
Tang et al. BMCMedical ResearchMethodology          (2018) 18:172 
https://doi.org/10.1186/s12874-018-0604-9

RESEARCH ARTICLE Open Access

A nonparametric Bayesian continual
reassessment method in single-agent
dose-finding studies
Niansheng Tang* , Songjian Wang and Gen Ye

Abstract

Background: The main purpose of dose-finding studies in Phase I trial is to estimate maximum tolerated dose (MTD),
which is the maximum test dose that can be assigned with an acceptable level of toxicity. Existing methods developed
for single-agent dose-finding assume that the dose-toxicity relationship follows a specific parametric potency curve.
This assumption may lead to bias and unsafe dose escalations due to the misspecification of parametric curve.

Methods: This paper relaxes the parametric assumption of dose-toxicity relationship by imposing a Dirichlet process
prior on unknown dose-toxicity curve. A hybrid algorithm combining the Gibbs sampler and adaptive rejection
Metropolis sampling (ARMS) algorithm is developed to estimate the dose-toxicity curve, and a two-stage Bayesian
nonparametric adaptive design is presented to estimate MTD.

Results: For comparison, we consider two classical continual reassessment methods (CRMs) (i.e., logistic and power
models). Numerical results show the flexibility of the proposed method for single-agent dose-finding trials, and the
proposed method behaves better than two classical CRMs under our considered scenarios.

Conclusions: The proposed dose-finding procedure is model-free and robust, and behaves satisfactorily even in
small sample cases.

Keywords: Adaptive rejection Metropolis sampling algorithm, Continual reassessment method, Dirichlet process
prior, Dose-finding design, Gibbs sampler, Maximum tolerated dose

Background
Dose-finding designs for phase I trials have been widely
discussed over the past two decades. Many methods
have been proposed to identify maximum tolerated dose
(MTD) in single-agent dose-finding clinical trials. There
are two major branches: model-based and algorithm-
based methods. Among the model-based methods, the
continual reassessment method (CRM) proposed by
O’Quigley et al. [1] is a quite popular dose-finding
approach. Since O’Quigley et al.’s pioneer work, there is
considerable literature on modifying or improving CRM.
For example, see Whitehead and Brunier [2] for Bayesian
decision-theoretic approach, Piantadosi et al. [3] for a
modified CRM, Heyd and Carlin [4] for an adaptive
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design improvement of the CRM, Leung and Wang [5]
for a decision-theory-based extension of the CRM, Yuan
et al. [6] for the quasi-likelihood approach, Yin and
Yuan [7] for Bayesian model averaging CRM, Møller [8]
for the up-and-down design, Fan et al. [9] for a sim-
ple Bayesian decision-theoretic design. Recently, Morita
et al. [10] extended the CRM to a hierarchical Bayesian
dose-toxicity model that borrows strength between sub-
groups under the assumption that the subgroups are
exchangeable. However, in many practical applications,
the true dose-toxicity curve is unknown, thus specifying
an explicit dose-toxicity curve via some parametric model
is artificial and may largely increase complications.
The algorithm-based approach, which can be regarded

as a “nonparametric” or model-free method, has received
considerable attention over the past years. There is
considerable literature on model-free methods from a
Bayesian nonparametric viewpoint. For example, Gelfand
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and Kuo [11] developed a fully Bayesian nonparamet-
ric approach to estimate the dose-toxicity curve with
the Dirichlet process (DP) prior and the product-of-beta
prior in the quantal bioassay problem. Mukhopadhyay
[12] adopted the DP prior to make inference on the dose
level with a prespecified response rate. Gasparini and
Eisele [13] developed a curve-free method to improve
CRM by modeling toxicity probabilities with the product-
of-beta prior. The product-of-beta prior is conjugate
with the binomial distribution, but it has a well-known
numerical problem for exact computation and involves
many hyperparameters to be determined, which may
affect the performance of the considered method [14].
Ivanova and Wang [15] developed a nonparametric
approach to estimate MTD for each of two strata of
patients. Yan et al. [16] presented a Bayesian design for
dose escalation and de-escalation. To our knowledge, no
literature exists on Bayesian nonparametric dose-finding
approach in single-agent clinical trials using the Dirichlet
process prior.
The main purpose of this paper is to develop a flexi-

ble nonparametric statistical model to estimate unknown
dose-toxicity curve for single-agent phase I clinical tri-
als from a Bayesian viewpoint. This is implemented by
treating toxicity probabilities as unknown parameters of
interest which is subject only tomonotonicity assumption,
which is equivalent to assuming that the dose-toxicity
curve is an arbitrary right continuous nondecreasing func-
tion whose range lies in [ 0, 1], and then specifying a
Dirichlet process prior for the unknown dose-toxicity
curve. Also, a two-stage Bayesian nonparametric adap-
tive dose-finding design is developed to estimate MTD in
single-agent dose-finding clinical trials. The main merits
of the proposed method include that (i) the assumption
of a specific dose-toxicity curve in CRM is not necessary;
(ii) there are only two hyperparameters in the speci-
fied DP prior; (iii) there is more information that can
be used to estimate toxicity probabilities and MTD; (iv)
the escalation or deescalation of the current dose to the
adjacent dose is only implemented once, thus the high-
est toxicity dose can be adaptively reached; (v) doses with
relatively high toxicity probability may have no chance to
be assigned to patients, which guarantees the safety of
patients.
The rest of this paper is organized as follows. In

“Methods” section, we briefly review the traditional CRM
in single-agent dose-finding clinical trials, and introduce
Bayesian nonparametric probability model by imposing a
DP prior on the unknown dose-toxicity curve. A hybrid
algorithm combining the Gibbs sampler and adaptive
rejectionMetropolis sampling (ARMS) algorithm is devel-
oped to estimate toxicity probabilities in “Methods ’’
section. In “Dose-finding algorithm” section, a two-stage
Bayesian nonparametric adaptive dose-finding algorithm

is presented to estimateMTD in single-agent dose-finding
clinical trials. Simulation studies are conducted to inves-
tigate the finite sample performance of the proposed
method in “Simulation study” section. Some concluding
remarks are given in “Results” section.

Methods
Let N be the total number of patients, J be the total num-
ber of cohorts, m be the number of patients in each of
J cohorts. Let d1 < d2 < · · · < dK be a set of K pre-
specified dose levels for a single agent under investigation,
θ be the target toxicity probability, the dose-toxicity curve
F(·) be the distribution of dose levels, pk = F(dk) be
the toxicity probability at dose level dk for k = 1, . . . ,K .
It is assumed that there are j cohorts enrolled in the
current experiment. Let nj =

(
nj1, . . . , n

j
K

)�
and yj =

(
yj1, . . . , y

j
K

)�
, where njk is the number of patients treated

at dose level dk in the first j cohorts, and yjk represents
the number of patients experienced the dose-limiting tox-
icity (DLT) among njk patients treated at dose level dk .
Let Sj be the number of non-zero components in nj.
Thus, we have Sj ≤ K . That is, only doses d1, . . . , dSj
are administered to the first j cohorts until now. Let
DSj =

{(
nj1, y

j
1

)
, . . . ,

(
njSj , y

j
Sj

)}
be the data collected

from the first j cohorts of patients, p = (p1, . . . , pSj)� be a
set of toxicity probabilities corresponding to {d1, . . . , dSj}.
For simplicity, in what follows, we omit superscript j in nj
and yj.

The continual reassessment method (CRM)
Let p01 < . . . < p0K be an initial guess of toxicity prob-
abilities associated with dose levels d1 < . . . < dK ,
where p0k is referred to as the “skeleton” of the CRM. It
is assumed that there is a prior belief that dose level dk
is the MTD, one may set the initial guess as p0k = θ .
In practice, clinical investigators attempt to provide their
best guess on the “skeleton”. However, in simulation study,
the “skeleton” can be directly generated using the func-
tion ‘getprior(δ, θ , k,K)’ in the R package ‘dfcrm’, where δ

is the desired length of the indifference interval and the
optimal value of δ can be calibrated by the algorithm given
in Lee and Cheung [17], θ is the target toxicity probabil-
ity, k is the location of the target dose level and K is the
total number of dose levels. More discussions on the guess
of the “skeleton” of the CRM see [17]. In the Bayesian
framework, the CRM assumes that the dose-toxicity rela-
tionship F(dk) is a strictly increasing function with respect
to the dose level dk , and is usually specified by a paramet-
ric model F(dk ;β) in which β is an unknown parameter
to be estimated, such as, logistic function, power function,
and hyperbolic function.
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Let xi ∈ {d1, . . . , dK } be the dose assigned to the ith
cohort for i = 1, . . . , j. Suppose that yi patients have expe-
rienced DLT among ni patients treated at dose level xi.
Thus, yi follows the binomial distribution with the tox-
icity probability F(xi;β). Let Dj = {y1, . . . , yj} be the
dataset collected from the first j cohorts of patients. The
likelihood function for Dj is given by

Lj(β|Dj) ∝
j∏

i=1
{F(xi;β)}yi{1 − F(xi;β)}ni−yi .

Let f (β) be the prior density of β . It follows from the
Bayesian theorem that a Bayesian estimator of β is given
by

β̂j = Eβ|Dj(β) =
∫

βLj(β|Dj)f (β)dβ∫
Lj(β|Dj)f (β)dβ

,

where Eβ|Dj is the expectation taken with respect to
the posterior probability density function f

(
β|Dj

) =
Lj(β|Dj)f (β)/

∫
Lj(β|Dj)f (β)dβ . The (j + 1)th cohort of

patients is assigned to the dose level

xj+1 = argmin
dk

|F
(
dk ; β̂j

)
− θ |, k = 1, . . . ,K ,

where θ is the target toxicity probability. Once the maxi-
mum sample size N is reached, the dose with the toxicity
probability closest to θ is selected as the MTD.

Nonparametric probability model
The model-based approaches such as CRM and the mod-
ified CRMs are widely used in single-agent dose-finding
clinical trials. However, parametric modeling of F(·) may
be problematical when there is little prior information
on the shape of the dose-toxicity curve [12]. Moreover,
in some experimental situations, it is recognized that
parametric models do not work [18]. To address these
issues, we assume that F(·) is an arbitrary right contin-
uous nondecreasing unknown function whose range is
[ 0, 1], and can be approximated using some nonparamet-
ric method. To this end, a Dirichlet process (DP) prior is
adopted to approximate F(·). To wit, we assume F(dk) ∼
DP(αF0(x|η)), where F0(x|η) is a base distribution that
serves as a starting point for constructing a nonpara-
metric distribution for F(dk), η is a parameter associated
with the base distribution, α represents the weight that
a researcher assigns a priori to the base distribution, and
reflects the closeness of F0(x|η) to F(dk). Thus, the hier-
archical model for the dataset {y1, . . . , yK } is given by

yk|pk ind∼ Bin(nk , pk), k = 1, . . . ,K ,

pk = F(dk), F|η,α ∼ DP(αF0(x|η)).
(1)

In many applications, α is usually unknown. Many
methods have been proposed to select the prior of α (e.g.,
see [19, 20]). Here, we assume that the prior distribution

of α follows a Gamma distribution with hyperparameters
a and b, i.e., α ∼ �(a, b). The base distribution F0(x|η)

is a prior guess of the unknown distribution F(·). For
computational simplicity, F0(x|η) should be a conjugate
prior, such as a uniform distribution or a mixture of two
types of distributions. Also, one may consider empirical
Bayesian and noninformative prior for F0(x|η). More dis-
cussions on the selection of F0(·) see Mukhopadhyay [12].
Here, we take F0 as the cumulative distribution function
of some standard distribution, and choose some appropri-
ate hyperparameters such that the median of F0 should be
consistent with the initial guess for the MTD. For exam-
ple, if there is a prior belief that dose level dk is the MTD,
we can select appropriate values of μ and σ such that
F0(dk|η) = 	

(
dk−μ

σ

)
= θ , where η = {μ, σ }, μ is

associated with the mean of F0, and σ is related with the
standard variance of F0. In this case, similar to [12], we
assume that the priors of μ and σ discretely follow the
uniform distribution in the intervals [μ0 − r,μ0 + r] (e.g.,
taking ten equally spaced points in [μ0 − r,μ0 + r]) and
[ σ0 − r, σ0 + r] (e.g., taking ten equally spaced points in
[ σ0 − r, σ0 + r]) with r ∈ {1, 2}, respectively, where μ0 and
σ0 are the mean and standard variance of F0, respectively.
According to the definitions of μ and σ , it is logical to

assume that the joint prior density ofμ and σ has the form
of π(μ, σ) = π(μ)π(σ). Thus, the hierarchical model can
be written as

yk|pk ind∼ Bin(nk , pk), k = 1, . . . ,K ,

pk = F(dk), F|η,α ∼ DP(αF0(x|η)),

α ∼ �(a, b), η ∼ π(μ)π(σ).

(2)

By the definition of the DP prior, for any finite
measurable partition B1, . . . ,BK in the support of F0,
the probability vector (F(B1), . . . , F(BK ))� follows the
Dirichlet distribution with parameter vector (αF0(B1), . . .,
αF0(BK ))�. For the base distribution F0(x|η) = N(x;μ, σ),
if we consider the following finite measurable parti-
tion for the support (−∞,∞): B1 = (−∞, d1), B2 =
[ d1, d2), . . . ,BK =[ dK−1, dK ), BK+1 =[ dK ,+∞), thus we
have αF0(B1) = αF0(d1), . . . ,αF0(BK+1) = α[ 1−F0(dK )],
and F(B1) = p1, F(B2) = p2 − p1, . . . , F(BK+1) = 1 − pK .
Then, the joint prior density π(p) of p = (p1, . . . , pK )�can
be written as

π(p) =
�

(
K+1∑
k=1

γk

)

K+1∏
k=1

�(γk)

K+1∏
k=1

(pk − pk−1)
γk−1, (3)

where γk = α{F0(dk) − F0(dk−1)} for k = 1, . . . ,K + 1,
d0 = −∞, dK+1 = ∞, F0(−∞) = 0, F0(∞) = 1, p0 = 0,
and pK+1 = 1.
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Conditional distributions
Under the above assumption, the likelihood function of
the first j (j = 1, . . . , J) cohorts of patients (i.e., the dataset
DSj = {(n1, y1), . . . , (nSj , ySj)}) is given by

LSj(p|DSj) ∝
Sj∏
i=1

pyii (1 − pi)ni−yi , 1 ≤ Sj ≤ K . (4)

It follows from Eq. (3) that the joint prior density π(p) of
p = (p1, . . . , pSj)� can be expressed as

π(p) ∝
Sj+1∏
i=1

(pi − pi−1)
γi−1, 1 ≤ Sj ≤ K , (5)

where γi = α{F0(di)−F0(di−1)} for i = 1, . . . , Sj +1, d0 =
−∞, dSj+1 = ∞, F0(−∞) = 0, F0(∞) = 1, p0 = 0, and
pSj+1 = 1. It is easily seen that Eq. (5) reduces to Eq. (3)
when Sj = K .
It follows from Eqs. (4) and (5) that the joint poste-

rior probability density of p given the dataset DSj can be
expressed as

π(p|DSj)∝
Sj∏
i=1

pyii (1−pi)ni−yi
Sj+1∏
i=1

(pi−pi−1)
γi−1, 1≤Sj≤K .

(6)

Again, it follows from Eqs. (2) and (3) that the joint
conditional distribution of {α,μ, σ } given {DSj ,p} is given
by

π(α,μ, σ |p,DSj ) ∝
�

(
Sj+1∑
i=1

γi

)

Sj+1∏
i=1

�(γi)

Sj+1∏
i=1

(pi − pi−1)
γi−1π(α)π(μ)π(σ),

which indicates that the conditional distributions of α, μ
and σ given {p,DSj} have the following expressions:

π(α|p,μ, σ ,DSj) ∝ �(α)
Sj+1∏
i=1

�(γi)

Sj+1∏
i=1

(pi − pi−1)γi−1αa−1e−bα ,

π(μ, σ |p,α,DSj) ∝ �(α)
Sj+1∏
i=1

�(γi)

Sj+1∏
i=1

(pi − pi−1)γi−1π(μ)π(σ).

(7)

It is easily seen from Eqs. (6) and (7) that the conditional
distributions of p and α are not standard distributions.
Thus, it is quite difficult to draw observations from these
conditional distributions. To address the issue, the Gibbs
sampler is employed to simulate observations from these
conditional distributions. Thus, Bayesian estimate of p
can be obtained by the simulated observations via the
Gibbs sampler.

Implementation of Gibbs sampler
Let p−i be a subset vector of p with the ith ele-
ment of p deleted. It follows from Eq. (6) that the
conditional distribution of pi given p−i and DSj can be
written as

π(pi|p−i,DSj)∝ pyii (1−pi)ni−yi(pi−pi−1)
γi−1(pi+1−pi)γi+1−1,

(8)

where pi−1 < pi < pi+1 for i = 1, . . . , Sj, and p0 = 0 and
pSj+1 = 1.
The Gibbs sampler for drawing observations

α,μ, σ , p1, . . . , pSj is implemented as follows.
Step 1. Initialize α(0),μ(0), σ (0), p(0) =

(
p(0)
1 , p(0)

2 , . . . ,

p(0)
Sj

)
, and let p0 = 0 and pSj+1 = 1.

Step 2. At the (q + 1)th iteration with current values
α(q),μ(q), σ (q),p(q) =

(
p(q)
1 , p(q)

2 , . . . , p(q)
Sj

)
, generate

α∗ from the uniform distribution U(1, 20) and u from
the uniform distribution U(0, 1), respectively, if u ≤
min

{
1,π

(
α∗|p(q),μ(q),σ (q),DSj

)
/π

(
α(q)|p(q),μ(q), σ (q),DSj

)}
,

we let α(q+1) = α∗; otherwise, we let α(q+1) = α(q).
Step 3. Generate μ(q+1) from the conditional

distribution π
(
μ|p(q),α(q), σ (q),DSj

)
;

Step 4. Generate σ (q+1) from the conditional
distribution π

(
σ |p(q),α(q+1),μ(q+1),DSj

)
;

Step 5. Simulate p(q+1)
1 from the conditional distribu-

tion: πSj

(
p1|α(q+1),μ(q+1), σ (q+1), p(q)

2 , . . . , p(q)
Sj ,DSj

)
.

Step 6. Generate p(q+1)
2 from the conditional distribu-

tion:

πSj

(
p2|α(q+1),μ(q+1),σ(q+1),p(q+1)

1 , p(q)
3 , . . . , p(q)

Sj ,pSj+1,DSj

)
.

(9)

...
Step Sj+4. Draw p(q+1)

Sj from the conditional distribution:

πSj

(
pSj |α(q+1),μ(q+1),σ (q+1),p(q+1)

1 ,p(q+1)
2 , . . . ,p(q+1)

Sj−1 ,DSj

)
.

Step Sj + 5. Repeat Step 2 to Step Sj + 4 until the
convergence of the algorithm.
It is easily seen from Eq. (8) that it is impossi-

ble to directly draw observations from the conditional
distribution of pi given (p−i,DSj) because of nonstan-
dard distribution involved. To address the issue, the
Adaptive Rejection Metropolis Sampling (ARMS) is
employed to sample observations from the conditional
distribution (8).
To implement the ARMS algorithm, we require con-

structing a proposal distribution from which one can
easily sample observations. Let Dn0 = {x1 < x2 < · · · <

xn0} denote a set of dose levels in the interval [ pi−1, pi+1].
For 1 ≤ i ≤ j ≤ n0, let lij(x) be the straight line pass-
ing through two points (xi, logπ(xi)) and (xj, logπ(xj));
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otherwise, it is assumed that lij(x) is not defined. We
construct the following piecewise function hi(x):

hi(x) =max{li,i+1(x), min{li−1,i(x), li+1,i+2(x)}} (10)
for xi ≤ x ≤ xi+1.

When l1(x) is undefined but l2(x) is defined above, we set
max(l1, l2) = max(l2, l1) = min(l1, l2) = min(l2, l1) =
l2. When both l1(x) and l2(x) are undefined, we take
max(l1, l2) = max(l2, l1) = min(l1, l2) = min(l2, l1) = 0.
Under the above assumption, the proposal distribution
gi(x) is defined as gi(x) = exp(hi(x))/ω, which is a piece-
wise exponential distribution, where ω = ∫

exp(h(x))dx.
Let p(q)

i be the simulated observation of pi at the qth iter-
ation. Then, the ARMS algorithm for drawing p(q+1)

i from
the conditional distribution (8) at the (q+ 1)th iteration is
as follows.
Step 1. Initialize n0, which is the number of points in the

interval [ pi−1, pi+1], and determine the set of dose levels
Dn0 .
Step 2. Generate p∗

i from the proposal distribution gi(x).
Step 3. Generate u from the uniform distribution

U(0, 1).
Step 4. If u > π(p∗

i )/ exp(hi(p∗
i )), we set Dn0+1 = Dn0 ∪{

p∗
i
}
, and relabel the points in Dn0+1 in ascending order

and let n0 = n0 + 1, then go to step 2; otherwise, we set
p∗(q+1)
i = p∗

i .
Step 5. Generate u∗ from the uniform distribution

U(0, 1).

Step 6. If u∗ >min
{
1,

π
(
p∗(q+1)
i

)
min

{
π

(
p(q)
i

)
, exp

(
h
(
p(q)
i

))}

π
(
p(q)
i

)
min

{
π
(
p∗(q+1)
i

)
, exp

(
h
(
p∗(q+1)
i

))}
}
,

we take p(q+1)
i = p(q)

i ; otherwise, we set p(q+1)
i = p∗(q+1)

i .

Dose-finding algorithm
In this section, we develop a two-stage Bayesian nonpara-
metric adaptive dose-finding design based on a two-stage
procedure and the above proposed hybrid algorithm. Let
ce and cd be the threshold values for dose escalation and
de-escalation, respectively. In our numerical illustration,
ce and cd satisfying the restriction that ce + cd > 1 can be
selected by the data-dependent approach via simulation
studies rather than some fixed values such that the trail
has some desirable operating characteristics, for exam-
ple, a relatively high accuracy index, which is defined in
Equation (6.1) of Cheng (2011). For safety, we restrict the
dose escalating or de-escalating for the next cohort of
patients to only one dose level of change at a time. The
two-stage Bayesian nonparametric adaptive dose-finding
design is described as follows.
(I) The start-up stage
Patients in the first cohort are administered to the low-

est dose level d1. If at least one toxicity is observed,
the first stage is stopped and the second stage is

conducted. If no toxicity is observed, patients in the
second cohort are administered to the dose level d2.
This process is continued until at least one toxicity is
observed.
(II) The second stage
For dose level dk administered to the jth cohort of

patients, if there is at least one toxicity outcome observed,
we denote d(j)

k as the dose level administered to the
jth cohort of patients, i.e., the superscript j denotes the
numerical order of cohort and the subscript k represents
the dose level.
(i) Patients in the (j + 1)th cohort are administered

to dose level d(j+1)
k . Based on the data of the first j + 1

cohorts of patients, we can simultaneously obtain p̂ =
(p̂1, . . . , p̂Sj+1) and the toxicity probability Pr(p̂k < θ) at
the current dose level d(j+1)

k via the above proposed hybrid
algorithm.
(ii) If the probability Pr(p̂k < θ) > ce, the dose level

administered to the (j+2)th cohort of patients is escalated
to the dose level dk+1, i.e. d

(j+2)
k+1 = dk+1. If the current

dose d(j+1)
k = dK , the dose administered to the (j + 2)th

cohort of patients is still dK , that is, d
(j+2)
K = dK .

(iii) If the probability Pr(p̂k < θ) < cd, the dose
level administered to the (j + 2)th cohort of patients is
deescalated to the dose level dk−1, i.e. d

(j+2)
k−1 = dk−1.

If the current dose d(j+1)
k = d1, the dose level adminis-

tered to the (j + 2)th cohort of patients is still d1, that is,
d(j+2)
1 = d1.
(iv) Otherwise, the (j+2)th cohort of patients continues

to be treated at the dose level dk i.e., d
(j+2)
k = dk .

(v) Once the maximum sample size N is attained, the
dose level with the probability of toxicity being closest to
θ is selected as the MTD.

Simulation study
To investigate the finite sample performance of the
nonparametric continual reassessment method (NCRM),
several simulation studies are conducted for six toxic-
ity scenarios together with eight dose levels (i.e., K =
8), which are given in Table 1. Here, for simplicity, the
dose levels are identified by a number from 1 to 8, that
is, dk = k for k = 1, . . . , 8; and we take the target
toxicity probability as θ = 0.3. In Table 1, Scenario 1
indicates that the toxicity probability is steadily increas-
ing and the target dose is level 5; Scenario 2 shows that
the first five dose levels are the same as those given in
Scenario 1, but the toxicity probability for dose level 6
suddenly jumps to an unacceptably high level 0.6; Sce-
nario 3 has a flat relationship with the toxicity probability
never attaining unacceptable levels, and the target dose is
level 8; Scenario 4 has a flat relationship with the toxicity
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Table 1 Six toxicity scenarios for a single-agent trial with θ = 0.3

Dose level

Scenario Method 1 2 3 4 5 6 7 8

1 true 0.05 0.08 0.12 0.20 0.30a 0.45 0.60 0.70

skeleton 0.03 0.06 0.12 0.20 0.30 0.40 0.50 0.59

F0 0.006 0.02 0.07 0.16 0.31 0.50 0.69 0.84

2 true 0.05 0.08 0.12 0.20 0.30a 0.60 0.80 0.90

skeleton 0.002 0.01 0.06 0.16 0.30 0.45 0.59 0.71

F0 0.006 0.02 0.07 0.16 0.31 0.50 0.69 0.84

3 true 0.01 0.05 0.10 0.14 0.18 0.22 0.25 0.30a

skeleton 0.02 0.04 0.06 0.10 0.14 0.18 0.24 0.30

F0 0.04 0.05 0.08 0.12 0.16 0.21 0.27 0.34

4 true 0.01 0.05 0.08 0.12 0.16 0.2 0.24 0.26a

skeleton 0.003 0.01 0.03 0.05 0.10 0.15 0.22 0.30

F0 0.04 0.05 0.08 0.12 0.16 0.21 0.27 0.34

5 true 0.30a 0.40 0.50 0.60 0.70 0.80 0.90 0.95

skeleton 0.30 0.44 0.58 0.69 0.78 0.84 0.89 0.92

F0 0.31 0.40 0.50 0.60 0.69 0.77 0.84 0.89

6 true 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80

skeleton 0.30 0.40 0.50 0.59 0.67 0.74 0.80 0.84

F0 0.31 0.40 0.50 0.60 0.69 0.77 0.84 0.89

aNumbers in boldface are the target MTDs

probability never reaching unacceptable levels, and there
is no target dose but level 8 is quite close to the target
dose given in Scenario 3; Scenario 5 implies that all the
dose levels have an unacceptable toxicity probability, and
the target dose is level 1; Scenario 6 is used to examine
the situation that all the doses are over toxic, and there is
no target dose but level 1 is quite close to the target dose.
In practice, the trial would be stopped and doses will be
reformulated once too many toxicities are occurred. We
take sample size of each trial as N = 60, the number of
cohorts as J = 20, andm = 3. In implementing the Gibbs
sampler, we collect 1000 observations after 700 burn-in
iterations.
For comparison, we consider two Bayesian model-based

CRM dose-finding methods including the power model:
pi = dexp(β)

i and one-parameter logistic model: pi =
exp(a0 + βdi)/{1 + exp(a0 + βdi)} with a0 = 3, where
the prior of β is assumed to follow the normal distribution
with mean zero and variance 1.34, i.e., β ∼ N(0, 1.34). For
each of the above considered six scenarios, given θ , k and

K, a good “skeleton” can be directly generated using the
function ‘getprior’ in the R package with the optimal value
of δ, which can be obtained by the algorithm of Lee and
Cheung [17]. But, its computational burden is too expen-
sive. To address this issue, we here use a fixed value, which
is evaluated using the data-dependent approach via sim-
ulation studies from a prespecified indifference interval
so that the trial has some desirable operating character-
istics, for example, the prior expectation of η is close to
its true values, to replace the optimal value of δ. For our
considered six scenarios, simulation studies evidence that
we can take δ as 0.05, 0.075, 0.03, 0.04, 0.07 and 0.05,
respectively.
For each of the above considered six scenarios, we

set the initial value p(0) as its corresponding skeleton in
implementing Gibbs sampler.When α and F0 are assumed
to be known, to investigate the effect of the selection of
α, we consider three cases of α: α = 5, 10 and 20, corre-
sponding to small, moderate and large values of α, respec-
tively, and a standard normal distribution assumption for
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Table 2 Bayesian estimates of pk ’s via NCRM under scenario 1

True 0.05 0.08 0.12 0.20 0.30 0.45 0.60 0.70

i xi yi1 yi2 yi3 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1 d1 0 0 1

2 d1 0 0 0 0.0156 - - - - - - -

3 d2 0 0 0 0.0278 0.0380 - - - - - -

4 d3 1 0 0 0.0439 0.0573 0.0789 - - - - -

5 d4 0 0 0 0.0501 0.0703 0.1014 0.1336 - - - -

6 d5 0 0 0 0.0585 0.0809 0.1169 0.1534 0.2109 - - -

7 d6 0 0 1 0.0589 0.0852 0.1248 0.1682 0.2377 0.3426 - -

8 d5 0 1 0 0.0595 0.0734 0.1196 0.1672 0.2430 0.3457 - -

9 d6 1 1 1 0.0711 0.1018 0.1496 0.2006 0.2841 0.4060 - -

10 d5 0 1 0 0.0763 0.0954 0.1484 0.2023 0.2864 0.4063 - -

11 d5 0 1 1 0.0681 0.0995 0.1528 0.2112 0.3116 0.4156 - -

12 d5 0 0 1 0.0814 0.1144 0.1668 0.2227 0.3190 0.4196 - -

13 d4 0 0 0 0.0702 0.0979 0.1474 0.1965 0.3072 0.4144 - -

14 d5 0 0 1 0.0670 0.0979 0.1431 0.1958 0.3104 0.4151 - -

15 d5 0 0 0 0.0672 0.0960 0.1421 0.1915 0.2904 0.4062 - -

16 d5 0 0 1 0.0767 0.1073 0.1549 0.2026 0.2989 0.4094 - -

17 d5 0 1 0 0.0704 0.1004 0.1450 0.1941 0.2958 0.4070 - -

18 d5 1 1 0 0.0723 0.1039 0.1546 0.2066 0.3196 0.4205 - -

19 d4 0 0 0 0.0632 0.0916 0.1369 0.1842 0.3128 0.4170 - -

20 d5 0 0 0 0.0730 0.1046 0.1428 0.1868 0.2977 0.4103 - -

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1 
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0.3

0.4

0.5

 

 

Fig. 1 Nonparametric Bayesian estimation of dose-toxicity curve under scenarios 1 when α and F0 are known
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Fig. 2 Nonparametric Bayesian estimation of dose-toxicity curve under scenarios 3 when α and F0 are known

F0. As mentioned above, we choose appropriate values
of μ and σ such that median of F0 should be consis-
tent with the initial guess for the MTD. To wit, if there
is a prior belief that dose level dk is the MTD, we can
select appropriate values of μ and σ such that F0(dk|η) =
	

(
dk−μ

σ

)
= θ . Table 1 gives the values of F0’s correspond-

ing to six scenarios together with eight dose levels, where
μ = 6 and σ = 2 for scenario 1 and 2, μ = 10 and σ = 5
for scenario 3 and 4, and μ = 3 and σ = 4 for scenario 5
and 6, respectively.
The preceding proposed hybrid algorithm is used to cal-

culate Bayesian estimates of pk ’s, and the preceding pro-
posed two-stage Bayesian nonparametric adaptive dose-
finding algorithm is employed to determine MTD. To
illustrate how the NCRMworks, we present results of one
simulation trial for scenario 1 together with α = 5 in
Table 2. Included in this table are: i (the serial number
of the current experiment cohort); xi (the dose admin-
istered to the current cohort of patients); yi1, yi2, yi3
(the observations for the current experiment cohort); p̂k
(estimate of toxicity probability for k = 1, . . . ,K). Exam-
ination of Table 2 shows that (i) dose level 5 (i.e., d5)
is selected as the MTD and p̂5 = 0.2977, which is
quite close to true toxicity probability 0.3; (ii) among
11 cohorts of patients administered to dose level d5,
only 10 patients (i.e.,

∑20
i=1

∑3
m=1 yim) are experienced

toxicity; (iii) the doses with the relatively high toxicity
probability (such as d7 and d8) may have no chance to
be administered to patients, which guarantees the safety
of patients.

Figures 1 and 2 plot Bayesian nonparametric estima-
tions of unknown dose-toxicity curve for three speci-
fied values of α for scenarios 1 and 3, respectively. In
each figure, “−
” represents the dose-toxicity curve cor-
responding to true dose-toxicity data, “−◦” corresponds
to the base curve, and “− �”, “−�” and “-+” corre-
spond to the estimated dose-toxicity curves for α = 5,
10 and 20, respectively. Examination of Figs. 1 and 2
show that the estimated curves are more and more close
to F0 with the increase of α when the doses adminis-
tered to patients are less than but close to the target
dose, which is consistent with the conclusion that the
large value of α reflects a prior belief that F is tight
around F0.
For the aforementioned NCRM, we calculate the selec-

tion probabilities that a dose level is selected as the
MTD, the total numbers of toxicities observed, and aver-
age numbers of patients that are administered to each
of eight dose levels for the above specified six scenar-
ios together with α = 5 and 20. For comparison, we
also calculate the results corresponding to logistic model
and power model. Results for 1000 simulated trials are
given in Tables 3 and 4. Examination of Tables 3 and 4
show that the above developed Bayesian NCRM per-
forms better than two parametric CRMs (i.e., logistic and
power models) in terms of the following four aspects: (i)
Bayesian NCRM generally selects the MTD with a rela-
tively higher probability than two parametric CRMs; (ii)
BayesianNCRMconsistently selects over-MTDwith a rel-
atively lower probability than two parametric CRMs; (iii)
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Table 3 Selection probabilities and total numbers of toxicities observed for logistic model, power model and NCRM under six scenarios

Dose level # of # of

Scenario Method 1 2 3 4 5 6 7 8 Tox. Pat.

1 Logistic 0.000 0.000 0.008 0.227 0.637 0.128 0.000 0.000 15 60

Power 0.000 0.000 0.004 0.212 0.664 0.120 0.000 0.000 15 60

NCRM5a 0.000 0.002 0.001 0.161 0.773 0.063 0.000 0.000 15 60

NCRM2a 0.000 0.000 0.000 0.007 0.980 0.013 0.000 0.000 16 60

2 Logistic 0.000 0.001 0.042 0.362 0.571 0.024 0.000 0.000 13 60

Power 0.000 0.001 0.028 0.369 0.581 0.021 0.000 0.000 14 60

NCRM5 0.002 0.000 0.005 0.292 0.698 0.003 0.000 0.000 15 60

NCRM2 0.000 0.000 0.000 0.186 0.814 0.000 0.000 0.000 14 60

3 Logistic 0.000 0.000 0.000 0.002 0.043 0.108 0.306 0.541 13 60

Power 0.000 0.000 0.000 0.001 0.031 0.104 0.311 0.553 13 60

NCRM5 0.000 0.001 0.007 0.019 0.028 0.117 0.373 0.455 13 60

NCRM2 0.000 0.000 0.000 0.000 0.000 0.008 0.379 0.613 13 60

4 Logistic 0.000 0.000 0.000 0.002 0.036 0.143 0.286 0.533 11 60

Power 0.000 0.000 0.000 0.000 0.028 0.128 0.321 0.523 11 60

NCRM5 0.000 0.001 0.003 0.007 0.011 0.086 0.289 0.603 12 60

NCRM2 0.000 0.000 0.000 0.000 0.000 0.004 0.263 0.733 12 60

5 Logistic 0.804 0.189 0.007 0.000 0.000 0.000 0.000 0.000 20 60

Power 0.811 0.183 0.006 0.000 0.000 0.000 0.000 0.000 20 60

NCRM5 0.898 0.100 0.002 0.000 0.000 0.000 0.000 0.000 19 60

NCRM2 0.971 0.029 0.000 0.000 0.000 0.000 0.000 0.000 19 60

6 Logistic 0.970 0.027 0.003 0.000 0.000 0.000 0.000 0.000 24 60

Power 0.972 0.028 0.000 0.000 0.000 0.000 0.000 0.000 24 60

NCRM5 0.987 0.013 0.000 0.000 0.000 0.000 0.000 0.000 24 60

NCRM2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24 60

aNCRM5 and NCRM2 denote NCRMmethod with α = 5 and 20, respectively

the total number of toxicities observed are almost iden-
tical for all three methods under our considered cases;
(iv) Bayesian NCRM has a higher percentage of patients
treated at MTD than two parametric CRMs, except for
scenario 3 with α = 5, but Bayesian NCRM treats
more patients at dose levels below MTD and less patients
at dose levels above MTD than two parametric CRMs;
(v) the selection probabilities for scenarios 3 and 4 are
smaller than those for other four scenarios because the
locations of target doses for scenarios 3 and 4 are dif-
ferent from those for other scenarios, which indicates
that the highest dose should be carefully administered to
patients for safety, and patients should be administered
to the lower dose level.
Now we assume that α and F0 are unknown. As an

illustration of the above presented BayesianNCRMproce-
dure, here we only consider scenarios 1 and 3. For scenario
1, we consider four different priors on α: �(2, 5), �(2, 2),

�(5, 2) and �(10, 2), which correspond to small and mod-
erate expectations of α, and four discrete uniform priors
for (μ, σ) on the rectangles (5, 7) × (1, 3), (4, 8) × (1, 3),
(5, 7) × (0, 4) and (4, 8) × (0, 4), which indicate that prior
expectations of μ and σ are 6 and 2, respectively. For sce-
nario 3, we consider the same priors on α as scenario 1,
but the following four different discrete uniform priors of
(μ, σ) on the rectangles (9, 11) × (4, 6), (8, 12) × (4, 6),
(9, 11) × (3, 7) and (8, 12) × (3, 7), which imply that prior
expectations of μ and σ are 10 and 5, respectively.
Based on the above considered settings, the preceding

introduced hybrid algorithm is adopted to evaluate
Bayesian estimation of pk ’s, and the preceding developed
two-stage Bayesian nonparametric adaptive dose-finding
algorithm is employed to determine the MTD. Similarly,
we also calculate the selection probabilities, total numbers
of toxicities observed and average numbers of patients
treated at each of eight dose levels for scenarios 1 and
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Table 4 Average numbers of patients treated at each of eights doses for logistic model, power model and NCRM

Dose level

Scenario Method 1 2 3 4 5 6 7 8

1 Logistic 3.579 4.008 5.916 14.463 23.304 8.124 0.576 0.030

Power 3.489 3.954 5.622 14.739 23.889 7.755 0.543 0.009

NCRM5a 3.474 3.615 3.912 15.462 27.387 6.009 0.141 0.000

NCRM2a 3.423 3.558 3.708 8.298 35.454 5.493 0.066 0.000

2 Logistic 3.582 4.632 8.868 19.206 21.147 2.535 0.030 0.000

Power 3.486 4.158 8.004 20.496 21.663 2.178 0.015 0.000

NCRM5 3.447 3.648 4.569 18.543 25.698 4.065 0.300 0.000

NCRM2 3.447 3.513 3.693 19.977 27.825 1.497 0.048 0.000

3 Logistic 3.108 3.486 4.137 5.274 6.882 9.096 11.724 16.293

Power 3.066 3.480 4.089 5.157 6.552 8.970 12.342 16.344

NCRM5 3.090 3.435 3.684 3.897 4.908 8.901 17.457 14.628

NCRM2 3.057 3.420 3.660 3.636 3.531 3.930 21.168 17.598

4 Logistic 3.105 3.483 3.942 4.977 7.266 10.125 11.610 15.492

Power 3.066 3.468 3.843 4.737 6.573 10.266 12.861 15.186

NCRM5 3.135 3.366 3.453 3.777 4.395 7.809 16.281 17.784

NCRM2 3.084 3.387 3.573 3.612 3.522 3.630 18.879 20.313

5 Logistic 44.637 12.972 2.229 0.156 0.006 0.000 0.000 0.000

Power 45.189 12.822 1.848 0.135 0.006 0.000 0.000 0.000

NCRM5 49.740 8.958 1.176 0.114 0.012 0.000 0.000 0.000

NCRM2 53.178 6.366 0.408 0.042 0.006 0.000 0.000 0.000

6 Logistic 54.468 4.467 0.894 0.141 0.030 0.000 0.000 0.000

Power 54.573 4.500 0.810 0.102 0.015 0.000 0.000 0.000

NCRM5 57.676 2.865 0.414 0.039 0.006 0.000 0.000 0.000

NCRM2 58.149 1.596 0.237 0.018 0.000 0.000 0.000 0.000

aNCRM5 and NCRM2 denote NCRMmethod with α = 5 and 20, respectively

3. Results for 1000 simulated trials are given in Tables 5
and 6. Examination of Table 5 and 6 shows that (i) the
selection probabilities and the number of patients treated
at the MTD increase with the increase of prior expecta-
tion of α; (ii) the selection probabilities and the number
of patients treated at the dose level closet to the MTD
decrease with the increase of prior expectation of α for
scenario 1, but increase with the increase of prior expecta-
tion of α for scenario 3; (iii) the total number of toxicities
observed are almost equal regardless of the priors of α and
(μ, σ), which shows that there is little effect of the selec-
tion of the priors of α, μ and σ on the total number of
toxicities observed.

Results
According to the above presented simulation study, we
have the following results. First, the estimated MTD in
single-agent dose-finding clinical trials via our proposed
two-stage Bayesian nonparametric adaptive dose-finding

algorithm is quite close to true toxicity probability
under our considered settings. Second, the doses with
the relatively high toxicity probability may have no
chance to be assigned to patients, which guarantees
the safety of patients. Third, the value of the weight
α in the DP prior is a measure of a prior belief on
the base distribution. Fourth, when the parameters in
the DP prior are fixed, the proposed Bayesian NCRM
behaves better than traditional model-based CRM; but
when the parameters in the DP prior are unknown,
the selection of the weight α has a positive effect on
the selection probabilities and the number of patients
treated at the MTD, while the selection of parame-
ters in the DP prior has little effect on the total num-
ber of toxicities observed. In a word, numerical results
show the flexibility of the proposed method for single-
agent dose-finding trials, and the proposed method
outperforms two classical CRMs under our considered
scenarios.
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Table 5 Selection probabilities and total numbers of toxicities observed for NCRM under scenarios 1 and 3 when α and (μ, σ) are
unknown

Prior Dose Level # of # of

Case (μ, σ)a α 1 2 3 4 5 6 7 8 Tox. Pat.

1 A �(2, 5) 0.012 0.016 0.016 0.200 0.646 0.110 0.000 0.000 15 60

�(2, 2) 0.002 0.001 0.001 0.167 0.771 0.057 0.001 0.000 15 60

�(5, 2) 0.000 0.001 0.001 0.092 0.853 0.053 0.000 0.000 15 60

�(10, 2) 0.000 0.000 0.000 0.064 0.896 0.040 0.000 0.000 16 60

B �(2, 5) 0.009 0.008 0.015 0.236 0.647 0.081 0.004 0.000 14 60

�(2, 2) 0.000 0.000 0.000 0.139 0.817 0.044 0.000 0.000 15 60

�(5, 2) 0.000 0.000 0.000 0.125 0.826 0.049 0.000 0.000 15 60

�(10, 2) 0.000 0.000 0.000 0.092 0.861 0.047 0.000 0.000 15 60

C �(2, 5) 0.000 0.000 0.002 0.172 0.776 0.050 0.000 0.000 15 60

�(2, 2) 0.000 0.000 0.000 0.162 0.783 0.055 0.000 0.000 15 60

�(5, 2) 0.000 0.000 0.001 0.107 0.831 0.061 0.000 0.000 15 60

�(10, 2) 0.000 0.000 0.000 0.064 0.881 0.055 0.000 0.000 16 60

D �(2, 5) 0.000 0.000 0.004 0.219 0.726 0.050 0.001 0.000 15 60

�(2, 2) 0.000 0.000 0.001 0.177 0.783 0.039 0.000 0.000 15 60

�(5, 2) 0.000 0.000 0.001 0.152 0.796 0.051 0.000 0.000 15 60

�(10, 2) 0.000 0.000 0.000 0.129 0.834 0.037 0.000 0.000 15 60

3 E �(2, 5) 0.001 0.005 0.015 0.048 0.094 0.157 0.242 0.438 13 60

�(2, 2) 0.001 0.005 0.008 0.032 0.059 0.138 0.294 0.463 12 60

�(5, 2) 0.001 0.004 0.009 0.013 0.026 0.095 0.377 0.475 13 60

�(10, 2) 0.000 0.000 0.000 0.000 0.000 0.020 0.400 0.580 13 60

F �(2, 5) 0.001 0.007 0.018 0.041 0.077 0.162 0.239 0.455 13 60

�(2, 2) 0.001 0.004 0.013 0.017 0.044 0.118 0.347 0.456 13 60

�(5, 2) 0.000 0.001 0.001 0.000 0.008 0.059 0.410 0.521 13 60

�(10, 2) 0.000 0.000 0.000 0.000 0.000 0.046 0.425 0.529 13 60

G �(2, 5) 0.003 0.009 0.015 0.039 0.083 0.145 0.258 0.448 13 60

�(2, 2) 0.000 0.004 0.017 0.031 0.048 0.127 0.318 0.455 13 60

�(5, 2) 0.001 0.002 0.004 0.004 0.017 0.071 0.376 0.525 13 60

�(10, 2) 0.000 0.001 0.000 0.000 0.000 0.014 0.357 0.628 13 60

H �(2, 5) 0.001 0.001 0.017 0.032 0.073 0.144 0.264 0.468 12 60

�(2, 2) 0.001 0.005 0.005 0.014 0.019 0.089 0.350 0.517 13 60

�(5, 2) 0.000 0.001 0.001 0.002 0.006 0.064 0.364 0.562 13 60

�(10, 2) 0.000 0.000 0.000 0.000 0.000 0.024 0.406 0.570 13 60

aNote: A = (5, 7) × (1, 3), B = (4, 8) × (1, 3), C = (5, 7) × (0, 4), D = (4, 8) × (0, 4), E = (9, 11) × (4, 6), F = (8, 12) × (4, 6), G = (9, 11) × (3, 7), H = (8, 12) × (3, 7)

Discussion
Although this manuscript only considers a single agent
dose-finding design, the proposed Bayesian NCRM can
be extended to two-agent dose-finding studies, which is
our further research topic. On the other hand, this paper
only considers the evaluation of the toxicity of novel drug
treatment, i.e., phase I clinical trial, but the developed
Bayesian NCRM procedure can be extended to Bayesian
nonparametric phase I/II dose-finding trial design that

simultaneously allows for toxicity and efficiency of novel
drug treatment for precision medicine.

Conclusions
This paper proposes a Bayesian nonparametric continual
reassessment method to estimate the MTD for a single-
agent in phase I clinical trials. We relax the traditional
parametric model assumption imposed on dose-toxicity
relationship using a DP prior to approximate unknown
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Table 6 Average numbers of patients treated at each of eight doses for NCRM under scenario 1 and 3 when α and (μ, σ) are unknown

Prior Dose Level

Case (μ, σ)a α 1 2 3 4 5 6 7 8

1 A �(2, 5) 3.474 3.915 6.273 15.879 21.567 7.983 0.879 0.030

�(2, 2) 3.342 3.606 4.263 15.705 26.751 6.030 0.303 0.000

�(5, 2) 3.390 3.672 3.705 12.576 30.048 6.426 0.177 0.006

�(10, 2) 3.450 3.603 3.675 10.635 31.983 6.582 0.066 0.006

B �(2, 5) 3.537 3.957 6.381 17.718 21.378 6.450 0.555 0.024

�(2, 2) 3.342 3.618 3.810 15.129 28.473 5.367 0.165 0.006

�(5, 2) 3.393 3.510 3.702 14.523 29.253 5.460 0.159 0.000

�(10, 2) 3.363 3.594 3.717 13.014 31.074 5.157 0.075 0.006

C �(2, 5) 3.417 3.570 4.155 14.847 26.706 7.101 0.204 0.00

�(2, 2) 3.411 3.573 3.948 14.589 28.089 6.339 0.051 0.000

�(5, 2) 3.372 3.570 3.783 12.495 29.781 6.819 0.180 0.000

�(10, 2) 3.402 3.567 3.663 10.887 31.743 6.621 0.105 0.012

D �(2, 5) 3.435 3.525 4.404 18.249 25.404 4.761 0.210 0.012

�(2, 2) 3.444 3.558 3.927 16.455 28.017 4.455 0.144 0.000

�(5, 2) 3.429 3.501 3.798 16.017 28.530 4.566 0.153 0.006

�(10, 2) 3.408 3.612 3.684 15.390 29.757 4.053 0.090 0.006

3 E �(2, 5) 3.075 3.399 3.687 4.335 6.141 9.936 15.465 13.962

�(2, 2) 3.108 3.486 3.714 4.305 5.871 9.753 16.014 13.749

�(5, 2) 3.078 3.363 3.810 3.870 4.554 8.478 18.222 14.625

�(10, 2) 3.090 3.396 3.633 3.684 3.576 4.617 21.420 16.584

F �(2, 5) 3.090 3.471 3.741 4.326 6.333 10.383 15.444 13.212

�(2, 2) 3.111 3.375 3.735 4.113 5.418 9.525 17.049 13.674

�(5, 2) 3.081 3.450 3.633 3.645 3.801 6.630 19.911 15.849

�(10, 2) 3.105 3.387 3.657 3.708 3.588 5.532 21.4189 15.834

G �(2, 5) 3.096 3.477 3.789 4.275 6.015 9.840 15.312 14.196

�(2, 2) 3.096 3.450 3.651 4.245 5.706 9.441 16.191 14.220

�(5, 2) 3.372 3.375 3.792 3.735 4.005 6.873 19.104 16.056

�(10, 2) 3.066 3.474 3.681 3.597 3.570 4.347 20.088 18.177

H �(2, 5) 3.060 3.411 3.753 4.272 5.952 9.834 15.462 14.256

�(2, 2) 3.081 3.426 3.672 3.849 4.434 7.320 18.411 15.807

�(5, 2) 3.051 3.477 3.648 3.672 3.747 6.306 19.278 16.821

�(10, 2) 3.075 3.396 3.666 3.648 3.633 4.785 20.613 17.184

aNote: A = (5, 7) × (1, 3), B = (4, 8) × (1, 3), C = (5, 7) × (0, 4), D = (4, 8) × (0, 4), E = (9, 11) × (4, 6), F = (8, 12) × (4, 6), G = (9, 11) × (3, 7), H = (8, 12) × (3, 7)

distribution of dose-toxicity curve. A Bayesian method
is developed to estimate toxicity probabilities of dose
levels considered. A hybrid algorithm combining the
Gibbs sampler and adaptive rejection Metropolis sam-
pling algorithm is developed to generate observations
from joint conditional distributions required in evaluating
Bayesian estimates of toxicity probabilities of dose levels.
A two-stage Bayesian nonparametric adaptive dose-
finding design is developed to estimate the MTD. In the

proposed Bayesian nonparametric adaptive dose-finding
design, the dose administered to next cohort of patients
can be escalated or deescalated to adjacent dose level
more safety; generally, doses with a relatively higher tox-
icity probability may have no chance to be administered
to patients, which guarantees the safety of patients. Sim-
ulation studies evidence that the proposed dose-finding
procedure is model-free and robust, and performs better
than two parametric models even in small sample sizes.
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Abbreviations
ARMS: Adaptive rejection Metropolis sampling; CRM: Continual reassessment
method; DP: Dirichlet process; DLT: Dose-limiting toxicity; MTD: Maximum
tolerated dose; NCRM: Nonparametric Continual reassessment method
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