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Background: A key element in the interaction between clinicians and patients with cancer is reassurance giving.
Learning about the stochastic nature of reassurances as well as making inferential statements about the influence of
covariates such as patient response and time spent on previous reassurances are of particular importance.

Methods: We fit Hidden Markov Models (HMMs) to reassurance type from multiple time series of clinicians’
reassurances, decoded from audio files of review consultations between patients with breast cancer and their
therapeutic radiographer. Assuming a latent state process driving the observations process, HMMs naturally
accommodate serial dependence in the data. Extensions to the baseline model such as including covariates as well as
allowing for fixed effects for the different clinicians are straightforward to implement.

Results: We found that clinicians undergo different states, in which they are more or less inclined to provide a
particular type of reassurance. The states are very persistent, however switches occasionally occur. The lengthier the
previous reassurance, the more likely the clinician is to stay in the current state.

Conclusions: HMMs prove to be a valuable tool and provide important insights for practitioners.
Trial registration: Trial Registration number: ClinicalTrials.gov: NCT02599506. Prospectively registered on 11th
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Background

The experience of patients with cancer during their con-
tact with health services has drawn increased attention
by providers, the professions and quality management
staff [1].The components of patient experience are hotly
debated but a consensus opinion is easily found to support
the view that good communication skills are a manda-
tory process to achieve high ratings of patient experience
[2]. A key element of the clinician’s interactional abili-
ties with their patients is to deliver reassurance to their
patients [3]. Surprisingly the number of investigations that
focus explicitly on reassurance giving by staff in clini-
cal settings, let alone specifically in the cancer specialty,
is low. Our group has identified a literature in reassur-
ance giving applied to primary care consultations [4].
Where reference has been made to the cancer service
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setting the description and evidence base for the use of
reassurance has tended to be cursory or very general in
its recommendations. A recent review has focused on
active surveillance of cancer patients and how this may
function to provide reassurance [5]. However it does not
focus on how reassurance can be given. Typically staff
are encouraged to use reassurance but with little advice
on when to use, the type of script that might be applied,
and how frequently the strategy would be included in a
consultation [6].

The definition of reassurance that has been advocated
states that it is “verbal and non-verbal behaviours dis-
played by someone in an effort to reduce the concern
of another” [7]. There are various types of reassurance
and a helpful dichotomy is to divide reassuring statements
commonly used by practitioners into two types, namely:
cognitive and affective (see Appendix for more details). A
clinician that adopted cognitive reassurance would pro-
vide informative statements, such as “these results are
typical of what we find in patients who respond well to
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initial treatment intervention” Affective reassurance, fits
the convention of instructing the patient “not to worry”.
A common response however from patients is that the
exhortation from the clinician to switch off the mecha-
nism of worrisome thoughts and feelings, is exactly when
the patient believes they should worry. In other words
the recommendation to stop worrying tends to do the
reverse. Studies on the clinicians’ use of reassurances and
patients’ immediate responses are virtually non-existent.
Our group believes that this is an omission. Clinicians,
we believe would welcome more basic information on
the practice of this common strategy, commonly listed as
a patient management competency to assist patients in
accepting their diagnosis or treatment plan.

The work of our group has focused on the interac-
tion between clinician and patient. We have expended
effort and resource on developing coding of emotional
expression in patients and the immediate response of
their accompanying clinician [8]. This research has inves-
tigated the response of clinicians to emotional content of
patient utterances. Inspection of various interactions in
patients with cancer and their healthcare team members
has shown the use of reassurance is quite frequent and
varies throughout the consultation. A current data set that
is pertinent to this careful inspection of reassurance giv-
ing is a data corpus of audio files of review consultations
between patients with breast cancer and their therapeutic
radiographer [9]. The review appointments are conducted
weekly during the radiotherapy treatment that typically
is daily apart from weekends and lasts one month dura-
tion. The purpose of the review meetings is to support
the patient and answer questions about the course of
treatment and possible side effects when they arise.

For each session a time series of reassurance type and
duration as well as patient response type and duration
were derived from the recording. With data already avail-
able, the challenge was to find an appropriate time series
model for the clinicians’ reassurances. It is reasonable to
assume that during a consultation clinicians go through
different unobservable phases or states, in which they
are more or less inclined to provide a particular type of
reassurance. To put it more formally, the distribution of
the reassurance type depends on the state and changes
over the different states. Moreover, we would expect that
the probability of the clinician being in a certain state is
not independent of the past but rather depends on the
state the clinician was in during the previous reassurance.
This renders Hidden Markov Models (HMMs) suitable
candidates for modeling time series of reassurance types.
Among the advantages of HMMs are intuitive appeal,
mathematical tractability and flexibility. Indeed, extension
such as allowing covariates to influence the probability of
switching between states or fixed effects for the different
clinicians are straight forward to implement. HMMs are
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gaining popularity in medicine having been applied for
example for modelling sleep disorders [10] as well as for
monitoring circadian rhythmicity [11].

The global aim of this study is to learn about the nature
of reassurances, produced by clinicians during sessions
with breast cancer patients. Of particular interest is to
identify key factors that influence the clinician’s behaviour.

Methods

Data

The data sets consists of 483 reassurances from the first
session with 44 patients. Each session was held by one of
the two available clinicians. Each reassurance was coded
as a binary variable, taking the value 1 when Cognitive and
0 when Affective.

The coding scheme was drawn from [12]. Theoret-
ically, reassurance is offered by clinicians when they
sense the patient is anxious and can be expressed into
two fundamental types. The clinician can respond to a
patient concern by providing information (e.g. “the likeli-
hood that your cancer will return is very rare”) and may
indirectly reduce patient anxiety. Alternatively, the clini-
cian response may be directly associated to the patient’s
expression of anxiety by recognising the patient’s emo-
tion and suggesting how to manage (e.g. “there is no need
to worry”). Strict rules were detailed in a coding manual.
When a turn was found to contain a “reassurance” the
coder is required to code either as cognitive or affective. If
there is doubt about the assignment, which very occasion-
ally occurs due to a lack of words used by the radiographer
to provide clarity between cognitive and affective (that is,
too few to provide sufficient context), then the priority is
to code “cognitive”

The data set also contains a binary variable of the patient
responses, taking the value 1 when the response is positive
and 0 when it is neutral (See Appendix for more details
of the coding scheme and examples). In addition, the
duration (in seconds) of both reassurances and responses
was noted together with the encoded ID of the clinician
(taking the values 1 and 2).

In our analysis we consider time series of reassurances
ordered by time of occurrence. The time between the
reassurances is not of importance in the way we define
the time series. Our approach is similar to a study of bio-
logical behaviour[13], where the authors model sequences
of dives of blue whales. The full data consists of a series
of short samples as shown in Table 1. Here by sample we
mean the time series of reassurances in a single session.
The sample sizes, i.e. the number of reassurances for a
given session, can be as small as 3, while the largest sample
size is 37.

Figure 1 provides important insights on the data. The
sequence of reassurances of the richest data set (session
1) is plotted in the top-left corner. A filled box indicates
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Table 1 Frequencies of the sample sizes from the 44 sessions
3456789 10 12 13 14 15 16 18 19 26 37
3354 4 6 1 1 1 1 3 1 1

Size
Freq. 3 4 2 1

whether the respective reassurance was cognitive (upper
row) or affective (lower row). It provides some indications
that bouts of cognitive reassurances are followed by bouts
of affective ones - a case for Hidden Markov Models. It
also indicates that there is no strong preference for any
of the two types. Indeed, in the pooled sample of all 483
observations 55.9% of the reassurances are cognitive and
44.1% are affective. The remaining five plots in Fig. 1 pro-
vide information on the log duration as well as the type
of the reassurances in each of the five largest data sets.
In terms of duration cognitive reassurances seem to last
longer than the affective ones. This is to be expected as
cognitive reassurances contain more information in the
form of verbal content than the affective ones.

Hidden Markov models

We fit Hidden Markov Models (HMMSs) to the 44 data
sets. An HMM is a mixture model consisting of two
components: an observable time series and an underly-
ing latent state sequence. The observable time series for
a single data set, denoted by X;, ¢ = 1,...,n, in our case
relates to the type of reassurance and is thus Bernoulli (or
binary) taking the value 1 if the reassurance is cognitive
and 0 otherwise. Each observation, i.e. each reassurance, is
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assumed to be the realization of one of N state-dependent
distributions, binary in our case, each with probability 7;,
i =1,..,N, of “success” (in our case a cognitive reassur-
ance). In our study we focus on a two-state model, i.e. we
set N = 2, but check in our empirical study whether an
increase in the number of states is necessary.

The state process, denoted by S;, t = 1,...,n, takes
values in the set {1,..,N} and determines which of the
N distributions the observation X; is drawn from. The
Markov property is assumed for the state process, so that
S; depends only on the previous state variable S;_;. Con-
ditional on the current state Sy, the observable variable X;
is independent of all past observations and states. The two
components of an HMM with their dependence structure
are visualised in Fig. 2.

Baseline model

The Markov Chain of the latent process is characterized
by the initial distribution of the chain and the transi-
tion probabilities Pr (St =Jj|Si—1 = i), i.e. the probability
of being in state j at time point ¢ given that the process is in
state i at time point ¢ — 1, for all /,j and ¢. For the baseline
model [14], the state transition probabilities,

Vij i=Pr(S¢ = jISt-1 =),

are assumed to be constant over the time, i.e. the Markov
chain is homogeneous. We summarize these probabilities
ina N x N transition probability matrix (t.p.m.) I'. When
N = 2 the t.p.m. is given as:

Sequence of reassurances in the first data set: 1 for Cognitive, 0 for Affective
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Fig. 1 Pooled reassurances. Top-left corner - Ordered reassurances from the first session (1 = Cognitive, 0 = Affective). The filled boxes indicate
which of the two types was used for a given reassurance. The remaining 5 plots show the duration and the type of reassurance in the five richest
data sets. The numbers give the decoded state according to the 2-state HMM with log duration as a covariate
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observations

state process

(hidden) o

Fig. 2 Visualisation of an HMM. Arrows indicate dependence. Here, the state process S is the “behavioural” state of the clinician, and the
observations X are the types of reassurances, with subscripts indicating the ordered reassurances

FZ(VM V12)2<1—V12 Y12 ) )
Y21 ¥22 1 l—yn

The two matrices are equivalent because the rows sum to
unity. The initial state probabilities are summarized in a
row vector 8, where §; = Pr(S; = i). When the Markov
chain is homogeneous, we assume that the process is in
equilibrium when we start observing it, such that the ini-
tial distribution is the stationary distribution. In this case
8 is the left eigenvector of I, associated with the eigen-
value 1. It can be easily calculated as the solution of the
system of linear equations §(Iy — ' + U) = 1/, where Iy
isan N x N identity matrix, U is an N x N matrix of ones
and 1 is a conformable column vector of ones.

For the state-dependent distribution of X; we assume
the Bernoulli distribution, with probability of a cognitive
reassurance varying across the states. More precisely for
N = 2 we assume that:

X¢|S¢ =i ~ Bernoulli(rr;), i=1,2, (2)

so that

Pr(cognitive reassurance|S; = i) = 1—

Pr(affective reassurance|S; = i) = m;,

with 771 # 73 in general.
The likelihood can be expressed using the following
matrix product:

L(Ox1, .0y %) = SP(x1)'P(x3) X ... x [P(x,)1, (3)

where 6 denotes the vector with the parameters to esti-
mate; P(x;) is an 2 x 2 diagonal matrix with the conditional
probability mass functions

7 for a cognitive reassurance

P X = = | =
X = xlSe = D) { 1 — m; for an affective reassurance

of X;, given S; = i, i = 1,2, on the main diagonal; 1 is as
before a column vector of ones.

To illustrate how the likelihood function is constructed
for a two-state HMM consider again the t.p.m. given in
Eq. (1) and the state-dependent distributions in (2). When
the Markov chain is in equilibrium at the start of the time
series, then

= — (¥21, ¥12)
Y12 + Y21

which is the stationary distribution. In the first data set the
reassurances are (0,1, .. .,0) (where the dots indicate gen-
eral observations which we do not detail here for reasons
of space). The corresponding likelihood is:

1 1—-m 0
£(010,1,...,0) =———— (21, ¥12)
yi2 + 21 ny 0 1-m

« l-yi2 v2 w1 0
yar l—ym 0 m
1—=y12 712 1-m O 1
yar 1=y 0 1-m/\1)’

where 6 = (y12, y21, 71, w2)". To fit an HMM to our data,
we assume that the 44 samples are independent and that
the model parameters are identical across all sessions. The
independence assumption is reasonable - each session is
with a different patient and is spaced in time. The second
assumption will be relaxed when we consider different
effects for the two clinicians. Under these assumptions,
the joint log likelihood is simply the sum of the 44 indi-
vidual log likelihoods, obtained from the likelihood in
(3). The joint log likelihood is numerically maximised
using a Newton-Rapson-type optimisation procedure. We
implement the numerical maximisation using the routine
nlm () in the statistical software R [15].

HMMs with covariates
When considering covariates in an HMM, it is reasonable
to assume that the external variables directly influence the
transition of states rather than the state-dependent distri-
butions, which remain fixed for a given state. This allows
us to draw conclusions about the effect of, for example,
a positive patient response on the transitions between
the preferences of the clinicians for different types of
reassurances.

Letz, = (1,21, ..., 2k) be a vector of k covariates at time
t. Then for a series of covariate vectors, z1, 2y, 23, ..., the
model given in the previous subsection was modified by
letting the transition probabilities depend on the covariate
values as follows:
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Vo =Pr(S; =2[S,1 =1)

= logit™! (B0 + Braz1e + - - - + Brizks) =

= logit™" (B2 (4)
ya1 =Pr (S, =11S;-1 =2)

= logit™! (Boo + Boazoe + - - - + Poxzks) =
= logit ™! (Brzt) » (5)

where logit ! is the inverse of the multinomial logistic link
function and the vectors B; = (Br0,BL1,---,Bik) and
B = (,32,0, Bais---s ﬁz,k) contain the 2k + 2 coefficients in
the t.p.m. to be estimated. The baseline model is a special
case, in which all beta coefficients except for 81,0 and B2,
are zero.

The elements on the main diagonal of the t.p.m. (y{;
and yztz) are obtained by subtracting the other entry
on the same row from one. Note that the superscript ¢
indicates that the transition probabilities are no longer
constant but vary over time. Thus the Markov Chain is no
longer homogeneous and we cannot assume that the state
process is stationary. We address this issue by treating the
parameters of the initial distribution §; and 6, = 1 — §;
as additional model parameters and add §; to the vector
0 of parameters to estimate. The formulation of the state-
dependent distribution remains otherwise unchanged as
is the construction of the likelihood.

HMMs with fixed effects for the clinicians

The 44 first sessions were held by two different clini-
cians in a major regional cancer centre in Scotland. The
therapeutic radiographer consisted of an experienced staff
member with some managerial responsibility and a coun-
selling qualification, whereas the second staff member was
recently qualified. Each session is held by only one of the
two clinicians, labeled 1 and 2. It is natural to assume that
the nature of the latent processes for the two clinicians,
in particular the transition probabilities between the two
states, differs. We account for this modification by allow-
ing fixed effects in the t.p.m. For the baseline model this
means that for a given session I'" in Eq. (3) equals one of
the two matrices

1 1 2 2

Flz(l—lylg V121 ) or F2:<1—2)’12 V122 )
Yo l—vy a1 l—vn

(6)

The superscript in this case denotes the clinician ID.
When the first clinician is holding the session I' = rL
while I' = T'? when the second clinician is working.
Therefore the ID of the clinician determines which of the
two t.p.m.s is “switched on” for the session.

The modification in the case of covariates in the t.p.m. is
straightforward. The t.p.m.s in Eq. (3) are calculated using
the following equations
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ylt’zl = logit_1 (Z/tﬁll)
ysi = logit™ (z,83),

Clinician 1:

v = logit™! (z,87)
vai = logit™! (z,63)

The initial distributions §! = (8%, 1-— 8}) and 82 =
(8%, 1-— 8%), where the superscript indicates the ID of the
clinician, are estimated separately.

Clinician 2:

Model selection

Since we are considering several candidate models, we
need formal model selection criteria. We choose to work
with the widely used Akaike Information Criterion (AIC),
which is given as

AIC = —2logl + 2p

where log ¢ is the joint log-likelihood for the 44 data sets,
p is the number of parameters estimated, i.e. the length of
the vector 6. Among the candidates we choose the model
with the lowest AIC.

Global decoding

The states are not observable but a procedure known as
the Viterbi algorithm (see [14]) allows us to obtain the
sequence of states with the highest probability given the
data. In particular, it seeks the sequence sy, s9, ..., s, that
maximizes the conditional probability:

Pr(S1 = s1, .., Sy = s4| X1 = %1, ..o, Xoy = %)
or, equivalently:
Pr(S1 = 81,08y = 85, X1 = X1, o, Xyt = Xp)

Viterbi is a recursive algorithm for solving this optimiza-
tion problem.

Results
We conduct an empirical study, in which we fit HMM of
different complexity to the time series of reassurances. In
a first step we justify the use of a 2-state HMM as well as
the need to include a dependence structure in the latent
process. For this purpose we fit a baseline model with 1, 2
and 3 states. An HMM with 1 state is a trivial case of inde-
pendent observations. We also fit an independent mixture
model, which is a special case of an HMM, in which the
states are independent of the past (the visualisation is sim-
ilar to that of a classical HMM in Fig. 2 with the arrows
between states S; and S;y; removed). Table 2 provides
the AIC and the negative log-likelihood of the four fitted
models.

We find some evidence for the use of a hidden state
structure as the baseline 2-state HMM has the lowest
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Table 2 Comparison of the model selection criteria for 4
baseline models and 6 models with covariates. FE stands for
Fixed effects, DOPR for duration of previous response, and nllk
stand for negative log likelihood

nllk AlC
Baseline N =1 32895 659.90
Baseline N =2 320.69 649.38
Baseline N =3 317.53 653.05
Indep. mixt. 32895 665.90
Response Type 318.30 650.59
Log DOPR 316.63 647.25
Response Type & log DOPR 315.71 649.42
FE baseline 316.04 648.09
FE Response 314.56 653.04
FE Log DOPR 313.66 65132

The lowest AIC of all models is given in bold

AIC. The 3-state HMM does not bring an improvement
so 3 states seem to be too much in this context. The
independent mixture model provided the worst fit and
we therefore conclude that there is dependence in the
observed data.

Before we proceed with the models with covariates,
we first consider the estimates from the baseline 2-state
HMM given below:

71 = 0.209, Ty = 0.782
711 = 0.735, P21 = 0.169,
P12 = 0.265, 7oy = 0.831

Based on the estimates of the “success” probabilities we
can interpret state 1 as the dominantly affective state
and state 2 as the dominantly cognitive state. Note that
cognitive reassurances can still occur in state 1 and, sim-
ilarly, affective reassurances can still occur in state 2.
This just happens with a low probability (around 20% for
both cases). The states are persistent - the probabilities of
remaining in the same state are relatively high (0.735 for
state 1 and 0.831 for state 2).

In a next step we fit 2 models with one covariate in
the t.p.m. Our first choice for a covariate is the patient’s
response. We argue that the previous rather than the cur-
rent response is more likely to influence the transition of
states and therefore use lagged values. This occurs at no
cost as we have an observation of the lagged covariate for
each transition. The initial distribution is not affected by
covariates and is estimated separately. The second covari-
ate we use is the log duration of the previous reassurance
(log DOPR), which is obviously also lagged. We use log
duration rather than duration, motivated by the fact that
duration is heavily skewed with a few large outliers. We
also fitted a model with two covariates - response type and
log DOPR - to check whether adding more variables will
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improve the fit. Finally we fit all three models (baseline
and two different covariates) allowing for fixed effects for
the two different clinicians as discussed in the previous
section. The negative log likelihood and the AIC of the 6
additional models are given in Table 2.

The model with covariates that brings the largest
improvement over the baseline HMM is the model with
log DOPR. The length of the previous reassurance seems
to have an effect on the transition probabilities between
the states. We will discuss this model in more detail in the
subsection below. Interestingly, the HMM with Response
Type is not preferred over the baseline model. Compress-
ing the patient’s response into a binary variable (“neutral’,
“positive”) might have lead to some information loss. The
inclusion of two covariates is not justified as the AIC of the
model with log DOPR and Response Type is higher than
the one of the model with log DOPR only.

In the absence of other covariates, it seems to matter
which of the two clinicians is holding the session. How-
ever, adding fixed effects to the models with covariates in
the t.p.m. does not bring a significant improvement over
the simpler models. A logical conclusion in this case is that
clinicians react similarly to patient responses or, respec-
tively, to their own lagged reassurance. In summary, from
the 10 competing models, the one with lowest AIC is the
2-state HMM with log DOPR as a covariate and thus it is
our preferred model. We investigate it below.

2-state HMM with log DOPR

The estimates from the model fit together with the respec-
tive 95% confidence intervals (lower and upper bounds)
obtained from the inverse Hessian are:

Parameter  Estimate = Lower bound  Upper bound
T 0.408 0.307 0.519
b1 0.797 0.620 0.905
B1,0 -64.727 -459.637 330.182
Bi1 -185.917 -1291.193 919.359
B2,0 -1.014 -2.735 0.709
Ba,1 -0.423 -1.209 0.349
51 0.363 0.117 0.711
32 0.637 0.289 0.883

The estimated parameters of the state-dependent distri-
butions (71 and 73) are in line with those of the baseline
model. Therefore we retain the labels given to the states in
the previous section. The probability of starting the ses-
sion in the dominantly cognitive state is estimated as being
almost twice as large the respective probability of starting
the session in the dominantly affective state.

The interpretation of the 8 coefficients is not straight-
forward. To gain insight of the influence of the log
DOPR on the latent process, we examine the transi-
tion probabilities and the stationary distribution for given
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values of the covariate (see [16]). Assuming that log DOPR
is fixed at a certain level for all observations, we treat
the HMM as homogeneous and stationary, i.e. it becomes
the baseline model. Then we can calculate the hypothet-
ical transition probabilities y12 and y»; from (4) and (5),
respectively. Varying the value at which we fix log DOPR
allows us to present y12 and y»; as functions of the log
DOPR.

For this part of the analysis we treat the estimated
parameters in the § matrix as the true ones. The results
are plotted in Fig. 3. Both probabilities indicate that as
the DOPR increases, the probability of switching into a
different state decreases. In that sense when the previ-
ous reassurance has taken a reasonable amount of time,
i.e. more than just a few seconds, the states become
very persistent - a finding that is in line with our anal-
ysis of the baseline model. The behaviour of the transi-
tion probability from state 1 to state 2 is quite abrupt,
which can be attributed to the large estimates of B0
and ,31,1.
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We advise caution when interpreting the influence of
log DOPR. The importance of this covariate, indicated by
the improvement in the AIC over the baseline model, is
not confirmed by the confidence intervals of 81, and S5 1,
which cover the zero.

We explain the large uncertainty around the estimated
parameters with the small sample size and the fact that
under the model there are few transitions. Next we look
at the results from the global decoding applied on the five
richest data sets (Fig. 1). The states are indeed quite per-
sistent - the clinicians spend a lot of time in the same state
but occasionally switches occur, especially after a short
reassurance. Some sessions, however, are entirely spent in
the same state.

Discussion

The use of reassurance in clinical communication has
been poorly studied in health care communication
research. Whereas there is a recognition of the impor-
tance of the clinician behaviour in response to a concern

1.0

0.8
I

Probability of a switch
0.4

0.2
I

0.0

log DOPR

Log Duration (in seconds)

Fig. 3 Transition probabilities as function of log DOPR. Dashed line gives y;; as a function of log DOPR, while the solid line gives y,; as a function of
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expressed by the patient as evidenced by inclusion in
behavioural coding schemes of Doctor:Patient consulta-
tions such the RIAS [17] and the VR-CoDES [8] systems,
there are few examples of in-depth description of the
behaviour. The formulation of dividing reassurance into
two discrete types labelled cognitive and affective has
led to investigation of the frequency of each of these
types in different conditions, patterns within consulta-
tions and the influence of each type on patient’s psycho-
logical, behavioural and health outcomes [4]. Our study
has focused on a detailed description of frequency and
patterning. Attempts to understand the effect of these
reassurance patterns on outcome are outside the scope of
our investigation.

From a descriptive viewpoint, it is clear that reassurance
giving is repeated many times over the course of these
review consultations of the patient with their therapeu-
tic radiographer. Previous work is limited on the effect
of the radiographer on their patient. An early report has
stated that the communication of the radiographer has an
important part to play in the experience of pain felt by the
patient with breast cancer [18]. This research report was
limited to the mammography assessment only and did not
incorporate direct observations. The evaluation relied on
questionnaire ratings given by the patient only. Our study
aimed at uncovering probabilistic patterns of reassurance
giving, allowing for the clinicians to go through different,
hidden behavioural states. This could be elegantly done
using the HMM approach.

HMMs have proved to be a useful tool in various fields
of science - finance, computational linguistics, statisti-
cal ecology, meteorology among others [19-22]. In this
paper we have demonstrated that health care communi-
cation and health psychology make no exception. In fact
[23] suggest that HMM could be used to model “the com-
plex structure of doctor patient consultation” but found
no applications in this field. In this paper we aimed to fill
in this gap.

Our analysis found indications for the existence of two
states in the clinicians’ behaviour. During sessions the
radiographers occasionally undergo changes in their incli-
nation to give cognitive and, respectively, affective reas-
surances. Note that the states in a Hidden Markov Model
are a mathematical construct, which may or may not have
a straightforward interpretation in the context of a partic-
ular study. We cautiously labelled the states “dominantly
affective” and “dominantly cognitive” Our interpretation
is that in a “dominantly affective” (“dominantly cognitive”)
state the clinician is more inclined to give an affective
(cognitive) reasurance. However, we insist that we do not
interpret the states as mental states or moods.

We explored the influence of covariates such as type
of patience response and (log) duration on the probabili-
ties of switches between the states, while at the same time

Page 8 of 10

accounting for the difference between the two clinicians in
the study (fixed effects). The model discrimination crite-
rion used in this study, the AIC, preferred the model with
the log duration. Including fixed effects and adding (fur-
ther) covariates brought improvements in the likelihood,
which however did not justify the increased number of
parameters.

An important insight from our best model is that for
reasonably long previous reassurances the states become
very persistent. The baseline model without covariates
also indicated persistency of the states. We can con-
clude that although clinicians occasionally change their
approach, there is not much flexibility. Data was one of
the main limitations of our approach. A collection of very
short data sets pose a challenge for time series models
such as HMMs. In particular, when the switches are not
many, the uncertainty around the estimated parameters
of the covariates is large. Longer time series, if possible,
would provide clearer answers as to the importance of the
covariates and would potentially strengthen the argument
for the existence of hidden states.

When fitting HMMs we assumed independence of the
different sessions. We argue that this is a justified assump-
tion because for each session the clinicians face a different
patient and have had time to “reset” from the previ-
ous patient. Moreover, only 40% of patients going to the
cancer centre were recorded - this makes 2 patients on
average in a 2-h consultation slot (5 patients per slot).
The chances of having back-to-back recorded sessions
are therefore quite low. Moreover, we want to emphasize
that the professionalism of the staff is excellent and even
with daily variation in personal motivation effects such as
tiredness and low mood would be very hard to identify in
their clinical manner.

The importance of this work clinically is to concentrate
attention of cancer care researchers on the importance
of sequencing of certain communication skills techniques
applied in routine delivery of treatment. Previous work
has concentrated on evaluating skills programme inter-
ventions through simple patient ratings and less on direct
observables [24]. A recent literature review has focused
on the psycho-social support offered by health profes-
sionals during radiation treatment who have direct daily
contact with patients [25]. It recommended explicit ques-
tioning by staff to elicit distress in patients especially
during the early sessions of treatment. One study has
designed specific workshop interventions for improve-
ment of radiation staff communication skills. One of the
components was the identification of emotional cues and
responding appropriately. An important skill taught in
these workshops (amongst other skills) was the avoidance
of simple reassurance [26]. The influence of this approach
still awaits evaluation and testing of reduced patient dis-
tress levels. Hence future work should concentrate on the



Popov et al. BMC Medical Research Methodology (2019) 19:11

observation of the technique of reassurance, the specific
type utilised, its sequence and ability to reduce distress in
patients undergoing, what is for many patients with breast
cancer, the last major primary curative treatment prior to
discharge and follow-up.

Conclusion

Our work is the first attempt to model the behaviour of a
small set of clinicians with patients undergoing radiother-
apy who express anxieties during their review appoint-
ments with their therapeutic radiographer. The important
feature of our results is twofold: first that we have been
able to apply a powerful statistical model to explain with
some success reassurance behaviour in routine appoint-
ments in a major cancer centre. Second we have found
that the type of reassurance behaviour (cognitive or affec-
tive) is not randomly exhibited but demonstrates a pattern
that may have implications for patient psychological out-
comes. Although somewhat preliminary we are enthusias-
tic about sharing this with the oncology community which
may regard reassurances as a straightforward clinical skill.
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