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Abstract

Background: Multi-centre randomized controlled clinical trials play an important role in modern evidence-based
medicine. Advantages of collecting data from more than one site are numerous, including accelerated recruitment
and increased generalisability of results. Mixed models can be applied to account for potential clustering in the data,
in particular when many small centres contribute patients to the study. Previously proposed methods on sample size
calculation for mixed models only considered balanced treatment allocations which is an unlikely outcome in practice
if block randomisation with reasonable choices of block length is used.
Methods: We propose a sample size determination procedure for multi-centre trials comparing two treatment
groups for a continuous outcome, modelling centre differences using random effects and allowing for arbitrary
sample sizes. It is assumed that block randomisation with fixed block length is used at each study site for subject
allocation. Simulations are used to assess operation characteristics such as power of the sample size approach. The
proposed method is illustrated by an example in disease management systems.
Results: A sample size formula as well as a lower and upper boundary for the required overall sample size are given.
We demonstrate the superiority of the new sample size formula over the conventional approach of ignoring the
multi-centre structure and show the influence of parameters such as block length or centre heterogeneity. The
application of the procedure on the example data shows that large blocks require larger sample sizes, if centre
heterogeneity is present.
Conclusion: Unbalanced treatment allocation can result in substantial power loss when centre heterogeneity is
present but not considered at the planning stage. When only few patients by centre will be recruited, one has to
weigh the risk of imbalance between treatment groups due to large blocks and the risk of unblinding due to small
blocks. The proposed approach should be considered when planning multi-centre trials.
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Background
When planning a randomized controlled clinical trial,
sample size considerations are necessary to assess how
many subjects are needed, e.g. to demonstrate a ben-
eficial effect of a new treatment. These considerations
usually are based on initial assumptions regarding a clin-
ically meaningful treatment effect, the variability in the
data and prespecified type I and type II error rates.
Patients are often recruited in more than one centre,
for example to account for a low incidence of the dis-
ease [1]. Since these centres might differ in some ways,
between-centre heterogeneity at baseline needs to be
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accounted for in the analysis and therefore sample size
planning.
When analysing continuous outcomes, baseline differ-

ences between centres can be accounted for using either
a linear fixed-effects or a linear mixed model. Due to the
central limit theorem, sample size calculation can often be
based on the normal approximation

N =σ 2(k + 1)2

k

(
q1−α/2 + q1−β

μ∗

)2
(1)

where N denotes the total sample size, μ∗ the assumed
treatment effect, σ 2 the variance of the observations, k the
allocation ratio between treatment groups and qγ the γ -
quantile of the standard normal distribution [2].
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There have been various attempts to extend Formula
(1) to multi-centre trials, e.g. by including a multiplicative
factor to account for deviations from the standard design.
Gallo as well as Ruvuna suggested such an inefficiency
factor to account for centre size imbalances in the fixed
effects setting [3, 4]. Both methods rely on the proportion
of the treatment effects’ variances between balanced and
imbalanced centre sizes, where the balanced case gives
optimal power.
Van Breukelen and colleagues introduced an ineffi-

ciency factor for the mixed model [5]. This factor is
based on the relative efficiency of unequal versus equal
cluster sizes for the weighted least squares estimator,
assuming a linear mixed effects model with an interac-
tion between study site and treatment effect. Fedorov and
Jones consider sample size formulas for balanced multi-
centre designs and suggest simulations for more complex
situations [6]. Vierron and Giradeau suggested a design-
effect to adjust Eq. (1) for different study designs [7, 8].
All of the approachesmentioned above assume balanced

treatment allocation by centre. Randomisation techniques
such as block randomisation do not guarantee equal group
sizes in all centres, especially if centres are small and
block lengths are large. The normal approximation in (1)
gives a lower boundary of the necessary sample size, but
underpowered trials could occur, especially when between
centre heterogeneity is large. We believe that this assump-
tion is too strict for real trials and therefore suggest a
sample size formula that accounts for unequal sample
sizes.
It has been demonstrated that mixed models tend to

yield better results compared to fixed effects models,
especially when the number of patients per centre is small
[9, 10]. For a small number of centres, however, the fixed
effects design might result in better results, because the
between-centre variation is likely to be estimated with bias
in mixed models in that situation. We therefore aim to
construct a sample size formula that accounts for baseline
heterogeneity between study centres, assuming a linear
mixed model for multi-centre designs.

Methods
Statistical model and estimators
Weassume a linearmixed-effectsmodel with a fixed inter-
cept μ0, random effects uj, j = 1, . . . , c to account for
centre heterogeneity at baseline, and a fixed treatment
effect μ. The data are assumed to follow some continu-
ous distribution allowing for unequal sample sizes. The
statistical model is given by

Yijk =μ0 + uj + μ · xi + εijk (2)

for pairwise independent uj, εijk with E(uj) = 0,Var(uj) =
τ 2 < ∞, E(εijk) = 0, Var(εijk) = σ 2 < ∞, treatment

indicator xi = 1{i=2} for treatment groups i = 1, 2, cen-
tres j = 1, . . . , c and individuals k = 1, . . . , nij for each
treatment-centre combination. The shared random effect
uj within centres induces the following covariance matrix
Cov(Y111, . . . ,Y2cn2c) = ⊕c

j=1
[
σ 2Inj + τ 2Jnj

]
, including

all N observations with N = ∑2
i=1
∑c

j=1 nij. Here, Inj
denotes the nj-dimensional identity matrix and Jnj the nj-
dimensional matrix consisting of ones only with nj =
n1j + n2j. We assume zero risk of contamination of the
control group.
We are interested in differences between treatment

groups and test the null hypothesis H0 : μ = 0 against the
two-sided alternative HA : μ �= 0. The distribution of the
estimated treatment effect μ̂ can be approximated by a
normal distribution, if the sample size is sufficiently large
(say sample sizes larger 30). It follows

T = μ̂√
̂Var (μ̂)

H0∼ N(0, 1). (3)

The null hypothesis can be rejected if the test statistic |T |
exceeds the quantile q1−α/2 of the reference distribution
for some fixed type I error rate α ∈ (0, 1). In order to apply
the statistical test, suitable estimators for the unknown
parameters have to be chosen.
We choose μ̂ = Y 2·· − Y 1·· to measure treatment group

differences, where Y i·· = 1
Ni

∑c
j=1
∑nij

k=1 Yijk denotes the
group mean in treatment group i. This estimator is unbi-
ased, even if centres recruited patients for one treatment
group only. The variance of μ̂ can be written as

Var (μ̂) =σ 2 N
N1N2

+ τ 2
c∑

j=1

(n1j
N1

− n2j
N2

)2
. (4)

Details on the derivation can be found elsewhere [8].
Var (μ̂) depends on the overall sample size N, the vari-

ances σ 2 and τ 2, and additionally the sample sizes by
treatment group (N1, N2), number of study centres (c),
and the sample sizes within study centres (n1j, n2j). In
case of a perfectly balanced randomisation, the differences
between centres cancel out and the treatment effect’s vari-
ance only depends on sample sizes N, N1, N2 and variance
σ 2, resulting in a sample size formula similar to (1).
The unknown variance parameters τ 2 and σ 2 can be

estimated using the following quadratic forms

σ̂ 2 = 1
2c

2∑
i=1

c∑
j=1

1
nij − 1

nij∑
k=1

(
Yijk − Y ij·

)2

τ̂ 2 =1
2

2∑
i=1

1
c − 1

c∑
j=1

(
Y ij· − Y i··

)2 .
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Additional assumptions for sample size calculation
Ni and nij are determined by recruitment and treatment
allocation. We aim to replace all Ni, nij in (4) by their
expectations that can be calculated based on the ran-
domisation procedure and planned allocation proportion
between treatment groups.
In the following, we want to calculate the overall sample

size N and assume

1 a block randomisation stratified by centre with fixed
block length b,

2 k : 1 allocation ratio at each study site for k ∈ IN,
3 proportion of overall sample sizes between treatment

groups according to allocation: N1 = kN2.

Block randomisation
Since randomisation will not always result exactly in the
planned allocation, we take a closer look at the ran-
domisation process. Block randomisation with fixed block
length b is a procedure where every b subjects get ran-
domised between treatment groups at a time [11]. Com-
plete blocks do always fulfil the planned k : 1 allocation
ratio. The block size should be unknown to investigators
to strengthen the blinding in the trial.
In this article, we assume patients to be assigned to

treatment groups i = 1, 2 within centres, for a fixed
k : 1 allocation ratio. This means that in each randomisa-
tion block b patients are randomized between treatment
groups 1 and 2 in a way that for each patient receiving
treatment 2, k patients will receive treatment 1. The set of
randomisation tuples �k

b depends on block length b and
allocation parameter k. It is defined as follows

�k
b =

⎧⎨
⎩(x1, . . . , xb) ∈ �b

∣∣∣∣ (5)

b∑
	=1

1{x	=1} = kb
k + 1

= b −
b∑

	=1
1{x	=2}

⎫⎬
⎭

where �b:= {(x1, . . . , xb)|x	 ∈ {1, 2}}.
Treatment allocation imbalances can only occur in

incomplete blocks with an upper boundary of kb/(k + 1).
The choice of k can be based on several assumptions as
ethics, costs and other factors and will not be discussed
further in this article. This topic is covered in more detail
in a review by Dumville and colleagues [12]. It is available
in many software packages and is therefore easy to apply
[13, 14]. Further advantages and disadvantages of block
randomisation are considered in the Discussion.

Derivation of the sample size formula
The underlying idea of sample size calculation is to find
the overall sample size N, such that the quantile q1−α/2 of
the reference distribution under the null hypothesis equals

the quantile q∗
β of the reference distribution under a fixed

alternative for type I and II error rates α and β .
Since we do assume a normally distributed test statistic,

q∗
β can be approximated by a shifted N(0, 1)-quantile q∗

β ≈
qβ + μ

Var(μ)
resulting in the following equation to construct

a sample size formula

(q1−α/2 + q1−β)2 = μ2

Var(μ)
. (6)

By isolating the sample size N, which is part of Var(μ),
one can derive a sample size formula. In case of an ideal
allocation, i. e., n1j = kn2j for all centres, (6) is equal to (1).
Since this is unlikely to be observed, unbalanced designs
are taken into account by incorporating expectations with
respect to the randomisation procedure.
We derive the sample size formula for the general case

of a k : 1 allocation ratio and assume the overall treat-
ment group sample sizes to fulfil N1 = kN2 and therefore
N = (k + 1)N2. This leads to the set of randomisation
tuples in (5). By taking assumptions 1-3, the variance of μ̂
given in (4) simplifies to

Var (μ̂) =σ 2(k + 1)2

kN
+ τ 2(k + 1)2

N2

c∑
j=1


2
j (7)

where 
2
j :=
(n1j

k − n2j
)2 ∈ [0,m∗] describe each centre’s

imbalance that will result from incomplete blocks with
m∗ = b2/(k + 1)2. The (discrete) probability distribution
of 
2

j depends on �k
b and the number of patients in the

last block which equals the remainder of the Euclidean
division rj = nj mod b. An example of 
2

j |rj for a single
centre is illustrated in Fig. 1.
The probability distribution of
2

j |rj is fully described by
block length b, allocation parameter k and rj. For planning
purposes it therefore seems reasonable to replace 
2

j |rj
by its expectation E

(

2

j |rj
)

to eliminate sample sizes
n1j and n2j from (7). The expectation of the probability
distribution can easily be derived as

E
(

2

j |rj
)

= 1
m∗

m∗∑
	=0

p(	|rj) · 	 (8)

where p(·|rj) denotes the conditional density function of

2

j |rj. These expectations are shown in Fig. 2 for a sin-
gle randomization block, k = 1, 2, 3 and various block
lengths b. Since the expected imbalance is the largest for
k = 1 we will restrict simulations to this case.
The expected imbalance between treatment groups

E
(

2

j |rj
)
increases with block length. This happens due

to the fact that the probability to receive an incom-
plete randomisation block increases with increasing block
length b. It is maximised when the last randomisation
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Fig. 1 Probability distribution. Conditional probability distributions of 
2|r for varying numbers of randomized subjects r = 1, . . . , b = 6

block only consists of bk
k+1 patients receiving treatment

1 or b
k+1 patients receiving treatment 2, respectively. If

we replace 
2
j |rj by E

(

2

j |rj
)
, we can transform (6) into

the following sample size formula for multi-centre trials
(derivation is given in the appendix, see Additional file 1)

Nk
MC = σ 2(k + 1)2

2k

(
q1−α/2 + q1−β

μ

)2
(9)

+

√√√√√σ 4(k + 1)4
4k2

+
τ 2(k + 1)2μ2∑c

j=1 E
(

2

j |rj
)

(
q1−α/2 + q1−β

)2

·
(
q1−α/2 + q1−β

μ

)2
.

Simulations
General settings
We perform a simulation study to assess the accuracy
of the sample size formulas in terms of statistical power
using R, version 3.3.1 [15]. For each scenario, we repeat
nsim = 10, 000 independent simulation runs. The R pack-
age blockrand is used for block randomisation [13].
All data are generated based on the statistical model
described in (2), assuming a normal distribution for uj and
εijk . The test statistic T given in (3) is used for all power
simulations and it is approximated by a standard normal
distribution under the null hypothesis. The effect of block
randomisation is strongest for k = 1, we therefore present
simulation results for this setting only. The assumed effect
size μ∗ and values for variance components σ 2 and τ 2 are
based on an example trial described in the next section.
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Fig. 2 Expectation of 
2|r. Conditional expected imbalance between treatment groups for allocation parameter k = 1, 2, 3 and various numbers of
subjects r = 1 . . . , b and block lengths b
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All code used for simulations is available in the Appendix,
see Additional files 2, 3, 4, 5, 6, 7 and 8.

Subject-to-centre allocation
We consider equally as well as unequally sized study
centres based on the following methods.

1 Equally sized study centres: Only in this situation, we
can predict the sample size very precisely, since we
can specify rj correctly prior to recruitment. Here,
study centres are assumed to be equal. Since this
assumption is limited to the fixed overall sample size
N, we distribute the overall sample size to centres as
follows

Equal: nj =
⌊
N
c

⌋
+ 1{j≤m}

form = N mod c and j = 1, . . . , c.
2 Unequally sized study centres: In most experiments,

the true allocation of patients cannot be foreseen.
Recruitment rates can be estimated beforehand, but
since only the number of patients in the last
randomisation block affects the presented sample
size formulas, no precise estimation of unbalanced
treatment allocation can be made. To model this
situation, study centres are assumed to be unequal
but limited to the fixed overall sample size N. We use
a multinomial distribution to generate unequal
sample sizes by centre, assuming the following
scenarios

Unequal 1: (n1, . . . , nc)′ ∼ Multic (N , p1, . . . , pc)

with pj = 1
c

Unequal 2: (n1, . . . , nc)′ ∼ Multic
(
N , p∗

1, . . . , p∗
c
)

with p∗
j = pj∑c

k=1 pk
and pj

iid∼ U[ 0; 1] .

Example: The COMPETE II trial
Multi-centre trials are applied in many different disease
areas. We present an example in the setting of disease
management systems and use this trial to illustrate the
sample size approach proposed.
Holbrook and colleagues conducted a randomized,

multi-centre trial to investigate the benefit of an individu-
alized electronic decision support system in adult patients
diagnosed with type 2 diabetes [16]. This new interven-
tion provided patient specific summaries and recommen-
dations based on electronic medical records, aiming to
improve the quality of diabetes management between
patients and general practitioners. The tool was integrated
into the practice work flow and offered web-based access
by patients. In addition, an automated telephone reminder

system was provided and all patients received a colour-
coded printout quarterly. The control treatment consisted
of usual care without use of this tool.
Primary outcome was a composite score difference

compared to baseline. The composite score measured
process quality on a scale from 0 to 10, based on the fol-
lowing parameters: blood pressure, cholesterol, glycated
haemoglobin, foot check, kidney function, weight, phys-
ical activity, and smoking behaviour. The clinical targets
are described in the original article. It was assessed at
baseline and 6 months after randomization.
For this trial, 511 patients from 46 primary care

providers were randomly assigned to intervention or con-
trol. At planning stage, the investigators aimed to recruit
508 patients to achieve 80% power to detect a difference
of 1 for the primary outcome between treatment groups
using a two-sided t-test with a type-1 error rate of α =
0.05. No information on the assumed standard deviation
is given in the article. Block-randomisation was stratified
by study site in blocks of six, following a 1:1 allocation
scheme.
The absolute measured improvement of composite

scores between treatment groups was 1.26 (95% confi-
dence interval (CI) 0.79-1.75; p-value < 0.001) favouring
the new intervention.

Results
Approaches to sample size calculation
As long as no values for rj are assumed, Formula (9) can-
not be used for sample size calculation. We consider a
setting, where each centre will have at most one incom-
plete randomisation block. In the following, we present
different ways to specify values of E

(

2

j |rj
)

for each
centre prior to recruitment.
The resulting sample size formulas are listed in Table 1.

More detailed explanations are provided in the following
subsections.

Lower boundary
Given an ideal treatment allocation (n1j = kn2j for all cen-
tres), potential centre differences cancel out and do not
affect the statistical power of the trial. In this case, sam-
ple size formula (1) would be suitable to plan the trial.
However, the trial still had to be analysed with a mixed
effects model to get an unbiased estimate for Var(μ),
since Var(Yijk) = σ 2 + τ 2. This formula is the standard
approach to sample size calculation and is often used to
plan multicentre trials. It therefore serves as one reference
for sample size calculation and power simulations.

Equal centre sizes
The exact number of patients by study centre will be
unknown at the planning stage, but in some situations, it
might be reasonable to assume centres to be equally large.
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Table 1 Overview of sample size formulas

Lower boundary Nk
lower =

(
q1−α/2+q1−β

μ

)2 (
σ 2(k+1)2

k

)

Equal centres Nk
MC,E =

(
q1−α/2+q1−β

μ

)2 (
σ 2(k+1)2

2k +
√

σ 4(k+1)4

4k2
+ τ 2(k+1)2μ2c E(
2

1|r1)
(q1−α/2+q1−β)

2

)

Unequal centres Nk
MC,U=

(
q1−α/2+q1−β

μ

)2 (
σ 2(k+1)2

2k +
√

σ 4(k+1)4

4k2
+ τ 2(k+1)2μ2cE(
2

1|·)
(q1−α/2+q1−β)

2

)

Upper boundary Nk
upper =

(
q1−α/2+q1−β

μ

)2⎛⎝ σ 2(k+1)2

2k +
√

σ 4(k+1)4

4k2
+ τ 2(k+1)2μ2c E

(

2

1

∣∣∣ b
k+1

)

(q1−α/2+q1−β)
2

⎞
⎠

Lower and upper boundaries as well as sample size formulas for equal and unequal centre sizes

In this scenario, the sum of expected differences simplifies
to a single quantity

c∑
j=1

E
(

2

j |rj
)

≈ c · E (
2
1|r1
)

(10)

which needs to be specified for sample size estimation.
Since the overall sample size N and the number of

subjects in the last randomisation block depend on each
other, r1 still has to be specified. The unspecified value
of E

(

2

1|r1
)
can be determined by calculating the sample

size Nk
MC,E for each r1 ∈ {1, . . . , b}. Keep Nk

MC,E
(
r∗1
)
with

r∗1 =argmin
r1

∣∣∣∣∣
(
Nk
MC,E(r1)

c
mod b

)
− r1

∣∣∣∣∣ . (11)

Unequal centre sizes
For the general case, we suggest using the average of the
expected imbalance for each centre

E
(

2

j |rj
)

≈1
b

b∑
	=1

E
(

2

1|	
)=:E

(

2

1|·
)
. (12)

This basically assumes a univariate distribution of rj on
[ 1, . . . , b].

Upper boundary
We can identify an upper boundary of the sample size,
given that all parameters are specified correctly at plan-
ning stage. The maximal imbalance between treatments
would occur, if each centre recruited and allocated rj =
b/(k + 1) or rj = kb/(k + 1) subjects to a single treatment
group resulting in 
2

j = m∗. Therefore, the most conser-
vative sample size calculation will be performed with the
following approximation

c∑
j=1

E
(

2

j |rj
)

≈ c · E
(


2
1

∣∣∣∣ b
k + 1

)
. (13)

Example: Sample size calculation
To give an example of the application of the pro-
posed sample size formula, we demonstrate the effects of
between-centre heterogeneity combined with incomplete
block randomisation based on the COMPETE II trial.

The number of patients per study site is reported in [17].
Based on those numbers, we know the completeness of all
randomisation blocks by centre as shown in Fig. 3.
We use these numbers to illustrate the influence of

unbalanced treatment group allocation on sample size and
statistical power based on the assumed model. In total,
40 incomplete randomisation blocks (r < 6) out of 46
study sites occurred. Based on the assumed model, sta-
tistical power of the analysis might be reduced due to
those 40 incomplete randomisation blocks, compared to a
trial, where the same amount of patients would have been
recruited at a single centre.
If we were to plan a new trial with similar features

(μ = 1, σ = 4, type 1 and type 2 error rates α = 0.05
and β = 0.2, respectively) we could plug these values
into the sample size formula N1

MC,U for unequal centre
sizes. The assumption of uniformly distributed values of
rj on [ 1, . . . , b] could be underpinned by a χ2-test for
goodness-of-fit (p = 0.4159). The influence of intra-class
correlation ρ ∈[ 0, 0.5], number of centres c ∈ {23, 46, 92}
and block lengths b ∈ {6, 8, 16} on the sample size is
shown in Fig. 4.
For a block length of b = 6, as chosen in the trial, no

substantial influence of the intraclass correlation ρ on the
overall sample size can be observed. The reported value
of ρ = 0.08 in the trial would not require a sample size
adjustment compared to the standard approach (Nk

lower).
For larger block lengths, however, a strong increase of the
estimated sample size can be seen, especially for ρ > 0.2
and an increasing number of centres.

Power simulations
In addition to sample size calculations, we present some
power simulation results for parameter settings based on
the COMPETE II trial. We specify a treatment effect
of μ = 1, standard deviation σ = 4 and intraclass-
correlation coefficient ρ = 0.5. Data was generated for
various block lengths, numbers of centres and subject-
to-centre allocation schemes. Resulting sample sizes and
associated statistical power are given in Table 2 and Fig. 5.
Analyses based on the lower boundary formula do not

achieve the planned power of 0.8. The deviance from the
nominal level increases with block length and number of
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Fig. 3 Example: Block randomisation. Number of final randomisation blocks by centre with block length b = 6 based on the COMPETE II trial [17]

centres. The upper boundary formula results in power
levels that exceed the nominal level slightly.
The new sample size formulas for equal and unequal

centre sizes lead to reasonable power simulation results.
Even if subject allocation is performed randomly in each
simulation run (Unequal 2), adequate statistical power can
be obtained.
Subject allocationmight, by chance, result in more com-

plete randomisation blocks for N1
MC,U than N1

upper. This
leads to some situations where the formula with smaller
sample size

(
N1
MC,U

)
achieves higher (estimated) power.

This observation underlines the necessity to take block
length and patient recruitment into consideration when
planning large multi-centre trials.

Discussion
Patient enrolment and treatment allocation are key ele-
ments of every successful clinical trial. Randomisation
techniques are used to achieve comparable treatment
groups minimizing the risk of selection bias. Unfor-
tunately, these randomisation procedures can result in
unequal treatment group sizes and therefore a power loss
compared to a balanced trial. Such imbalances cannot be
determined prior to the trial, but we presented a way to
estimate these values based on expectations.
The ICH E9 Guideline encourages the use of block ran-

domisation and states the following on the choice of block
sizes [1]: ”Care should be taken to choose block lengths that
are sufficiently short to limit possible imbalance, but that

Fig. 4 Example: Sample size based on N1
MC,U. Derived for μ = 1, σ = 4, varying block length b, number of centres c and intra-class correlation ρ .

Dashed grey line represents the planned sample size of the trial (N = 508)
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Table 2 Example: Comparison of sample size formulas

Block length Formula
Number of centres

c=23 c=46 c=92

6 Nk
lower 503 503 503

Nk
MC,E 525 524 569

Nk
MC,U 528 552 594

Nk
upper 541 575 634

8 Nk
lower 503 503 503

Nk
MC,E 525 587 606

Nk
MC,U 535 564 616

Nk
upper 551 592 662

16 Nk
lower 503 503 503

Nk
MC,E 586 603 762

Nk
MC,U 561 610 692

Nk
upper 587 654 762

Derived for μ = 1, σ = 4, ρ = 0.5, varying block lengths and varying numbers of
centres

are long enough to avoid predictability towards the end of
the sequence in a block. Investigators and other relevant
staff should generally be blind to the block length; the use
of two or more block lengths, randomly selected for each
block, can achieve the same purpose.”
The results shown remain valid when using variable

block sizes, since incomplete blocks can occur using
either method. Only the determination of expected values
E
(

2|r) is more complicated for variable blocks, because

it depends on the range of block sizes used.
In a recent systematic review on prevalence and report-

ing of recruitment, randomisation and treatment errors
in phase III randomized, controlled trials, stratified block
randomisation was identified as randomisation technique
of choice in 50% of 82 included studies published in
New England Journal of Medicine, Lancet, Journal of
the American Medical Association, Annals of Internal
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Fig. 5 Example: Power simulations. Simulated power based on the planned sample sizes for μ = 1, σ = 4, ρ = 0.5, varying numbers of centres and
varying block lengths. Dashed black line represents the targeted power of 0.8
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Medicine, or British Medical Journal between January
and March 2015 [18]. The median number of par-
ticipants per trial was 650 (range 40-84,496) and the
number of centres varied between 1 and 1,161 with a
median of 24. There are a number of trials that used
fixed block lengths greater than 10 to allocate subjects
between two treatment groups [19, 20]. Trials using ran-
dom block randomisation almost never report the under-
lying block sizes, therefore we can not compare fixed
versus random blocks any further. Overall, these observa-
tions support our idea to account for incomplete blocks
to plan a multi-centre trial using either method for
randomisation.
One limitation of our approach is a lack of knowl-

edge on centre heterogeneity at the planning stage.
There have been various articles with estimates of
intraclass-correlation coefficients (ICC) derived from
cluster-randomized trials. These estimates can be used
to get an initial guess for centre heterogeneity in multi-
centre trials. A nice overview is given in the following
text book [21]. Also, the implementation of an adap-
tive sample size reestimation procedure could account
for this problem as it has been applied for cluster ran-
domized trials and the fixed effects multi-centre trial
design [22–24]. The development of sample size rees-
timation strategies based on the approach proposed
here is subject to ongoing research. When planning
an individually-randomized multi-centre trial there is a
risk of control group contamination. This can partly
be handled in placebo-controlled pharmacological tri-
als or when proper blinding of patients and researchers
is implemented [25]. Alternatively a cluster-randomized
trial could be used to prevent contamination of treat-
ment groups. This would, however, be associated with
a higher sample size compared to the multi-centre
design [26].
Here, we assumed a constant treatment effect across

the centres. This is in line with the ICH E9 Guideline,
which demands to avoid treatment-by-centre interactions
in the primary analysis [1]. Therefore, this is at least for
the planning of a trial an adequate assumption. Never-
theless, sensitivity analyses might explore treatment-by-
centre interactions. Extending the sample size approach
to a model including treatment-by-centre interactions is
subject to future research.

Conclusion
Imbalances in treatment allocation will lead to a power
loss in multi-centre trials, if baseline heterogeneity is
present. This risk can be accounted for when using appro-
priate methods for sample size calculation. To reduce
uncertainty of sample size calculation, we recommend to
calculate lower and upper boundaries in addition to the
sample size.
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