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Abstract

Background: The odds ratio (OR) is used as an important metric of comparison of two or more groups in many
biomedical applications when the data measure the presence or absence of an event or represent the frequency of its
occurrence. In the latter case, researchers often dichotomize the count data into binary form and apply the
well-known logistic regression technique to estimate the OR. In the process of dichotomizing the data, however,
information is lost about the underlying counts which can reduce the precision of inferences on the OR.

Methods: We propose analyzing the count data directly using regression models with the log odds link function.
With this approach, the parameter estimates in the model have the exact same interpretation as in a logistic
regression of the dichotomized data, yielding comparable estimates of the OR. We prove analytically, using the Fisher
information matrix, that our approach produces more precise estimates of the OR than logistic regression of the
dichotomized data. We also show the gains in precision using simulation studies and real-world datasets. We focus on
three related distributions for count data: geometric, Poisson, and negative binomial.

Results: In simulation studies, confidence intervals for the OR were 56–65% as wide (geometric model), 75–79% as
wide (Poisson model), and 61–69% as wide (negative binomial model) as the corresponding interval from a logistic
regression produced by dichotomizing the data. When we analyzed existing datasets using our approach, we found
that confidence intervals for the OR could be up to 64% shorter (36% as wide) compared to if the data had been
dichotomized and analyzed using logistic regression.

Conclusions: More precise estimates of the OR can be obtained directly from the count data by using the log odds
link function. This analytic approach is easy to implement in software packages that are capable of fitting generalized
linear models or of maximizing user-defined likelihood functions.
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Background
Count data arise naturally in many biomedical applica-
tions. These data are often converted to binary values
and commonly analyzed using logistic regression meth-
ods. Usually “failure” for a subject is defined as having a
count of zero and “success” as having a positive count.
If p1 is the probability of a positive count for the group
with a risk factor of interest and p2 is the probability of a
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positive count for the group without the risk factor, then
the two groups are typically compared using the odds ratio
OR =[ p1/(1 − p1)] /[ p2/(1 − p2)].
Several examples of this dichotomization approach can

be found. From a survey of dietary behaviors among
Canadian youth, Vanderlee et al. [1] dichotomized the
number of sugar-sweetened beverages consumed and
compared the odds of consuming at least one beverage
based on gender, age group, and physical activity. A sim-
ilar approach was used to estimate the odds of one or
more motor vehicle collisions by elderly drivers based on
the frequency of falls [2] and the odds of one or more
dental caries in children based on diet and obesity [3].
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In some applications, the cutpoint of interest for the OR
is not always at one. Van Strien et al. [4] defined fre-
quent falls to be more than two in the past year, and
dichotimized the count data around this value to cal-
culate the odds of frequent falls associated with taking
psychotropic medications. Duggal et al. [5] fit two sepa-
rate models to examine the number of outpatient visits to
Veterans Administration (VA) facilities. A logistic regres-
sion model was applied to the binary data of use or
non-use of the VA facilities and a separate negative bino-
mial (NB) model (with support of positive integers) was
used for the count data of the frequency of visits among
those who had at least one visit.
The loss of information from dichotomizing a contin-

uous variable prior to analysis has been studied exten-
sively. Suissa and Blais [6] examined dichotomizing con-
tinuous variables above and below thresholds of clin-
ical interest (e.g., patients with cholesterol higher or
lower than 240 mg/dl). They developed an approach
for modeling the probability of being above the clini-
cal threshold using a generalized linear model (GLM)
framework and demonstrated the gains in information
using this approach instead of a logistic regression with
dichotomized values. Moser and Coombs [7] developed
a method to estimate the OR directly from a continu-
ous regression model by assuming that the errors follow
a logistic distribution. Suissa [8] and Peacock et al. [9]
applied the delta method to obtain an estimator and stan-
dard error for the OR (as well as other metrics of risk)
using the sample mean and standard deviation from a
normal distribution.
Research on the loss of information from dichotomiz-

ing count data is limited. Recently, Preisser et al. [10]
examined the information loss in logistic regression when
compared to a special two-part hurdle model with trun-
cated Poisson or NB distribution for the observed count
data. These models have separate parameters for altering
the probability of zero counts and the mean of the trun-
cated distribution used for positive counts. It is assumed
the two parts of themodel are related, with their link func-
tions having common regression parameters involving
covariates. The critical assumption is given in condition
(6) of their paper. It assumes that the logit link func-
tion for the zero count and the log mean link function
for the truncated count distribution are linearly related.
The crucial difference between their hurdle model and the
corresponding ordinary Poisson or NB count models is
that their condition (6) is incompatible for these distribu-
tions. However it is compatible for the geometric model,
in which case the link functions are identical.

Methods
We propose analyzing the non-dichotomized data using
count regression models with the log odds link function

and demonstrate this method with the geometric, Pois-
son, and NB distributions. These three distributions are
related to each other and can be used to model a wide
range of overdispersion in the count data. We compare
inference for the OR using our method to the logistic
regression approach that dichotomizes the count data.
Our focus is on analyses that compare the odds of a pos-
itive count between two groups (cutpoint at zero). The
use of the log odds link function results in model param-
eters being compatible with the usual logistic regression
model and enables us to directly compare the resulting
covariate dependent OR estimates. In addition, the log
odds link function is a function of the mean for all of these
models and has the real line as the range space. Typically,
count regression models use the so-called canonical link
function, which differs for the three distributions exam-
ined here. As noted byMcCullagh andNelder ([11], p. 32),
while the canonical link function hasmany desirable prop-
erties due to its special role in the exponential family of
distributions, these properties do not justify its use when
the application at hand suggests that a different link func-
tion is more appropriate. Here, the desire by researchers to
report results in terms of the OR rather than other statis-
tics implied by the canonical link (e.g., relative means)
supports the use of alternative link functions. Cook
([12], p. 2091) lists some guiding principles on the choice
of a link function.

Fisher information in dichotomized count variables
Let Y be a random variable (r.v.) from a counting process
with p = Pr(Y > 0), 0 < p < 1, and support {0, 1, . . .}.
Define the binary r.v. Z to equal 0 if Y = 0 and 1 if Y >

0. The r.v. Z follows the Bernoulli distribution with mean
μ = p and variance v(μ) = p(1 − p) = μ(1 − μ). Let θ

denote the odds of a positive count; that is,

θ = Pr(Y > 0)
Pr(Y = 0)

= Pr(Z = 1)
Pr(Z = 0)

= p
1 − p

. (1)

Then the FI about θ in Z is

FI(Z; θ) = 1
θ (1 + θ)2

. (2)

We note that Z is not a sufficient statistic for the data
generated by Y, and we expect FI(Z; θ) to be strictly less
than the corresponding FI(Y ; θ). We demonstrate this and
quantify the magnitude of information loss for the three
count models considered.
Logistic regression is often used to estimate the log

odds from a vector of n independent Bernoulli r.v.’s Z =
(Z1, . . . ,Zn) conditional on a set of covariates. The means
of these Bernoulli r.v.’s are related to the covariates through
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the link function h(μ) = log(θ) = log[ p/(1 − p)] that is
linear in them as follows:

log [θ(xi)] = log
[

p(xi)
1 − p(xi)

]
= x′

iβ i = 1, 2, . . . , n,

(3)

where x′
i = (xi0 ≡ 1, xi1, . . . , xik) is the 1 × (k + 1) vector

corresponding to the k covariates associated with a single
subject i and β = (β0,β1, . . . ,βk)

′ is the (k + 1) × 1 vector
of associated coefficients.
The FI inZ about an arbitrary βj in the regressionmodel

is

FI(Z;βj) =
n∑

i=1
FI(Zi; θ)

(
∂θ

∂βj

)2

=
n∑

i=1
p(xi)[ 1 − p(xi)] x2ij. (4)

Using general results on GLMs [11], the
(
j,m

)th element
of the FI matrix for β is given by

−E
[

∂2�(β)

∂βj∂βm

]
=

n∑
i=1

w(xi)xijxim, j,m = 1, . . . , k,

(5)

where � is the log likelihood function and the weights are

w(xi) = 1
v(μ(xi)) [h′(μ(xi))]2

, 1 ≤ i ≤ n. (6)

For the logistic regression model, v(μ) = μ(1 − μ) =
1/h′(μ) and consequently w(x) = p(x)[ 1 − p(x)].
In subsequent sections, we use the following result to

compare the asymptotic variance of estimators of β by
comparing the values of the weightsw(xi) in the FI matrix.

Result 1. Let IC be the FI matrix for β based on the count
data Y with w(xi) = wC(i). Let IB be the FI matrix for
β based on the dichotomized count data Z with w(xi) =
wB(i). Ifw∗(i) = wC(i)−wB(i) > 0 for all i = 1, . . . , n, then
the asymptotic variance of the estimator of β is strictly less
under the count model than under the logistic model.
To prove this result, define X′

(k+1)×n = (x1, · · · , xn),
a matrix associated with the covariates, and W∗

n×n =
diag{w∗(1), . . . ,w∗(n)}, a diagonal matrix with positive
diagonal elements. Then it follows that I∗ = X′W∗X is
positive definite. Being FI matrices, IC and IB are already
positive definite. Problem 9 in Rao ([13], p. 56) states that
if M2 is a positive definite matrix and (M1 − M2) is non-
negative definite, then M−1

2 − M−1
1 is also non-negative

definite. By taking M1 = IC and M2 = IB, it means the

diagonal entries of the difference matrix I−1
B − I−1

C are all
positive. Thus we have proved the result.

The geometric regression model
When the count variable Y has a geometric distribution
with Pr(Y = 0) = 1 − p, its probability mass function
(pmf) is given by

Pr(Y = y) = py(1 − p), y = 0, 1, 2, . . . . (7)

The mean μ and variance functions for this geometric
pmf are:

μ = p
1 − p

, v(μ) = p
(1 − p)2

= μ(1 + μ). (8)

The mean μ in (8) is nothing but the odds of a positive
count (see (1)). Letting θG denote the odds from the geo-
metric distribution and using (2), it can be easily shown
that

FI(Y ; θG) = 1
θG(1 + θG)

= (1 + θG)FI(Z; θG). (9)

As Y is non-degenerate, (1 + θG) > 1 and there is more
information in the count r.v. than in the dichotomized
r.v. Z. Thus, the asymptotic relative efficiency (ARE) of
the MLE of θG based on a random sample of size n
from the geometric distribution when compared to the
dichotomized data is (1+ θG). (See [14], for a definition of
the ARE).
Now consider n independent r.v.’s Y = (Y1, . . . ,Yn)

from the geometric distribution and the corresponding
dichotomized variables Z = (Z1, . . . ,Zn). The log link
function h(μ) = log(μ) is commonly used in count mod-
els [15]. In the case of the geometric distribution, this
link function is identical to log[ p/(1 − p)], the same link
function commonly used for models of the dichotomized
data, and the covariates affect the parameters through the
exact same relationship as in (3). Note that by choosing
h(μ) = log(μ) for the geometric model, we are using a dif-
ferent link than the canonical link function log(p) implied
by (7). Furthermore, for the geometric model

FI(Y;βj) =
n∑

i=1

θ(xi)
[ 1 + θ(xi)]

x2ij =
n∑

i=1
p(xi)x2ij. (10)

Let IC represent the FI matrix for β under the geomet-
ric regression model with weights wC(i) = p(xi). Then
wC(i) − wB(i) = p(xi)2 > 0, and, by Result 1, the asymp-
totic variance of the geometric regression estimator of β

is strictly less than the asymptotic variance of the logis-
tic regression estimator. From (10) and (4), it also follows
that

∑
i
[
p(xi)xij

]2 represents the amount of information
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about βj that is lost when the geometric count data Y are
transformed into binary data Z.

The Poissonmodel with log odds link
We now assume that the count r.v. Y follows the Poisson
distribution with mean (and variance) μ:

Pr(Y = y) = e−μμy

y!
, y = 0, 1, 2, . . . . (11)

The odds of a positive count based on the Poisson
distribution, θP, is

θP = Pr(Y > 0)
Pr(Y = 0)

= eμ − 1. (12)

Hence the FI in Y and the FI in Z given in (2) are related as

FI(Y ; θP) = 1
(1 + θP)

2 log(1 + θP)

=
(
eμ − 1

μ

)
FI(Z; θP). (13)

The last expression in (13) shows that the proportional
increment in the FI in Y, given by

∑∞
i=1 μi−1/i!, is substan-

tial and increases with μ.
With the log odds link function, the n independent Pois-

son r.v.’s Y = (Y1, . . . ,Yn) yield (3) with log[ θP(xi)]=
log{exp[μ(xi)]−1}. Furthermore, the FI in the Poisson
r.v.’s Y about βj is given by

FI(Y;βj) =
n∑

i=1

[
θP(xi)xij

]2
[1 + θP(xi)]2 log[ 1 + θP(xi)]

=
n∑

i=1

{
− [

p(xi)
]2

log[ 1 − p(xi)]

}
x2ij

=
n∑

i=1
wC(i)x2ij, (14)

where wC(i) is the weight in the FI matrix for the count
data. The difference in weights between the count data
and the dichotomized data, wC(i) − wB(i) is

p(xi)
{

p(xi)
− log[ 1 − p(xi)]

−[ 1 − p(xi)]
}
. (15)

It is easily shown that for 0 < p(xi) < 1, the quantity
within the braces above in (15) is always strictly positive
and equals 0 only when p(xi) = 0, but FI(Y;β1) is unde-
fined at this value. Hence, from Result 1, it follows that the
Poisson model with the log odds link function produces
more efficient MLEs than the logistic model.

The negative binomial (NB) model
The Poisson model assumes that the variance equals the
mean, the geometric allows for overdispersion of the form
μ(1 + μ), and the NB model provides flexibility to model
overdispersion with an additional parameter. When Y fol-
lows the NB distribution with mean parameter μ and
dispersion parameter δ,

Pr(Y = y) = �(y + δ)

�(y + 1)�(δ)

(
δ

δ + μ

)δ (
μ

δ + μ

)y

(16)

for y = 0, 1, 2, . . .. The variance as a function of μ is
v(μ) = μ(1 + μδ−1). The NB distribution yields the geo-
metric distribution when δ = 1, and the Poisson model
is obtained when δ → ∞. When Y has NB distribution,
Pr(Y > 0) = 1−[δ/(δ + μ)]δ , and the corresponding odds
θ is given by

θ = Pr(Y > 0)
Pr(Y = 0)

=
(
1 + μ

δ

)δ − 1, (17)

and the mean as a function of θ is μ = δ[ (1 + θ)1/δ − 1].
The second derivative of the log likelihood for a single

observation y with respect to θ is

∂2�

∂θ2
= − (1 + θ)−2

[
y
μ

− 1 + y
μ2 (1 + θ)1/δ

]
(18)

and hence the FI in the count random variable, FI(Y ; θ), is

(1 + θ)1/δ

μ(1 + θ)2

= 1
μ

[(
1 + μ

δ

)δ+1 −
(
1 + μ

δ

)]
FI(Z; θ). (19)

It is easy to show that when δ = 1, FI(Y ; θ) = FI(Y ; θG)

(given in (9)) and as δ → ∞, FI(Y ; θ) = FI(Y ; θP) (given
in (13)).
We now show that there is more information about θ in

Y than in Z. From (19), it follows that, with t = μ/δ > 0,
the ratio of the two FIs can be expressed as

(1 + t)δ+1 − (1 + t)
tδ

=1 + (δ + 1)t + (δ + 1)δ (1 + t0)δ−1 t2
2! − (1 + t)

tδ

=1 + t
2
(δ + 1)(1 + t0)δ−1, (20)

upon using Taylor series expansion around 0. Here, t0 ∈
(0, t) is positive and the second term in the last expression
above represents the increase in the relative FI due to the
NB fit.
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The NB regression model typically uses the log link
h(μ) = log(μ) to relate the mean of the data to the set
of covariates. As noted before, we propose a regression
model with log odds link function:

log
[(

1 + μi
δ

)δ − 1
]

= x′
iβ , i = 1, 2, . . . , n. (21)

The FI in the NB r.v.’s Y about βj is given by

FI(Y;βj) =
n∑

i=1

(1 + θ)1/δ

μ(1 + θ)2
θ2x2ij. (22)

Now, the difference in weights between the count data
and the dichotomized data, wC(i) − wB(i), is

θ(xi)
[1 + θ(xi)]2

{
θ(xi) [1 + θ(xi)]1/δ

μ
− 1

}
, (23)

which is strictly positive since we have shown above that
the quantity inside the braces is always positive. Hence
from Result 1, we conclude that the MLEs of β using the
NB regression of the count data aremore efficient than the
MLEs using logistic regression of the dichotomized data.
The NB regression with log odds link does not fit con-

veniently into the GLM framework that uses iteratively
weighted least squares for estimation. The model results
in the following mean function

μi = δ

[(
1 + ex

′
iβ

)1/δ − 1
]
, (24)

which is a function of both β and the dispersion parameter
δ, and the coefficient of variation is not constant. How-
ever, our proposed NBmodel can be fit by maximizing the
following log likelihood with respect to β and δ:

� =
n∑

i=1

{
log�(yi + δ) − log�(yi + 1) − log�(δ)

+ yi log
{[
1 + exp(x′

iβ)
]1/δ − 1

}

−
(
1 + yi

δ

)
log[ 1 + exp(x′

iβ)]
}
. (25)

It is done by solving the first order conditions

∂�

∂βj
=

n∑
i=1

{
xij

[
yi

δ
[
1 + exp(x′

iβ)
]1/δ − δ

− 1
]

×
[ exp(x′

iβ)

1 + exp(x′
iβ)

]}
= 0, (26)

for j = 1, 2, . . . , k, and

∂�

∂δ
=

n∑
i=1

{
�(yi + δ) − �(δ)

− yi log[ 1 + exp(x′
iβ)]

δ2
[
1 + exp(x′

iβ)
]1/δ − δ2

}
= 0, (27)

where �(a) is the first derivative of �(a). In the simula-
tion studies and analyses that follow, we use the method of
Nelder and Mead [16] to find MLEs of β and δ as imple-
mented in the R optim function. The algorithm returns
the Hessian at the maximum, which we use to estimate
the standard errors of the model parameters. Starting val-
ues for the algorithm can be obtained from the coefficient
estimates from the corresponding logistic regression and
setting δ(0) = 1.

Simulation studies
For each distribution (geometric, Poisson, and negative
binomial), we conducted a simulation study to quantify
the additional precision that can be gained by using a
count regression model with log odds link instead of
a logistic regression model with the dichotomized data.
Count data were simulated from each distribution accord-
ing to the following model:

log(θi) = −0.1+0.6x1i−0.55x2i+0.4x3i+0.25x4i (28)

for i = 1, 2, . . . , n. For the NB model, δ = 0.8. Each
covariate x1i, . . . , x4i in the model was a binary categor-
ical variable. For each sample size used in the study, we
simulated a (n × 5) design matrix consisting of a col-
umn of ones and a (n × 4) matrix of random draws from
a Bernoulli(p = 0.5) distribution. Each simulation was
repeated 5000 times for sample sizes n = 50, 75, 100, 250,
500, and 1000. For each covariate, the OR and 95% con-
fidence limits were calculated from the count and logistic
regression models using standard methods. We compared
the two approaches based on the percent bias in the esti-
mate (measured as the percentage difference between the
average of the 5000 estimates and the true OR value), the
average mean squared error (MSE) for the log OR, the rel-
ative widths of the confidence intervals (measured as the
average ratio of the width of the 95% confidence interval
from the count regression to the width of the interval from
the logistic regression), and actual coverage of the interval
(measured as the percent of simulations where the confi-
dence interval contained the true OR value obtained from
the model in (28)).
In addition, we conducted a simulation study in which

the data were generated using a NB distribution with dis-
persion parameters δ = 0.5, 1, 5, and 10, but the model
was fit using Poisson regression with log odds. The objec-
tive of this simulation was to show how our approach
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would compare to logistic regression when the count
distribution is misspecified.

Analysis of real-world datasets
In addition to simulated data, we analyzed real-world
datasets to assess the performance of the log odds regres-
sion model of the count data. We selected datasets for
which a geometric, Poisson, or NB regression model
(using log link) had already been determined to provide
the best fit. We fit a regression model using the log odds
link to each dataset and compared the estimates and stan-
dard errors to a logistic regression of the dichotomized
data. We briefly describe each dataset below.

German socio-economic panel
Hilbe ([17], p. 295-297) used the geometric count model
to describe the number of physician visits by n = 2227
working women in the German Socio-Economic Panel
before and after reforms to the German health system
in 1997. Reforms included increases in co-payments and
limits on provider reimbursement. The survey gathered
data on the number of patient visits in 1996 and 1998.
The data set is introduced on page 269 of Hilbe [17].
Hilbe initially fit a NB regression model, and upon iden-
tifying that the dispersion parameter δ was nearly one,
he used the geometric model. He also compared the
goodness-of-fit of the canonical link function log(1 −
p) to the log mean (or, equivalently, the log odds) link
function and concluded that the latter provided a better
fit (p. 297).

Australian health survey
Cameron and Trivedi ([15], p.77-80) fit a Poisson model
to the number of doctor visits in the past two weeks
reported by 5190 single adult respondents to the 1977-
1978 Australian Health Survey. They used the canonical
link function (that is, log mean) to model the data. In fit-
ting a model using the log odds link function, we removed
two covariates (age2 and presence of a chronic condition
that does not limit activity) that were statistically signif-
icant in the log mean model but were not statistically
significant in either the log odds model or the logistic
regression model of the dichotomized data.

General social survey
Agresti ([18], p. 554-555) fit a NB model to count data
from the 1990 General Social Survey. The survey asked
1308 participants how many people he/she knew person-
ally that were victims of homicide in the past 12 months.
Responses ranged from zero to six. The estimated model
included an intercept and a single categorical covariate for
race:

log(μ̂t) = −2.3832 + 1.7331xt , (29)

where μ̂t is the estimated mean for a respondent of race
category t and xt is an indicator for that respondent’s race
(1 = African-American, 0 = white). From the fitted model,
Agresti estimated the ratio of means as exp(1.7331) = 5.7.
We fit the NB model with log odds link to estimate
the OR of knowing at least one homicide victim for
African-American versus white respondents. For the
dichotomized data we applied the well-known asymptotic
standard error for the OR calculated from a 2 × 2 contin-
gency table ([18], p. 70), since our covariate of interest is
binary.

Results
Simulation studies
Detailed results from the simulation studies are shown in
Additional file 1 to this article.
The percent bias is smaller for the geometric model

than the logistic regression of the dichotomized data, and
the percent bias decreases as the sample size increases
(Additional file 1: Table S.1). In terms of the total error
(bias and variance), the MSE of the log OR for the geo-
metric model was 29–44% of the MSE for the logistic
regression model (Additional file 1: Table S.2). The rel-
ative MSE was lower (geometric model more accurate)
for smaller sample sizes than for larger sample sizes. As
proven in our analytic results, the geometric model con-
sistently produced narrower confidence intervals than the
logistic regression of the dichotomized data. Confidence
intervals calculated directly from the count data were 56–
65% as wide as the intervals from the dichotomized data.
The actual coverage of the intervals from the geometric
model were slightly below the nominal level of 95% for
smaller sample sizes, but never less than 92.7% (n = 50).
For sample sizes of 250 or greater, actual coverage was very
close to the nominal level.
Additional file 1: Table S.5, shows the percent bias in

the Poisson and logistic regression estimators for each
of the four covariates. For both methods, the percent
bias decreases as the sample size increases, and the Pois-
son model produces less biased estimates. The MSE of
the log OR for the Poisson approach was 52–66% of
the MSE for the logistic regression approach, with lower
relative MSEs for smaller sample sizes and higher rela-
tive MSEs for larger samples sizes (see Additional file 1:
Table S.6). Additional file 1: Table S.7 provides the aver-
age ratio of the width of the Poisson confidence interval
to the width of the logistic regression confidence inter-
val over the 5000 simulations. In all cases, the Poisson
model produced narrower intervals with relative widths
in the range of 75–79%. Our assessment of the actual
coverage of the nominal 95% confidence intervals for
the OR showed that the coverage rates were compara-
ble for all sample sizes and were between 94.1-95.7%
(Additional file 1: Table S.8).
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Additional file 1: Table S.9, indicates that the NB model
with log odds link produces slightly more biased estimates
than the logistic regression model of the dichotomized
data. The difference is larger for smaller sample sizes, but
diminishes as the sample size increases. In all cases when
n ≥ 75, the percent bias does not differ between the
two models by more than 1.1 percentage points. Although
the NB model produced slightly more biased estimates
in many of the simulation scenarios considered, this bias
is offset by the lower variance of the NB estimates.
Additional file 1: Table S.10 shows the relative MSE of
the log OR estimates. For all sample sizes and all param-
eters, the estimates from the NB model have a MSE that
is at most half of the MSE of estimates from the logis-
tic regression model. As an extreme example, for the x2
covariate with sample size n = 50, the relative MSE is as
low as 37%. Additional file 1: Table S.11, shows the relative
width of those intervals averaged over the 5000 simula-
tions. The intervals estimated from the NB model were,
on average, shorter by 31–39% of the intervals estimated
from the logistic regressionmodel. Bothmethods produce
confidence intervals with coverage that is very close to the
nominal 95% level (Additional file 1: Table S.12).
We fit the Poisson regression model with log odds link

and the logistic regression model to data that were gen-
erated with a NB distribution using dispersion parameter
values of δ = 0.5, 1, 5 and 10. The percent bias is shown
in Additional file 1: Table S.13. In these simulations, the
count model with log odds link produced severely biased
estimates for the model parameters when there was sub-
stantial overdispersion in the data (δ below 5). In some
cases, the bias is so severe that the estimates have a
sign that is opposite from the true parameter. In con-
trast, the logistic regression approach produced estimates
with very low bias regardless of how much dispersion
there was in the count data. As δ increases to 10, the
data become more Poisson-like and the bias is compara-
ble to that from the logistic regression model for small
sample sizes.

Analysis of real-world datasets
Geometric
Table 1 shows the OR estimates and confidence inter-
vals estimated from both models along with the relative
width of the confidence intervals, defined as the width
of the interval estimated from the geometric model as a
percentage of the width of the interval estimated from
the logistic model. The table shows that the width of
the interval from the geometric model is between 36%
and 64% of the width of the interval from the logistic
regression model. It also shows that there can be sub-
stantial differences in the inferences. For example, the
geometric model indicates that women in the oldest age
category (50–60 years) had a significantly higher odds

of at least one physician visit (OR = 1.21; p = 0.009)
compared to younger women (age 20–39 years). This
rather intuitive result was not found in the logistic regres-
sion model (OR = 0.99; p = 0.942) because of the lower
point estimate and larger standard error produced by
that model.
Although the interpretation of the parameters is the

same under both geometric and logistic regression, each
model is a differentmethod of estimation for those param-
eters. Both approaches produce asymptotically unbiased
estimators as they are based on the method of maxi-
mum likelihood, but each may be biased for small sam-
ple sizes. We compared their small sample bias over
a range of sample sizes using the coefficient estimates
from the fitted geometric model, given in Table 1 as
the true parameter values. We simulated 1000 samples
of different sizes ranging from 50 to 500 and applied
each method to to obtain the MLEs of the ORs. We
then calculated the percent bias, defined as the differ-
ence between the average of the 1000 estimates and the
true value as a percent of the true value. The results
are shown in Additional file 1: Figure S.1. The geomet-
ric model almost always has smaller bias that is close to
zero, even when there are fewer than 100 observations.
The conclusion is that the geometric model produces sub-
stantially more accurate and precise estimators than the
logistic model when the counts arise from a geometric
distribution.

Poisson
Table 2 shows the parameter estimates and 95% confi-
dence intervals for the Australian Health Survey data. It
also reports the ratio of the widths of the intervals from
the Poisson model and the logistic regression model. For
all of the covariates, the Poissonmodel produces narrower
intervals with relative widths that ranged from 68%–90%.
The statistical inference differs across the two models
in two cases (regarding health insurance coverage sta-
tus). In both of these cases, the difference arises because
the logistic regression produces substantially higher point
estimates than the Poisson regression with log odds link
(1.30 versus 1.17 for private insurance, 1.53 versus 1.20
for free government insurance due to old age, disability,
or veteran status), resulting in statistical significance with
the former and nonsignificance with the latter model. For
the free government insurance coefficient, the Poisson
model has the largest reduction in variance over the logis-
tic regression model (average relative width of 68%), but
the large difference in point estimates offsets these gains
to produce different statistical inferences.

Negative binomial
We applied the NB model with log odds link to esti-
mate the OR of knowing at least one homicide victim for
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Table 1 OR estimates and 95% confidence intervals from geometric and logistic regression models of physician visits for the German
Socio-Economic Panel data

Geometric Logistic Relative widthe

Covariate Estimate Interval Estimate Interval

Post-reforma 0.87 (0.79, 0.96) 0.82 (0.68, 0.99) 57%

Bad healthb 3.13 (2.71, 3.63) 3.28 (2.24, 4.82) 36%

Education (10.5 - 12 years)c 1.09 (0.95, 1.24) 1.19 (0.94, 1.51) 50%

Education (HS graduate +)c 0.97 (0.84, 1.11) 1.32 (1.03, 1.70) 40%

Age (40 - 49 years)d 1.05 (0.93, 1.19) 0.92 (0.73, 1.16) 62%

Age (50 - 60 years)d 1.21 (1.05, 1.39) 0.99 (0.76, 1.29) 64%

Log household income 1.13 (0.99, 1.30) 1.26 (0.98, 1.62) 48%

Reference category: a Pre-reform; b Good health; c 7 - 10 years of education; d Age 20–39 years e Geometric compared to logistic model

African-American versus white respondents. The fitted
model yielded the following MLEs:

log
[
θ̂ (t)

]
= −2.5387 + 1.3154xt

δ̂ = 0.2023

ÔRNB = exp(1.3154) = 3.726. (30)

An approximate 95% confidence interval for log(OR)

is (0.9635, 1.6674), which when exponentiated yields an
interval of (2.62, 5.30) for the OR. Thus we conclude
that African-American respondents had a higher odds
of knowing at least one homicide victim compared to
white respondents. Note that there is non-zero covariance
between the estimator of the regression coefficients and
the estimator of the dispersion parameter, unlike the NB
model with log mean link ([15], p.82).
From the dichotomized data, we obtain ÔRB = 4.553

and SE
[
log

(
ÔRB

)]
= 0.217, that leads us to an approx-

imate 95% confidence interval (2.98, 6.96) for the OR.
In this situation, our conclusion remains the same even

though the NB model produced a lower estimate than the
dichotomized data model (3.7 versus 4.6) and an interval
that was only 83% as wide.

Discussion
Figure 1 shows the relative Fisher information FI(Y ; θ)/

FI(Z; θ) as a function of p = Pr(Y > 0) for the count
models considered in this study. The information lost
from dichotomization is modest for small p, but grows
exponentially as p → 1. The rate at which informa-
tion is lost from dichotomization is directly related to
the amount of overdispersion in the data. Under the
Poisson model, which assumes no overdispersion, the
rate of increase in FI(Y ; θ)/FI(Z; θ) becomes large near
p = 0.8. Conversely, under the NB model with δ =
0.2, FI(Y ; θ)/FI(Z; θ) begins to increase significantly near
p = 0.3. Dichotomization of count data loses all informa-
tion regarding overdispersion in the data, information that
is critical for accurate estimation of OR.
Analyzing data with a count regression model can lead

to different statistical inferences compared to a logistic

Table 2 OR estimates and 95% confidence intervals from Poisson and logistic regression models of physician visits for the Australian
Health Survey data

Poisson Logistic Relative widthd

Covariate Estimate Interval Estimate Interval

Female 1.28 (1.11, 1.47) 1.30 (1.11, 1.53) 85.85%

Agea 1.67 (1.10, 2.52) 1.71 (1.06, 2.74) 84.71%

Incomeb 0.82 (0.66, 1.01) 0.95 (0.75, 1.20) 76.49%

Private insurancec 1.17 (0.98, 1.39) 1.30 (1.07, 1.59) 78.51%

Free government insurance (low income)c 0.55 (0.36, 0.85) 0.50 (0.30, 0.84) 89.64%

Free government insurance (old age, disability, veteran)c 1.20 (0.95, 1.53) 1.53 (1.16, 2.01) 68.28%

Number of illnesses in past two weeks 1.30 (1.24, 1.36) 1.32 (1.25, 1.39) 85.36%

Number of days of reduced activity in past two weeks 1.24 (1.21, 1.26) 1.17 (1.14, 1.20) 78.17%

General health questionnaire score 1.05 (1.02, 1.08) 1.06 (1.03, 1.10) 83.68%

Has chronic condition that limits activity 1.17 (0.98, 1.41) 1.19 (0.96, 1.48) 84.20%

a Age in years divided by 100 b Annual income in tens of thousands of dollars c Reference category: government Medibank insurance d Poisson compared to logistic model
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Fig. 1 Comparison of information gains across count models. The
figure shows FI(Y ; θ)/FI(Z; θ) as a function of the p = Pr(Y > 0) for
various count models. As the probability of a positive count increases,
the relative FI increases. The gains are largest for models with the
most dispersion in the counts

regression analysis of the dichotomized counts, as we
showed through two examples with data sets from the lit-
erature. In our examples, statistical significance differed
between the two approaches not so much because of
differences in standard errors, but because the logistic
regression model tended to provide larger point estimates
for some model parameters. Our simulations suggest that
logistic regression using dichotomized data tends to pro-
duce a larger positive bias than count regression models
for the geometric and Poisson distributions. Thus, logis-
tic regression may identify more statistically significant
parameter estimates, but these conclusions may be inac-
curate due to bias in the estimation procedure.
Traditionally, the Poisson and NB regression models

have employed the log link function for the mean (μ),
while we have used the log link function for the odds.
The log(μ) link function is usually appropriate when the
objective of the analysis is to compare means between
two groups. As noted in the “Background” section, some
researchers prefer instead to compare the odds of a posi-
tive count between two groups. For these types of analy-
ses, we recommend the use of the log odds link function,
and it facilitates a direct comparison with the logistic
regression model where the regression coefficients carry
the same interpretation in terms of OR. Luckily for the
geometric model, both link functions match. One could
consider the traditional modeling approach for the Pois-
son and NB models using the log link function for μ.
However, in that case, the log odds cannot be expressed
as a linear function of the regression coefficients involved
and a direct comparisonwith the logistic regressionmodel

will not be possible. When analyzing count data, there-
fore, the analyst must first decide which parameters to
compare (means or odds), then choose the link function
accordingly.
The incompatibility of the log(μ) and log odds (for 0

counts) link functions has been discussed by Heilbron [19]
for the Poisson and NB models. In order to make the link
functions compatible, he has suggested the transforma-
tion P(μ) = Pr(Y > 0), with the corresponding log mean
link function expressed as h(P) = log(μ) = log

[
P−1(μ)

]
.

For example, for the Poisson parent, P(μ) = 1 − exp(−μ)

and

h(P) = log{− log[ 1 − Pr(Y > 0|x)] } = x′β (31)

would make the two link functions compatible (as shown
in his Table 2). As noted before, for the geometric model,
incompatibility does not arise, and to ensure compatibility
for the NBmodel, one needs to assume that log(μ(x)) is of
the form x′β , with the constraint thatμ = δ[ (1+θ)1/δ−1]
(see (17)). Thus, in Heilbron’s approach, log(θ) cannot be
linear in the components of x. In contrast, the link func-
tion we choose for μ is defined through the properties
of log(θ); for example, for the Poisson model, we assume
log{exp[μ(x) − 1] } = x′β .
The above incompatibility can be handled in a zero-

altered, two-part hurdle model where relevant param-
eters are assumed to have a simple relationship. This
approach was initially considered by Heilbron [19], and
more recently by Preisser et al. [10]. Their models intro-
duce a new parameter for the probability of a zero count
(and hence for the odds for a positive count) and link it to
the mean of the distribution modeling the positive counts.
Heilbron [19] and Preisser et al. [10] discuss the implica-
tions of the compatibility assumption that is needed for
the inference presented. In any case, it does not work for
the commonly used Poisson and NB models that do not
contain excess zero counts.
Whatever model one settles on, a correctly fit count

model is expected to produce better inference for the OR
than the one produced by the logistic regression model
because the dichotomized data do not produce a sufficient
statistic for the count data. As with any model fitting, it is
important that the analyst choose the correct distribution
to match the data. Our simulation demonstrated that the
use of the Poisson model can produce heavily biased esti-
mates of the OR when there is overdispersion in the data.
A logistic regression of the dichotomized counts is robust
to this kind of model misspecification. The goodness-
of-fit of various count models, as well as link functions,
can be assessed through model diagnostics [12]. With the
availability of efficient algorithms for computing theMLEs
in quite general contexts, computational issues are not a
major concern in this pursuit.
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In this paper we have addressed implications of our
model assumptions on inference through point and inter-
val estimates using the maximum likelihood estimators.
Whatever model one uses, it is known that the MLEs
are functions of sufficient statistics, consistent and are
asymptotically normal efficient estimators (under some
standard regularity conditions). The test statistics, such
as the one in the commonly used Wald’s test, contain
the standardized MLE with standard error of the MLE in
the denominator. A reduction in the standard error (or
equivalently, increase in the Fisher information) results
in increased power that can be approximated by tails
of the standard normal distribution. Our results imply
increased power when Wald’s test is used. Bias will affect
both power and type I error, and we have not studied the
implications in detail. Instead, we have chosen to focus on
confidence interval lengths and coverage probabilities that
illustrate these effects quite efficiently. The confidence
intervals are also free of the situation-specific research
hypotheses.
The OR is often of interest to biomedical researchers.

For rare events, the OR, given by [ p1/(1 − p1)] /[ p2/(1 −
p2)], closely approximates the relative risk (RR), p1/p2.
If one is specifically interested in p that is not small,
log(p) can be used as the link function. Zou [20] has
provided a model for estimating RR for binary data
using this link function and has used Poisson regres-
sion with robust standard errors to fit the model. Our
approach can be easily modified for that link function
to model RR directly from a count data to obtain more
precise inference on RR than what is achievable with the
dichotomized data.

Conclusions
The OR is a commonly used measure of uncertainty in
a binary decision (e.g., zero or non-zero). When data are
obtained from a count process, there is information in the
counts that is lost when the data are dichotomized. We
proposed a method for estimating the OR that does not
require dichotomizing the count data. We demonstrated
analytically the gain in information using this approach
and the resulting increase in precision whenmaking infer-
ences on the OR. For a given p, the probability of a positive
count, the information gain increases as the count data
become more dispersed from zero and one. The ana-
lytic methods we propose can be implemented easily by
biomedical researchers. For geometric and Poisson mod-
els, any software fitting GLMs can be used provided it
allows the user to modify the link function. For NB mod-
els, an optimization routine can be used to maximize the
likelihood. In our examples, the optimization always con-
verged because the logistic regression of the dichtomized
data provides initial values that are very close to the
solutions for the count data.
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