, WE rules 2-3. While
the Anhoej rules are useless in detecting transient shifts
and slower than the WE rules in detecting larger shifts,
they have some advantages [8, 9]:

e As mentioned, the Anhoej rules do not depend on
sigma limits, and when used with the median as the
centre line they are agnostic to assumptions
regarding the theoretical distribution of data.
Therefore, they are useful as stand-alone rules with
run charts, which are a lot easier to construct than
control charts and require pen and paper only.

e The Anhoej rules adapt dynamically to the number
of available data points and can be applied to charts
with as few as 10 and up to indefinitely many data
points without losing sensitivity and specificity.

e Compared to other commonly recommended and
used run chart rules, the Anhoej rules have better
diagnostic properties.

Other rules

Many more tests and rule sets have been proposed ([3] p.
197 [7], p. 28-29 [11],), and in practice there is no limit to
the number of ways one could identify non-random pat-
terns in data. However, the more tests applied, the higher
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the risk of false positive results ([3] p. 197-198 [6], p. 99).
Furthermore, some popular tests have proven to be at best
useless in practice [8, 9, 12].

For these reasons, the decision on which and how
many rules to use in a given situation should be made
deliberately, preferably before data collection begins, and
based on one’s understanding of the processes involved.
This study attempts to add objectivity and reproducibil-
ity to this selection process.

Diagnostic value of SPC charts

In essence, SPC charts are diagnostic tests designed to
identify non-random variation in data sequences. As
with other diagnostic tests there is a risk that an SPC
chart will detect non-random variation when only ran-
dom variation is present (a, type 1 error, or false posi-
tive) or overlook non-random variation that is actually
there (B, type 2 error, or false negative).

a = P{signal | random variation} = P{false positive}
= P{type 1 error}

B = P{no signal | non-random variation}
= P{false negative} = P{type 2 error}

Traditionally, the statistical properties of control charts
have been evaluated through the so-called average run
length metric (ARL), the average number of data points
until non-random variation is identified:

ARLy = 1/«

for the in-control ARL, when random variation is present,
and

ARL; =1/(1 - )

for the out-of-control ARL, when non-random variation
is present [3].

For example, in a random process with data coming
from a normal distribution the chance (a) of a data point
falling outside the 3-sigma limits is 0.0027, and ARL, =
1/ 0.0027 = 370 meaning that we should expect to wait
on average 370 data points between false alarms.

The out-of-control ARL depends on the false negative
risk (B) which in turn depends on size of the shift (sig-
nal) relative to the size of the common cause variation
(noise).

The ideal control chart would have ARL, = and
ARL; =1. In practice, this is not possible because ARLs
are linked — if one goes up, the other follows suit.

Champ and Woodall provided exact ARLs for control
charts with different combinations of rules [13]. For ex-
ample, ARL; =2 for the 3-sigma rule, when a shift of 3
SD is present.
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ARL relate to specificity and sensitivity measures, which
may be more familiar to medical researchers:

specificity = P{no signal | random variation}
= P{true negative} =1 — «

sensitivity = P{signal | non-random variation}
= P{true positive} = 1-f

However, ARL, sensitivity, and specificity are not that
useful on their own — they describe how non-random
variation predicts a signal, not how a signal predicts
non-random variation, which is what we really want to
know. Additionally, to calculate exact ARLs, the probabil-
ity distribution of the rules of interest must have a closed
form, which is not (at present) available for the Anhoej
rules. Also, Anhgj found that simulating ARLs on the
Anhoej rules were impractical due to the dynamic nature
of the rules adapting to longer and longer data series,
which resulted in “never ending” simulations [8].

One may be tempted to use predictive values to de-
scribe the diagnostic value of SPC charts:

positive predictive value = P{random variation | no signal}
negative predictive value = P{non-random variation | signal}

However, predictive values depend (as do sensitivity
and specificity) on the prevalence of non-random vari-
ation, which is often unknowable in practice [14].

To overcome the shortcomings of predictive values,
likelihood ratios have been proposed [14, 15], and in a
previous study Anhgj successfully applied them to quan-
tify and compare the diagnostic properties of different
sets of run chart rules [9].

Likelihood ratios

Likelihood ratios tell how well diagnostic tests discrimin-
ate between the presence and the absence of a specific
condition. In this study, we applied likelihood ratios to
evaluate how well the WE rules can tell random variation
from non-random variation in simulated time series.

The use of likelihood ratios to examine the diagnostic
value of run chart rules has been explained in detail pre-
viously [9].

In short, the positive likelihood ratio (LR+) is the true
positive proportion (TP) divided by the false positive pro-
portion (FP). LR+ greater than 10 is considered strong evi-
dence that the condition being tested for is present. The
negative likelihood ratio (LR-) is the false negative propor-
tion (FN) divided by the true negative proportion (TN).
LR- smaller than 0.1 is considered strong evidence against
the condition [15].

LR+ = TP/FP = sensitivity /(1-specificity)
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LR- = FN/TN = (1-sensitivity) /specificity

Thus, for any test, the higher LR+ and the lower LR-,
the better the test.

A note on normality

It is a common misconception that SPC charts rely on
data coming from a normal distribution. This is not true
[4, 16]. It is important to remember that the purpose of
the SPC chart is not to estimate any parameter of the
distribution of data but to identify signs of non-random
process behaviour.

Wheeler and Chambers have demonstrated that even
when data come from highly skewed distributions, the
3-sigma limits will include nearly all (>98%) of individ-
ual values meaning that a data point outside the control
limits most likely represents non-random variation (WE
rule 1) ([6] p. 65-76).

[SPC charts] will work, and they will work well, even
when “the measurements are not normally
distributed.” (Donald Wheeler and David Chambers
[6], p. 76).

It is true, however, that non-normality may influence
the diagnostic properties of rules based on the distribu-
tion of data in relation to 1 and 2 sigma limits (WE rules
2 and 3) ([6] p. 61-65), and that the Anhoej rules may
be affected if data are not distributed evenly around the
centre line.

For these reasons, some recommend to always begin
SPC analysis with a runs analysis using the median as
reference and only apply the WE rules if the runs ana-
lysis find random variation.

Over the years, I have developed an increasing affection
for the much-neglected run chart: a time plot of your
process data with the median drawn in as a reference
(yes, the median — not the average). It is “filter No. 1” for
any process data and answers the question: “Did this
process have at least one shift during this time period?”
(This is generally signaled by a clump of eight consecutive
data points either all above or below the median.) If it
did, then it makes no sense to do a control chart at this
time because the overall average of all these data doesn’t
exist. (Sort of like: If I put my right foot in a bucket of
boiling water and my left foot in a bucket of ice water, on
average, I'm pretty comfortable.) (Davis Balestracci, [17]).

Study aim

The aim of this study was to quantify and compare the
diagnostic value of The Western Electric statistical process
control chart rules and the Anhoej rules for detection of
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non-random variation in time series data in order to make
recommendations for their application in practice.

Methods

We used the R programming language v. 3.4.4 [18] to
simulate time series data from random normal numbers
with known sample averages and fixed sample standard
deviation (SD =1). We developed custom functions for
testing time series data for non-random variation using
the WE zone rules and the Anhoej runs rules and for
calculating likelihood ratios from these results. For data
manipulation and plotting, we used functions from the
tidyverse package v. 1.2.1 [19].

To investigate the effect of series length (number of
data points) on the diagnostic value of different rules,
10,000 time series were simulated for each combination
of series length (10, 20, and 40 data points) and shift size
(0 and 2 SD units). In total 60,000 time series were sim-
ulated and tested in relation to a fixed set of centre line
and sigma limits of 0 £ 1, 2, 3 SD.

For each series, the proportions of true or false posi-
tive and negative results respectively were calculated for
selected combinations of the WE and the Anhoej rules.
Positive and negative likelihood ratios were then calcu-
lated for a shift size of 2 SD and series lengths of 10, 20,
and 40 data points respectively. Examples on how to cal-
culate likelihood ratios have been given previously [9].

The R source code is available as Additional file 1.

Results

Figure 2 illustrates the value of positive and negative test
results using likelihood ratios for combinations of series
lengths and tests when a shift of 2 SD is present or absent
in data. As mentioned, a better test is one with a large
range, preferably with LR+ above 10 and LR- below 0.1.

Other things being equal, the value of a positive test
decreases while the value of a negative test increases
with more tests and longer series.

With short data series (10 data points), the WE rules
1-4 combined and the Anhoej rules alone or combined
with WE rule 1 perform well for identifying or excluding
persistent shifts in the order of 2 SD. For longer data
series, the Anhoej rules alone or in combination with
the WE rule 1 seem to perform slightly better than the
WE rules combined.

Discussion
To our knowledge, this is the first study to investigate
and quantify the value of the Western Electric rules
using likelihood ratios on simulated time series data.

For the reasons discussed in the introduction, likeli-
hood ratios are more useful measures of diagnostic value
than are predictive values and ARLs.
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Fig. 2 Likelihood ratios of control chart rules. Positive and negative likelihood ratios of control chart rules in the presence of a shift of 2 standard
deviation units

The interpretation of likelihood ratios are straightfor-
ward: given a specific test result, how many times more
(or less) likely is it that the condition is present? For ex-
ample, in a control chart with 10 data points that tests
positive on WE rule 1, a shift in the order of 2 SD is
about 30 times more likely than no shift (LR+ =28). If
the same chart tests negative on WE rule 1, a shift of 2
SD is about 5 times less likely than no shift (LR-=0.19)
(Fig. 2).

This study has two important limitations: First, the re-
sults are not to be extrapolated outside the conditions
being tested. Second, since the results come from simu-
lated data series, they should not be taken as exact
values rather than indicators of how different conditions
affect the diagnostic value of SPC charts.

Regarding extrapolating the results: This study was
designed to specifically investigate the effect of series
length and combinations of SPC rules when the
process centre and spread are known in advance before
the introduction of a persistent shift in the process
centre. This is often referred to as a phase 2 study

([3] p. 198-199 [16]). In practice, SPC charts are often
used without prior knowledge of process centre and
spread. In such cases, the purpose of the chart may actu-
ally be to estimate these properties (phase 1 study). Also,
changes in real life data come in many more forms than
persistent shifts of 2 SD.

In our practice (hospital infections, drug usage, pro-
cedure compliance, etc.), sudden shifts are less common
than long term trends, waves, and individual outliers.
Trends and waves are often signalled by the Anhoej
rules before the WE rules [8], and outliers are often
picked up quickly by WE rule 1. However, to quantify
the diagnostic value of SPC charts for other patterns,
one must design studies for the specific purpose.

Regarding the use of simulations and in extension of
the previous paragraph: No simulated data can truly re-
flect the properties of real life data, and the results
should be interpreted cautiously. Specifically, sudden,
persistent shifts of 2 SD in normally distributed data, as
used in our model, may never happen in reality, and our
results are merely suggestive of what is expected to



Anhgj and Wentzel-Larsen BMC Medical Research Methodology (2018) 18:100

happen when data series grow longer and more and
more tests are applied. Also, in practice during phase, 1
SPC charts are often used on sequentially growing data
rather than static data sets — sometimes with the centre
line and control limits being recomputed after each data
point. This may lead to signals coming and going until
there are enough data points (20-30) to establish the
natural process limits allowing for the fixation of control
limits and centre line (phase 2). Further studies on the
effects of running SPC analysis during phase 1 studies
are needed.

A suggested strategy for practical use of SPC charts
Based on these results and supported by our own experi-
ence from using SPC on health care data, we recom-
mend a stepwise approach for the application of SPC
charts in health care quality improvement:

e Collect at least 12, preferably 20-30 data points.

e Test for non-random variation using the Anhoej
rules with the median as reference.

e If the Anhoej rules find non-random variation, seek
to identify its cause(s). If the process is moving in
the undesired direction, eliminate the cause. Other-
wise — random or non-random variation — seek to
stabilise the process at the desired level.

e When the process has been brought to the desired
level and the Anhoej rules finds random variation, a
control chart using the mean as centre line together
with 3-sigma limits may be used to further stabilise
the process, identify unwanted shifts in data and to
establish the natural process limits to be expected in
the future.

e For increased sensitivity to minor and moderate
shifts, one may choose to supplement the WE rule 1
with either the Anhoej rules or the WE rules 2—4.

The reason for saving the WE rules and the mean ra-
ther than the median for when the process has been
brought to the desired level is simply that the complexity
of control charts is usually not necessary to guide im-
provement work. While the WE rules are quick to iden-
tify transient shifts in data, lasting improvement is more
reliably identified by the Anhoej rules [8].

For practical and pedagogical reasons and for statis-
tical robustness, we use only the Anhoej rules and the
WE rule 1 in our work. This way the user needs only
learn three rules and the diagnostic value of the charts is
less affected by longer data series and non-normality
than is the case when using the WE rules 1-4 together.

In some situations, however, when monitoring a well
controlled and well behaved process with known process
centre and spread and fixed sigma limits (phase 2), the
WE rules 1-4 may be useful to quickly identify shifts in
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process location — shifts that would take longer for the
Anhoej rules to identify.

Conclusions

With short data series (10 data points), the WE rules 1-
4 combined and the Anhoej rules alone or combined
with WE rule 1 perform well for identifying or excluding
persistent shifts in the order of 2 SD. For longer data
series, the Anhoej rules alone or in combination with
the WE rule 1 seem to perform slightly better than the
WE rules combined.

However, the choice of which and how many rules to
apply in a given situation should be made deliberately
depending on the specific purpose of the SPC analysis
and the number of available data points.

Based on these results and our own practical experi-
ence, we suggest a stepwise approach to SPC analysis:
Start with a run chart using the Anhoej rules and with
the median as process centre. If, and only if, the process
shows random variation at the desired level, apply the
3-sigma rule in addition to the Anhoej rules using the
mean as process centre.

Additional file

Additional file 1: Text file including the R code used to simulate the
data and perform the analysis reported in this study. (R 7 kb)
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