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Abstract

Background: The benefit of a given treatment can be evaluated via a randomized clinical trial design. However,
protocol deviations may severely compromise treatment effect since such deviations often lead to missing values. The
assumption that methods of analysis can account for the missing data cannot be justified and hence methods of
analysis based on plausible assumptions should be used. An alternative analysis to the simple imputation methods
requires unverifiable assumptions about the missing data. Therefore sensitivity analysis should be performed to
investigate the robustness of statistical inferences to alternative assumptions about the missing data.
Aims: In this paper, we investigate the effect of tuberculosis pericarditis treatment (prednisolone) on CD4 count
changes over time and draw inferences in the presence of missing data. The data come from a multicentre clinical trial
(the IMPI trial).
Methods: We investigate the effect of prednisolone on CD4 count changes by adjusting for baseline and
time-dependent covariates in the fitted model. To draw inferences in the presence of missing data, we investigate
sensitivity of statistical inferences to missing data assumptions using the pattern-mixture model with multiple
imputation (PM-MI) approach. We also performed simulation experiment to evaluate the performance of the
imputation approaches.
Results: Our results showed that the prednisolone treatment has no significant effect on CD4 count changes over
time and that the prednisolone treatment does not interact with time and anti-retroviral therapy (ART). Also, patients’
CD4 count levels significantly increase over the study period and patients on ART treatment have higher CD4 count
levels compared with those not on ART. The results also showed that older patients had lower CD4 count levels
compared with younger patients, and parameter estimates under the MAR assumption are robust to NMAR
assumptions.
Conclusions: Since the parameter estimates under the MAR analysis are robust to NMAR analyses, the process that
generated the missing data in the CD4 count measurements is missing at random (MAR). The implication is that valid
inferences can be obtained using either the likelihood-based methods or multiple imputation approaches.

Keywords: Likelihood-based methods, Missing at random, Multiple imputation, Not missing at random,
Pattern-mixture model, Protocol deviation, Sensitivity analysis

Background
The benefit of trial medication may be evaluated through
a randomized clinical trials design. Randomized clini-
cal trials with longitudinal follow-up are central to the
evaluation of treatments. However, statistical inferences
from the resulting analysis is almost always complicated
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because subjects might deviate from the protocol [1]. The
study protocol sets out the objective and procedure of
conducting the trial.
Given the trial setting and the specific question, such

deviations may include poor compliance with, or with-
drawal from the intervention; unblinding, either of inter-
vention or evaluation; and loss to follow-up, so that no
further information on the patient is available [1]. These
deviations complicate the analysis because (to address
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both primary and secondary questions), there is the need
to make assumptions about the unobserved data [1, 2].
These assumptions are often not verifiable. There is now
an increase in awareness that such assumptions have the
potential to introduce implicit ambiguity into the infer-
ences that can be drawn [1, 3, 4]. In addition, inappro-
priate assumptions about the unobserved data may lead
to biased estimates of the treatment effect. The extent
to which such inappropriate assumptions are practical
issues will depend both on the precise question, and on
how the extent and nature of deviations from the pro-
tocol affect this question [1]. Most often, regulators and
analysts will require some level of confidence that infer-
ences are robust to plausible departures from the pri-
mary assumptions that govern the main analysis. This
gives an indication that such inferences require sensitivity
analyses [1].
It is known that missing data may severely compro-

mise statistical inferences from clinical trials. However,
missing data has received little attention in the clinical-
trials research [5] and existing regulatory guidelines [6]
on design, conduct, and analysis of clinical trials have lim-
ited advice on how to handle missing data. The national
research council (NRC) report [3] outlined recommenda-
tions for handling missing data in clinical trials.
There is now increasing attention to the importance of

conducting sensitivity analysis in the biomedical research.
For instance, Section 7 of the new EMA guideline onmiss-
ing data in confirmatory clinical trials [7] is devoted to
this issue. It states “The sensitivity analyses should show
how different assumptions influence the results obtained.”
In addition, recommendation 15 of the NRC report [3]
recommended that “sensitivity analyses should be part
of the primary reporting of findings from clinical tri-
als. The sensitivity to the assumptions about the missing
data mechanism should be a mandatory component of
reporting.”
Sensitivity to missing data can be conducted based on

three modeling frameworks [8]. In the selection model-
ing (SeM) framework, the joint distribution of the mea-
surement and the dropout processes is factored as the
marginal distribution of the measurement process and
the conditional distribution of the dropout process, given
the measurements [8, 9]. The pattern-mixture model
(PMM) is a reverse factorization of the SeM defined
as the marginal distribution of the dropout process and
the conditional distribution of the measurement process
given the dropout process [2, 8]. For the shared-parameter
model (SPM), a set of latent variables (random effects) is
assumed to be shared between the measurement and the
dropout processes [8, 10]. It is conventionally assumed
that conditional on this set of random effects, no fur-
ther dependency exists between the measurement and
the dropout process, although this can be generalized

[11]. Yuan and Little [12] proposed mixed-effect hybrid
models (MEHMs) framework, where the joint distribution
of the measurement process and dropout process is fac-
torized into the marginal distribution of random effects,
the dropout process conditional on random effects, and
the outcome process conditional on dropout patterns and
random effects. Carpenter and colleagues [1] proposed
the pattern-mixturemodel withmultiple imputation (PM-
MI) approach in order to conduct sensitivity analysis.
Ratitch and colleagues [13] considered sensitivity analy-
sis approaches based on the pattern-mixture model, and
Mallinckrodt and colleagues [14] considered selection
model based approaches [9] and the PM-MI approach [1]
to conduct sensitivity analyses. Permutt and colleagues
[15] examined previous ideas of sensitivity analysis with
a view to explaining how the NRC panel’s recommenda-
tions are different and possibly better suited to coping
with present problems of missing data in the regulatory
setting. They also discussed, in more detail than the NRC
report, the relevance of sensitivity analysis to decision-
making, both for researchers and for regulators. In this
paper, we applied the PM-MI approach of Carpenter and
colleagues to investigate the effect of prednisolone treat-
ment on CD4 count changes over time and to investi-
gate sensitivity of inferences to missing data assumptions
[8, 16, 17] using the incomplete CD4 count data from the
IMPI trial [18, 19]. Carpenter and colleagues [1] applied
the PM-MI approach to longitudinal data but usedmodels
which assumed independent observations, i.e., they fitted
models to values at the last visit, whereas in the models in
this paper we considered CD4 count measurements at all
visits.
In “Description of the IMPI trial data” section, we

give a brief description of the IMPI trial data. In “Esti-
mands for primary and sensitivity analyses” section, we
define the estimands and their associated deviations as
well as some key assumptions relevant for the PM-MI
approach. In “Standard pattern-mixture model and the
pattern-mixture model with multiple imputation” section,
we briefly review the standard pattern-mixture model
and then discuss the pattern-mixture model with multi-
ple imputation (PM-MI) [1]. This is followed by a brief
discussion of the assumptions (sensitivity analysis) that
allow us to obtain missing post-deviation data under the
PM-MI approach in “Constructing joint distributions of
pre-deviation and post-deviation outcome data” section.
We then applied the PM-MI approach to the incomplete
CD4 count data from the IMPI trial in “Application of
the PM-MI approach to the IMPI trial CD4 count data”
section. In “Simulation study” section, we perform sim-
ulation studies to evaluate the performance of the PM-
MI approach. Finally, we give a discussion of the results
and concluding remarks in “Discussion and conclusion ’’
section.
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Description of the IMPI trial data
In this paper, we used data from the IMPI trial [18, 19].
The IMPI trial was a multicentre international random-
ized doubled-blind placebo-controlled 2 × 2 factorial
study. The IMPI trial tested prednisolone and Mycobac-
terium indicus pranii (M. indicus pranii) immunotherapy
treatments in TB pericarditis patients in Africa. TB peri-
carditis leads to high mortality especially in countries
with limited resource and with concomitant epidemics
of human immunodeficiency virus (HIV) infection
[18, 19]. Tuberculous pericarditis is associated with high
morbidity and mortality even if anti-tuberculosis treat-
ment is taken as directed [19]. A reduction in the strength
of the inflammatory response in TB pericarditis may
improve patients conditions by reducing cardiac tampon-
ade and pericardial constriction. However, whether the
use of adjunctive immunomodulation with corticosteroids
andM. indicus pranii can safely reducemortality andmor-
bidity is uncertain [19]. To investigate whether adjunctive
immunomodulation with corticosteroids and M. indicus
pranii can safely reduce mortality and morbidity, Mayosi
and colleagues set up the IMPI trial [18, 19].
In total, 1400 patients with definite probable tuber-

culosis pericardial effusion, from 9 African countries
in 19 centers were enrolled in the four-year trial. Eli-
gible patients were randomly assigned to receive oral
pill prednisolone for 6 weeks and M. indicus pranii
or placebo for 3 months. Patients were followed up at
weeks 2, 4, and 6 and months 3 and 6 during the inter-
vention period and 6-monthly thereafter for up to 4
years [18].
The main aim of the IMPI trial was to assess the effec-

tiveness and safety of oral pill prednisolone andM.w injec-
tion in reducing the time to first occurrence of the primary
composite outcome of death, pericardial constriction, or
cardiac tamponade requiring pericardial drainage in with
TB pericardial effusion [19]. In this paper, we assessed the
effect of trial medication (prednisolone) on CD4 count
changes over time. A large proportion of the TBP patients
were also co-infected with HIV (42%). Hence the inter-
est in investigating the effect of prednisolone among HIV
positive (denoted as HIV+) patients. We restricted our
analysis to HIV positive (denoted as HIV+) patients only
who have at least two CD4 count values observed. In
the IMPI trial, patients who were confirmed HIV+ at the
time of randomization or confirmed to be HIV+ dur-
ing the trial, were given a standard of care (ART) and
their CD4 count were measured at some visits. Mayosi
and colleagues [19] results showed that the oral pill pred-
nisolone and M. indicus pranii do not interact and hence,
treatments arms were analyzed separately with their cor-
responding placebo arms. Also, their results showed that
prednisolone reduces the risk of constriction whereas M.
indicus pranii was not effective. We considered analysis

of the CD4 count measurements under the prednisolone
treatment and its corresponding placebo arm only. The
analysis of CD4 count data is restricted to the mandated
periods for CD4 count measurements; baseline, week 2,
months 1, 3 and 6. However, most South Africa cen-
tres continued to measure CD4 count at months 24, 36
and 48 scheduled visit time. These data were excluded in
this analysis. A majority of patients had unobserved CD4
count with 72%, 84%, 93% as missingness proportions for
the months 24, 36 and 48, respectively.
In this paper, we applied the PM-MI approach to

non-monotone and monotone missing data patterns. For
non-monotone missing data pattern, patients can be
missing at any scheduled visit and then be observed at the
subsequent visit. For monotone missing data pattern, if
the ith patient is missing at schedule visit j, then this same
patient will be missing at the next scheduled visit j + 1.

Non-monotone data
Out of 587 HIV+ patients, 294 patients are in the placebo
arm and 293 patients are sin the prednisolone arm. Some
of the patients have missing values within the selected
scheduled visits. The left panel of Fig. 1 shows profiles
plots of the observed

√

CD4 count measurements for
each patient. Some of the patients CD4 count values are
missing at either months 0.5, 1, or 3, after the baseline
measurements are taken whereas some patients com-
pleted the study with their values observed from baseline
up to month 6. Because there are too many patients in
the left panel of the Fig. 1, the figure is not that informa-
tive. We have provided observed profiles plots of 29 (5%)
patients in Fig. 2 to make this panel more informative. It
can be observed from these plots that some patients com-
pleted the study (observed from baseline 0 to the month
6) while others have missing values (incomplete cases).
The right panel of the Fig. 1 shows the profiles plots of
the mean

√

CD4 count measurements by treatment arms.
The mean profile plots showed a slight reduction of CD4
count level among patients in the prednisolone arm com-
pared with those in the placebo arm. The Fig. 3 displays
standard error bars around the mean graph. These plots
show an overlap between confidence intervals which sug-
gests comparable ART benefit to patients in the placebo
and the prednisolone arms. There are 25 missingness
patterns, presented in Table 1. A missingness pattern rep-
resents time points for which a group of patients values
are missing or observed at all time points. The Table 1
shows the mean

√

CD4 count for each of the missingness
patterns at each visit by treatment arm. The proportion
of patients with missing values, in the prednisolone arm
(84%), is approximately the same to that of the patients in
the placebo arm (85%). Table 1 presents summaries of the
√

CD4 count data by treatment groups. The distribution
of the pattern of missingness between the two treatment
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Fig. 1 Profiles plots of the non-monotone
√
CD4 count data (left panel) and the mean

√
CD4 count (right panel), by placebo and prednisolone

treatment arms

groups does not differ (chi-squared test statistic =
29.97, p = 0.1858).

Monotone data
The monotone CD4 count data consisted of 137 HIV pos-
itive patients. 64 were in the placebo arm and 73 in the
prednisolone arm.
The left panel of Fig. 4 shows profiles plots of the

observed
√

CD4 count measurements for each HIV posi-
tive patient. Some of these patients dropped out at months
0.5, 1, and 3, after the baseline measurements are taken,
whereas some patients completed the study with their
values observed from baseline up to month 6. The right
panel of the Fig. 4 shows profiles plots of the mean

√

CD4
count measurements by treatment arms, where it can be
observed that there is a slight reduction of CD4 count
level for patients in the prednisolone arm compared with

those in the placebo arm. The Fig. 5 displays standard
error bars around the mean graph. These plots show
an overlap between confidence intervals which suggests
comparable ART benefit to patients in the placebo and the
prednisolone arms.
Table 2 gives the number and proportion of patients

remaining at each visit by treatment arm. There is higher
completion rate 44 (69%) in the placebo arm compared
with 46 (63%) completion rate in the prednisolone treat-
ment arm. There are four deviation patterns. A deviation
pattern represents the time point for which a group of
patients dropped out of the study. The deviation pat-
terns 4, 3, 2 and 1 represent completers (those patients
who completed the study without missing values), those
who dropped out at months 3, 1 and 0.5 respectively.
Table 3 shows the mean

√

CD4 count for each of the
deviation patterns at each visit by treatment arm. The

Fig. 2 Observed profiles plots of the non-monotone
√
CD4 count data for 29 (5%) patients, by placebo and prednisolone treatment arms
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Fig. 3Mean profiles plots with standard error bars of the non-monotone
√
CD4 count data by placebo and prednisolone treatment arms

proportion of patients deviating (who do not complete the
study) in the prednisolone arm (37%) is higher than the
portion deviating in the placebo arm (31%). The distri-
butions of the patterns of missingness between the two
treatment groups do not differ (chi-squared test statistic =
5.15, p = 0.161).
Figure 6 shows the profile plots of the mean

√

CD4
count of the four deviation patterns for patients in the
placebo and prednisolone groups. This figure gives an
indication that the

√

CD4 count increases over time.
Figure 6 agrees with those mean profiles in Figs. 1 and 4.
That is, there is slight increase in the

√

CD4 count among
patients in the placebo arm compare with those in pred-
nisolone arm.

Estimands for primary and sensitivity analyses
Since the focus of this paper is to draw statisti-
cal inferences in the presence of missing data, this
section discusses the de jure and de facto estimands
[1]. This discussion is necessary because our primary
analysis model is based on the de jure estimand, and
the sensitivity analysis models are based on the de
facto estimand [1]. The primary analysis (as speci-
fied in the statistical analysis plan) addresses the main
objective of the study, whereas the sensitivity anal-
ysis considers models the make alternative assump-
tions (trial protocol) that, in one way or the other,
may influence statistical inferences under the primary
analysis model. We discuss the de jure estimand in
“De jure estimand hypothesis” section and then the de
facto estimand in “De facto estimand hypothesis” section.
We will also discuss deviations associated with each esti-
mand in “Deviations associated with estimands” section.

De jure estimand hypothesis
The de jure estimand estimates the effect of treat-
ment on patients assuming that patients adhered to the
study protocol without deviating from the trial proto-
col [1, 14]. The de jure estimand hypothesis is analo-
gous to the MAR mechanism. This hypothesis assumes
that the conditional distribution of observations later in
the follow-up, given observations earlier in the follow-
up, is independent of whether deviation occurs. In this
case, patients are expected to obtain the full benefit of
the treatment and the question of interest is whether
the treatment works under the best case scenario. In
this study, the de jure primary analysis is based on the
multiple imputation under missing at random (MAR)
[8, 17, 20]. The primary analysis method to choose varies
from trial to trial. The guidelines on how to decide on
an appropriate primary analysis for a given trial can be
found in the NRC panel report [3] and many others
[14, 15].

De facto estimand hypothesis
The de facto estimand concerns what would be the effect
of treatment seen in practice if treatment were allocated
to the target population of eligible patients as defined by
the trial inclusion criteria. In addressing this question, we
may ask, what would have been the effect of treatment
seen at the end of the study if those who deviatedmoved to
the equivalent of the active treatment arm (prednisolone
treatment in this study). However, this may underestimate
the benefit of active treatment in trials where more bene-
fit is expected from the active treatment. This is because
estimand equates treatment benefit of those failing on
placebo arm to those opting for active treatment. In this
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Table 1 Non-monotone data: mean
√

CD4 count at each visit by treatment arm

Visit (month)

Missingness pattern[a] 0 0.5 1 3 6 N (%)

Placebo arm

1 13.14 13.47 13.62 16.24 17.09 44 (15)

2 12.58 13.70 14.76 17.01 - 9 (3)

3 16.90 17.68 20.27 - - 4 (1.4)

4 16.00 12.44 - - - 7 (2.4)

5 11.85 13.06 13.95 - 14.12 7 (2.4)

6 12.19 - - - 14.87 13 (4.4)

7 12.60 13.49 - 16.92 20.60 6 (2)

8 10.65 - - 13.09 14.90 15 (5)

9 - - - 15.59 17.33 4 (1.4)

10 13.17 - 14.29 16.92 17.19 90 (31)

11 - - 16.64 16.92 17.62 16 (5.4)

12 - 13.78 13.77 15.77 16.17 12 (4.1)

13 11.15 - 12.96 - 15.85 9 (3.1)

14 10.77 10.17 - 10.67 - 3 (1)

15 12.89 - 13.20 15.65 - 18 (6)

16 10.64 - - 13.44 - 5 (1.7)

17 13.61 - 12.46 - - 10 (3.4)

18 - 11.33 13.65 17.70 - 4 (1.4)

19 - 13.36 - 14.98 16.76 8 (2.7)

20 - - - - - 0 (0)

21 - - - - - 0 (0)

22 - - 13.00 16.31 - 6 (2)

23 - - 14.64 - 15.62 3 (1)

24 - 18.19 - 14.04 - 1 (0.3)

25 - 18.03 19.52 - 15.36 1 (0.3)

All patients mean (std) 12.86 (0.361) 13.45 (0.533) 14.18 (0.368) 16.17 (0.349) 16.77 (0.334) 294 (100)

Prednisolone arm

1 13.18 15.52 14.70 16.76 16.822 46 (16)

2 19.89 19.27 19.51 21.17 - 5 (2)

3 9.04 12.26 12.49 - - 12 (4.1)

4 11.64 11.43 - - - 10 (3.4)

5 2.83 3.61 3.32 - 4.47 1 (0.3)

6 9.62 - - - 14.15 11 (4)

7 13.84 16.89 - 18.47 18.12 4 (1.4)

8 11.06 - - 14.57 14.29 28 (10)

9 - - - 19.10 19.57 5 (2)

10 12.42 - 13.03 15.83 16.09 76 (26)

11 - - 11.85 16.16 15.82755 13 (4.4)

12 - 12.27 13.99 15.88 15.66 14 (5)

13 9.07 - 9.26 - 15.92 12 (4.1)

14 - - - - - 0 (0)

15 12.52 - 13.21 15.54 - 14 (5)
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Table 1 Non-monotone data: mean
√

CD4 count at each visit by treatment arm (Continued)

Visit (month)

Missingness pattern[a] 0 0.5 1 3 6 N (%)

16 14.12 - - 15.73 - 9 (3.1)

17 8.12 - 10.74 - - 13 (4.4)

18 - 14.35 14.73 16.00 - 2 (0.7)

19 - 17.10 - 20.95 21.59 4 (1.4)

20 - 15.07 13.10 - - 3 (1)

21 - 10.21 - - 10.80 2 (0.7)

22 - - 15.07 16.78 - 3 (1)

23 - - 13.09 - 9.32 3 (1)

24 - 18.19 - 14.04 - 1 (0.3)

25 - 8.35 8.20 - 13.36 2 (0.7)

All patients mean (std) 11.89 (0.333) 106, 14.27 (0.575) 219, 13.12 (0.397) 224, 16.20 (0.344) 221, 15.86 (0.348) 293 (100)
aMissingness patterns: 1 = CD4 count data at all visits, 2 = CD4 count data at all visits except 6, 3 = CD4 count data at all visits except 6 and 3, 4 = CD4 count data at all visits
except 6, 3, and 1, 5 = CD4 count data at all visits except visit 3, 6 = CD4 count data at baseline and visit 6 etc

instance, the fairer comparison might be to move those
who deviate from the prednisolone arm onto the placebo
arm. In the case of the IMPI trial, since all patients in
both prednisolone and placebo arms were given ART,
we expect no significant difference in their response to
ART treatment unless there is interaction between pred-
nisolone and ART treatment.
We discuss four de facto options for obtaining post-

deviation data in “Constructing joint distributions of
pre-deviation and post-deviation outcome data” section.
These options make assumptions about the missing post-
deviation data. These assumptions are alternative
plausible assumptions, which depart from the MAR

assumption under the primary analysis. In this way, it is
assumed that the data are not missing at random (NMAR)
and we assess the robustness of inferences under the
MAR primary analysis to the alternative assumptions
under the de facto options (sensitivity analyses).

Deviations associated with estimands
It is important to define clearly deviations associated with
each estimand in the study protocol. This is because clar-
ity of deviations associated with each estimand is vital
for primary analysis and framing relevant sensitivity anal-
ysis [1]. The exact definition of a deviation will depend
on the trial setting and may also vary between separate

Fig. 4 Profiles plots of the monotone
√
CD4 count data (left panel) and the mean

√
CD4 count (right panel), by placebo and prednisolone

treatment arms
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Fig. 5Mean profiles plots with standard error bars of the monotone
√
CD4 count data by placebo and prednisolone treatment arms

analyses [1]. In the IMPI trial, the following situations
can be regarded as deviations associated with the de
jure estimand: unblinding of treatment arms and unob-
served CD4 count measurements and deviations asso-
ciated with the de facto estimand are unblinding such
as treatment allocation, loss to follow-up such that no
further treatment is taken and influence if trial pred-
nisolone treatment on ART.
Given the estimands and their associated deviations,

it is assumed that each patient has longitudinal follow-
up data until either the patient deviates or reaches the
final visit, and that the nature or reason of each devi-
ation is known. This approach further assumes that for
each deviation or group of similar deviations occurring
in a dataset due to similar reasons, an appropriate post-
deviation distribution can be built taking into consider-
ation (1) the patient’s pre-deviations, (2) pre-deviations
and post-deviations data from other patients in the trial,
(3) the nature of the deviation, (4) and the reason for the
deviation [1].

Table 2 Percentage of patients remaining in the study at each
visit

Placebo Prednisolone

Month N (%) N (%)

0 64 (100) 73 (100)

0.5 64 (100) 73 (100)

1 57 (88) 63 (86)

3 53 (83) 51 (70)

6 44 (69) 46 (63)

Standard pattern-mixturemodel and the
pattern-mixture model withmultiple imputation
It this section, we give a brief review of the stan-
dard pattern-mixture model (PMM) and then discuss the
pattern-mixture model with multiple imputation (PM-
MI) of Carpenter and colleagues. In “Link between the
pattern-mixture model and the pattern-mixture model
with multiple imputation” section, we give the link
between these approaches.

Standard pattern-mixture model
We have mentioned in the “Background” section that
the pattern-mixture modeling framework is a reverse
factorization of the selection model [2, 8, 9, 21]. The
selection model can be viewed as a multivariate model
where one variable represents marginal density of the
measurements process and the other variable repre-
sents the conditional density of the missingness pro-
cess, given the outcomes. The PMM approach, on the
other hand, is defined as a model for the product
of the conditional distribution of the responses Yi for
patient i, i = 1, 2, . . . ,N , given non-response patterns
Ri and the model for non-response Ri. [10, 22, 23];
that is

Pr (Yi,Ri ∣ Xi,θθθ ,ψψψ) = Pr (Yi ∣ Xi,Ri,θθθ)
× Pr (Ri ∣ Xi,ψψψ) ,

(1)

where Ri = 1 if response is observed and 0 otherwise,Xi is
design matrix of covariates, θθθ and ψψψ represent parameter
estimates in the measurement model and dropout model
respectively.
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Table 3 Monotone data: mean
√

CD4 count at each visit by dropout pattern and treatment arm

Dropout time (months)

Dropout pattern[a] 0 0.5 1 3 6 N (%)

Placebo arm

4 13.14 13.47 13.62 16.24 17.09 44 (69)

3 12.58 13.702 14.76 17.01 - 9 (14)

2 16.90 17.68 20.27 - - 4 (6)

1 15.98 12.44 - - - 7 (11)

All patients mean (std) 13.61 (5.84) 13.65 (4.97) 14.26 (5.32) 16.37 (4.85) 17.09 (5.14) 64 (100)

Prednisolone arm

4 13.18 15.52 14.70 16.76 16.82 46 (63)

3 19.89 19.27 19.51 21.17 - 5 (7)

2 9.04 12.26 12.49 - - 12 (16)

1 11.64 11.43 - - - 10 (14)

All patients mean (std) 12.75 (5.10) 14.68 (5.71) 14.66 (5.84) 17.19 (4.80) 16.82 (4.72) 73 (100)
aDropout patterns: 4 = subjects who had all measurements up to 6 months (completers), 3 = subjects who had measurements up to 3 months, 2 = subjects who had
measurements up to 1 month, and 1 = subjects who had measurements up to 2 weeks

The PMM has desirable properties especially where
the data are NMAR (probability that a response will
be missing depends on the Ri and Yi). For instance,
where it is not substantively reasonable to consider non-
responses as missing data, it may be desirable to limit
the inferences to the subpopulation of patients whose
responses are observed. Thus, it is more meaningful to
consider the distribution of Yi given Ri = 1 (Ri = 1
if subject is observed and 0 otherwise) rather than
the marginal distribution of Yij [8]. Contrary to the
selection model, Pr (Ym

i ∣ Y
o
i ,Xi,Ri) is modeled directly

from the pattern-mixture model, where Yo
i is a vector of

observed responses and Ym
i is a vector of the missing

responses.
One important feature of the pattern-mixture model

(1) is that it fits a different response model for each
pattern of missingness such that the observed data is a
mixture of patterns weighted by their respective prob-
abilities of missing patterns. That is, the first compo-
nent in the PMM (1), Pr (Yi ∣ Xi,Ri,θθθ) fits a response
model for each pattern of missingness and Pr (Ri ∣ Xi,ψψψ)
represents dropout probability for each pattern. It fol-
lows that if there are U number of missingness patterns
in a data set, then the marginal distribution of Yi is a

Fig. 6 Profile plots of the mean of the
√
CD4 count for each deviation pattern under the placebo arm (left panel) and the active arm (right panel).

Blue pattern: group of patients who completed the study (completers), brown pattern: group of patients who dropped out after month 3, green
pattern: group of patients who dropped out after month 1 and yellow pattern: group of patients who dropped out after week 2
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mixture of Pr (Yi ∣ Xi,θθθ) =
U
∑

u=1
Pr (Yi ∣ Ri = Ru

i ,Xi,θθθu)πu,

where πu = Pr (Ri = u ∣ Xi,ψψψ) and Ri counts the num-
ber of U patterns, θθθu represents the parameters of
marginal density Pr (Yi) in the uth pattern. It can be
observed that in the pattern-mixture model, parame-
ters {θθθ1, . . . ,θθθU} can have different dimensions. A logis-
tic model is often assumed for dropout probabilities
and a linear mixed effect model (LMM) [24] for the
measurement process.
The linear mixed effects model (LMM) [24] is assumed

for the measurement process and is given by

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

Yi = Xiβββ + Zibi + εεεi,
bi ∼ N (000,Gi(ρρρ)) ,
εεεi ∼ N (000,Ri(σσσ)) ,
bi � εεεi,

(2)

where bi is an q-dimensional vector of random effects,
Zi and Xi are N × q and N × q dimensional matrices of
known covariates, βββ is a p-dimensional vector containing
the fixed effects, εεεi is an N-dimensional vector of resid-
ual components, Gi(ρρρ) and Ri(σσσ) are q × q and ni × ni
covariance matrices respectively and σσσ and ρρρ are c×1 and
s × 1 (with s ≤ ni(ni + 1)/2) vectors of unknown variance
parameters corresponding to εεεi and bi respectively.
The pattern-mixture model (1) is well understood

using the second MAR assumption. The second MAR
assumption states that observations that would have been
recorded for a patient in the future, given that the
observed history of such patient has the same statistical
behavior. This feature of the pattern-mixturemodelmakes
it possible for multiple imputation to provide a practical
approach to estimation and inferences. In addition, this
feature provides a framework for the formulation of the
pattern-mixture model with multiple imputation [1].

Pattern-mixture model with multiple imputation
methodology
In this section, we describe the pattern-mixture model
withmultiple imputation (PM-MI) methodology [1]. Con-
sider a randomized clinical trial with two treatment arms
and predictors of continuous response Yi (Yij) for each
patient. Let the Yij be the measurements of the ith patient
at the jth occasion in each treatment arm Ti, where j = 0
represents baseline measurements in each treatment arm
and j = ni denotes the last observation time prior to a devi-
ation for the ith patient. It is then assumed that all patients
were observed at baseline. Let (1) Yo

i = (Yi0, . . . ,Yini)
′

denotes a vector of the ith patient’s observed responses
at each scheduled visit from j = 0, . . . ,ni, (2) Ym

i =

(Yini+1, . . . ,Yin)
′ denote a vector of the ith patient’s miss-

ing post-deviation responses at scheduled visits time from
j = ni + 1, . . . ,n, where n is the last schedule visit, (3)

Ym
= (Ym′

1 , . . . ,Ym′
N )
′

denotes a column vector of the ith

patient’s missing post-deviation responses profile, and (4)
Yo
= (Yo′

1 , . . . ,Y
o′
N)
′

denotes a column vector of the ith

patient’s observed responses profile. It follows that the dis-
tribution of each patient’s post-deviation responses Ym

i ,
given each patient’s pre-deviation responses Yo

i and the
deviation time ni, is defined by

Pr (Ym
i ∣ Y

o
i ,ni,Ti,θθθ) , (3)

where Ti denotes binary treatment arm (for patient in
either the prednisolone or placebo treated arm). The
parameter vector θθθ has to be estimated before we can
impute missing post-deviation data by drawing from con-
ditional distribution (3).

Link between the pattern-mixture model and the
pattern-mixture model with multiple imputation
If post-deviation data are assumed to be MAR (that is,
the probability that the responses are missing depends on
the observed data), the distribution (3) is independent of
the deviation time ni. Hence the distribution (3) can be
written as

Pr (Ym
i ∣ Y

o
i ,Ti,θθθ) . (4)

Under such assumption, the direct maximum likelihood
estimation [8, 25] or the multiple imputation under MAR
can be used to obtain valid inference [8, 17, 26]. How-
ever, if data are NMAR, the distribution (3) depends on
the deviation the time ni in a manner that could be dif-
ferent for each patient. This feature of the distribution
(3) is analogous to the standard pattern-mixture model
(1), where response model is fitted for each pattern of
missingness such that the observed data is a mixture
of patterns weighted by their respective probabilities of
missingness.
It follows that for each patient or group of patients, a

specific form of the conditional distribution (3) is defined
to reflect a specific assumption appropriate to their treat-
ment arm Ti, deviation time ni and other relevant infor-
mation or covariates. Given this information, multiple
imputation is used for imputing missing post-deviation
data from Eq. 3 to create complete data sets. Thereafter,
estimation and inference is then performed by fitting a
standard method of analysis (which is a methods of analy-
sis that yields valid inferences without missing data) to the
complete data sets [16, 17]. Thus, for inferences about θθθ in
the presence of deviations, multiple imputation is used to
create K “completed” data sets.
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To obtain post-deviation data from the distribution (3),
Carpenter and colleagues [1] suggested the following.
Step A: Assume a multivariate normal for the observed

data Yo.
Step B: Draw samples of the parameter estimates of βββ

and Ri from the Bayesian posterior distribution defined
as Pr (βββ′,ααα′ ∣ Yo

), where βββ is a vector of the means and
ααα′ = (σσσ ′,ρρρ′) ′ is a parameter vector of the variance com-
ponents in the measurement model. The Markov chain
Monte Carlo (MCMC) method is used to draw samples of
βββ and ααα from this posterior.
Step C: Update the Markov chain sufficiently after each

draw in order to avoid correlation between draws in each
of the parameter estimates βββ and ααα.
Step D: After each draw of βββ and ααα for each patient

who deviates before the end of the trial, βββ and ααα are
used to build the joint distribution of such patient’s
pre-deviation and post-deviation data. We discuss dif-
ferent options for building this joint distribution in
“Constructing joint distributions of pre-deviation and
post-deviation outcome data” section.
Step E: The joint model in Step D is then

used to build the conditional distribution of each
patient’s missing post-deviation data, given the pre-
deviation data (3). The missing post-deviation data
in the conditional distribution (3) are obtained
using the parameter estimates βββ and ααα obtained
from Step D.
Step F: Repeat StepsB-EK times to createK “complete”

data sets. Thereafter, any method of analysis that yields
valid inferences in the absence of missing data can then be
applied to the complete data sets.
Carpenter and colleagues [1] considered the treatment

benefit at the last schedule visit where they fitted a lin-
ear regression model that assumed that observations are
independent. This paper considers the treatment bene-
fit over time and hence the linear mixed effect model
[24] is assumed for the measurement process. This model
is then fitted to each of the K imputed data sets. This
analysis produced K statistics for the parameter esti-
mates βββ and ααα. Estimates from each of the K completed
data set were then combined to produce single esti-
mates with their associated standard errors using the
Rubin’s rule [17].

Constructing joint distributions of pre-deviation
and post-deviation outcome data
In this section, we discuss the four de facto options for
obtaining the missing post-deviation data [1]. These
options make alternative and plausible assumptions
about the missing data such that the de facto (NMAR
sensitivity analysis) assumptions depart from the de
jure (MAR primary) assumption about the missing
data. These assumptions assess whether inferences

under such MAR primary analysis assumption are
sensitive to the alternative plausible assumptions
under NMAR sensitivity analysis. In this way, we
will be able to assess whether the process that gener-
ated the missing CD4 count data is MAR or NMAR
mechanism. This distinction is necessary because the
type of missing data mechanism has implications for
both the analysis and interpretations of the results
[27]. We also discuss how to choose reference arm
(“Choosing the reference arm” section) and the
implications of the de facto options under the IMPI trial in
“De facto options under the IMPI trial” section.
Carpenter and colleagues proposed the following

options for constructing the joint distribution of each
patient’s pre- and post-deviation outcome data where each
option represents a possible de jure or de facto assumption
concerning post-deviation data. These assumptions differ
in the ways in which unavailable information for deviated
patient are borrowed, or estimated, from other groups of
patients in the same trial [1]. Here two treatment arms,
placebo and active (prednisolone in our study), are con-
sidered and one of these arms is chosen as a reference
arm such that unavailable information for deviated patient
can be “borrowed” from such reference arm. The refer-
ence arm could be either the placebo or the active arm
depending the hypothesis to address. In this study, we in
turn used each arm as reference arm just to explore how
treatment effect is affected under such considerations.
Here, we refer to the arm not chosen as reference as the
other arm.
A: Jump to reference (J2R): Under this assumption,

after a patient stops taking treatment from the random-
ized arm, such patient’s mean response distribution is
now considered to be the same us of the “reference”
group of patients. Typically, such a patient will take treat-
ment from the control or placebo arm. However, such
a patient may not necessarily take treatment from the
placebo arm (but assumes to take treatment from the
randomized arm after dropout) since the choice of the
reference arm may depends on trial setting. In a trial
where more benefit is expected in the active arm, such
a change may be seen as extreme, and choosing the ref-
erence group to be the placebo group may be viewed as
a worst-case scenario in terms of reducing any treatment
benefit, since withdrawn patients on active will lose the
effect of their period on treatment. In this study, the post-
deviation data in the reference arm are imputed under
randomized-armMAR.
B:Copy difference in reference (CDR): Under this de facto

option, after the patient deviates, it is assumed that the
patient’s post-deviationmean increments copy those from
the reference arm. For instance, if the placebo arm is cho-
sen as the reference arm, the patient’s mean profile after
deviation tracks that of the mean profile in the placebo
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arm, but starting from the benefit already obtained from
the active arm.
C: Last mean carried forward (LMCF): Under the

LMCF, it is assumed that after deviation, the patient’s
post-deviation means equal that of the marginal mean of
the randomized treatment arm.
D: Copy reference (CR): The “copy reference” de fact

option assumes that a patient’s whole distribution, both
pre-deviation and post-deviation data, is the same as
reference arm.
Whereas the above assumptions for constructing post

deviation data have been proven to be practical and per-
mit relevant, accessible assumptions for framing primary
and sensitivity analyses, the PM-MI approach depends
on the relevance of the assumptions about missing
post-deviation data in relation to the context of the
trial at hand [1]. In this study, we apply the PM-MI
approach in the context of the IMPI trial setting (see
“Choosing the reference arm” and “De facto options under
the IMPI trial” sections).

Choosing the reference arm
For the “jump to reference”, “copy reference” and “copy
increment in reference” de facto options, we discuss the
implications for the choice of the reference arm. In the
IMPI trial, it could be either the placebo or the pred-
nisolone arm. This is because we expect similar statistical
behavior for patients in either arm. Suppose that one
wishes to address the de facto question corresponding to
the assumption that after post-deviation (CD4 count mea-
surements are unobserved), (1) patients on the placebo
arm obtain a treatment equivalent to the active (pred-
nisolone) arm, and (2) the prednisolone-treated patients
continue on treatment and adhered to the study protocol,
so that their post-deviation data can be imputed assum-
ing randomized-arm MAR. In such a case, we specify the
prednisolone arm as a reference. In the IMPI trial, HIV+
patients in either placebo or prednisolone arm were given
ART and thus patients with their CD4 count unobserved
are expected to have equivalent treatment benefit com-
pared with those patients with their CD4 count observed
unless prednisolone treatment influences ART treatment.
Since we hypothesized that patients’ response to ART
treatment in both the placebo and the prednisolone arms
are comparable, we also present results where the placebo
arm is used as a “reference”. Thus dropouts in the pred-
nisolone arms obtain treatment equivalent to the placebo
arm so that their post-deviation data (unobserved CD4
count measurement) can be imputed under randomized-
arm MAR. This latter assumption might be appropri-
ate where no alternative treatment is generally available
or where patients in both arms receive treatment but
responses were unobserved (in the case of the IMPI trial
IMPI trial).

De facto options under the IMPI trial
A simple interpretation of the PM-MI approach is that
within the same trial, the PM-MI approach is used to “bor-
row” or estimate unavailable information from a group
of patients for another group of patients who have their
information missing. As we have stated earlier, in the
IMPI trial setting, HIV+ patients in both the active treat-
ment (prednisolone) arm and the placebo treatment arm
were given ART, and hence we expect similar benefit
of ART treatment unless prednisolone treatment inter-
acts with the ART treatment. One research question to
address in the IMPI trial is whether the prednisolone
treatment interacts with the ART treatment. If they do
interact, patients’ response to ART treatment from the
active arm and the placebo arm will be different, other-
wise they would be comparable. Also in the IMPI trial,
missing CD4 count for patients were unobserved due to
inadequate resources but not necessarily that the patient
dropped out before the end period of the trial. In other
words, CD4 count measurements were missing at some
scheduled visits mostly due to administrative reason and
missingness would have been generated by a random pro-
cess. In fact, only 6% of the patients dropped out (genuine
dropout) in the IMPI trial. This means that most of the
patients do not dropout from the study but their CD4
count values could not be measured due to inadequate
resources. Thus, patients who CD4 count are unobserved,
are expected to have similar CD4 count levels to those
whowere observed. Out of a total number of 294HIV pos-
itive patients in the placebo arm, approximately 78% were
already on ART at the time of randomization and out of
a total number of 293 HIV positive patients in the pred-
nisolone arm, approximately 80% were already on ART at
baseline.
For the de facto question, since we do not expect sig-

nificant different in treatment effect between patients
with their CD4 count observed and those with their
CD4 count unobserved, the jump to reference and
the copy reference options are the most plausible
options for assessing sensitivity of inferences to MAR
assumption.
The CD4 count data introduced in “Description of the

IMPI trial data” section, are analyzed under de jure MAR
and de facto NMAR assumptions. In the measurement
model (2), we included an intercept, and assumed as fixed
effects the following covariates: prednisolone (which takes
the value of 1 for subjects randomized to prednisolone
and 0 if the subject was randomized to placebo), time
(months), age, whether on ART or not at each scheduled
visit (1 if the subject received ART, and 0 if subject did
not receive ART), and interactions between prednisolone
and time, and prednisolone and ART. Age and time were
continuous variables. Our fitted linear mixed model is
defined as
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√

CD4ij =β0 + β1 × prednisolonei + β2 ×monthj
+ β3 × prednisolone ×monthij + β4 ×ARTij

+ β5 × prednisolone ×ARTij + β6 ×Agei
+ bi + εij,

(5)

where
√

CD4ij is the square root of CD4 count for ith

patient at the jth visit, for i = 1, . . . ,N and j = 1, . . . ,ni,
bi represents the patient-specific random effect, and εij is
the residual error. It is assumed that bi and εij are inde-
pendently distributed as bi ∼ N (0,σ 2

b ) and εij ∼ N (0,σ 2
ε )

respectively.

Application of the PM-MI approach to the IMPI trial
CD4 count data
In this section, we applied the PM-MI approach to the
incomplete CD4 count data. We implemented the PM-MI
approach using STATAmimix package developed by Cro
of London School of Hygiene and Tropical Medicine
(LHTM), UK. This package imputes missing continuous
outcomes for a longitudinal trial with protocol deviations
under distinct reference groups based assumptions for the
unobserved data, following the procedure proposed by
Carpenter and colleagues [1].
To address the de jure hypothesis, we performed multi-

ple imputation for the unobserved CD4 count underMAR
mechanism using the ice package in STATA [28]. We also
impute post-deviation under LMCF, J2R, CDR and CR
de facto options to obtain a complete data sets. The lin-
ear mixed effect model (5) was then fitted to each of the
completed data sets and parameter estimates combined
to produce parameter estimates with their corresponding
standard errors using the Rubin’s rule [17, 28].

Monotone data
This section presents the PM-MI analyses of the mono-
tone CD4 count data. We consider the jump to reference
option for illustration purpose and Fig. 7 shows profiles
plots of the mean

√

CD4 count measurements for the
complete data sets, for each deviation pattern, by placebo
arm (Treatment = 0) andprednisolonearm (Treatment = 1).
The left panel of the Fig. 7 shows complete data profiles
of the placebo reference arm with missing post-deviation
values obtained underMARwhereas the right panel of the
Fig. 7 shows complete data profiles of the prednisolone
arm patients with missing post-deviation data “borrowed”
from the placebo arm (left panel of the Fig. 7). We in turn
used the prednisolone arm as a reference where the com-
plete data profiles are shown in Fig. 8. The right panel
of the Fig. 8 shows complete data profiles of the pred-
nisolone reference armwith missing post-deviation values
obtained under MAR whereas the left panel of the Fig. 8

shows complete data profiles of the placebo arm patients
with missing post-deviation data obtained from the pred-
nisolone arm (right panel of the Fig. 8). It can be observed
that treatment seems to reduce CD4 count a little, and
so imputed data for placebo under MAR are above those
when the placebo patient jumps to the prednisolone arm.
Hence, we investigate the significance of such reduction
in the CD4 count level by using the parameter estimates
associated with the prednisolone-ART interaction (see
Table 4). Similar plots for LMCF, CDR and CR can be
found in Appendix A. After imputation of the missing
post-deviation data under LMCF, J2R, CDR and CR, we
fit a linear mixed effect model (5) to the completed data
sets and combine the parameter estimates from each data
set using the Rubin’s rule to produce parameter estimates
with their associated standard errors for the final infer-
ences. The parameter estimates from these analyses are
shown in Table 4.
Table 4 shows inferences from the MAR primary anal-

ysis (MI), which addresses the de jure hypothesis, are
robust to the difference assumptions under the NMAR
sensitivity analyses under de facto estimand hypothesis
(LMCF, J2R, CR, and CDR). This result thus serves as
a justification that the mechanism that generated the
missing data in the CD4 count measurements from the
IMPI trial is missing at random (MAR) mechanism.
The implication of this justification is that the direct max-
imum likelihood and multiplication methods under MAR
can be used to provide valid inferences when assess-
ing the effect of prednisolone and ART treatments on
changes in CD4 count level among different treatment
groups. The results show that there is no significant
prednisolone effect. The effect of prednisolone-ART is
also not significant. This confirmed our hypothesis that
prednisolone treatment does not influence ART treat-
ment. However, there seem to be a slight reduction
of CD4 count level in the prednisolone arm. Patients’
CD4 count levels increased significantly with time and
patients who are permanently on ART have significantly
higher CD4 count levels relative to those who are not
ever on ART treatment. The prednisolone-time interac-
tion results show a very slight increase in CD4 count
level in the placebo arm compared with prednisolone
arm over time. However, this increase is not signifi-
cant. The near-zero estimates of the prednisolone-time
interaction effect suggest that there is no difference in
prednisolone effect in both arms over time. This means
that the effect of treatments in both arms does not dif-
fer significantly over time. The results also show that
older patients are more likely to have lower CD4 count,
hence CD4 count significantly decrease with increasing
age. These results agree with the mean

√

CD4 count pro-
files plots in Figs. 1 and 4. This is because CD4 count in
both the prednisolone and placebo arms increases at the
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Fig. 7 Placebo reference arm (Treatment = 0): Profile plots of the mean
√
CD4 count against month for the four different deviation patterns. The

solid lines join the observed means (before deviation) and the dotted lines join the means of the imputed data for that pattern. Pattern 4: group of
patients who completed the study (completers), Pattern 3: group of patients who dropped out after month 3, Pattern 2: group of patients who
dropped out after month 1 and Pattern 1: group of patients who dropped out after week 2

same rate (no significant prednisolone effect and pred-
nisolone does not influence ART treatment) and CD4
count increases with increasing time where this increase,
in both arms, is the same over time (no prednisolone-time
effect).

Combinedmonotone and non-monotone data
This section presents the PM-MI analyses of the com-
bined monotone and non-monotone data. Parameter
estimates of these analyses are shown in Table 5. The
results of these analyses agree with the results under the
Table 4. These results also give an indication that the
MAR primary analysis (MI), which addresses the de jure

hypothesis, are robust to the difference assumptions by
and the NMAR sensitivity analyses under de facto esti-
mand hypothesis (LMCF, J2R, CR, and CDR). These anal-
yses show that the mechanism that generated the missing
data in the CD4 count measurements from the IMPI trial
is missing at random (MAR) mechanism. This means
that the direct maximum likelihood and multiplication
methods under MAR can be used to provide valid infer-
ences when assessing the effect of prednisolone and ART
treatments on changes in CD4 count level among different
treatment groups.
It can be observed from these analyses that there

is no significant prednisolone effect and the effect of

Fig. 8 Prednisolone reference arm (Treatment = 1): Profile plots of the mean
√
CD4 count against month for the four different deviation patterns.

The solid lines join the observed means (before deviation) and the dotted lines join the means of the imputed data for that pattern. Pattern 4: group
of patients who completed the study (completers), Pattern 3: group of patients who dropped out after month 3, Pattern 2: group of patients who
dropped out after month 1 and Pattern 1: group of patients who dropped out after week 2
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prednisolone-ART is also not significant. This implies
that prednisolone treatment does not influence ART
treatment. We also found a reduction of CD4 count
level in the prednisolone arm. However, this reduction
is not significant. As expected, patients’ CD4 count lev-
els significantly increase with increasing time and patients
who are on ART at each schedule visit time have signifi-
cantly higher CD4 count levels relative to those who are
not on ART treatment at each schedule visit. The near
zero estimates of the prednisolone-time interaction effect
suggest that there is no difference in prednisolone effect
in both arms over time. This means that the effect of
treatments in both arms does not differ significantly over
time. The results also show that older patients are more
likely to have lower CD4 values, hence CD4 count signif-
icantly decrease with increasing age. These results agree
with the mean

√

CD4 count profiles plots in Figs. 1 and 4.
This is because CD4 count in both the prednisolone and
placebo arms increases at the same rate (no significant
prednisolone effect and prednisolone does not influence
ART treatment) and CD4 count increases with increasing
time where this increase, in both arms, is the same over
time (no prednisolone-time effect).

Simulation study
In this section we performed simulation experiments to
evaluate the performance of the PM-MI approach. We
performed a simulation experiment to evaluate the per-
formance of the de facto hypothesis against the usual MI
method for imputation of missing data and likelihood
based method (ML). These methods (MI and ML) are
known to provide valid inference when missing values are
missing at random (MAR) [8, 17].
The simulated datasets were generated using the R soft-

ware. The R code for the simulation experiment is avail-
able from the first author upon request. The simulation
experiment was performed according to the linear mixed
effect model defined by

Yij =β0 + β1 × treatmenti + β2 × timej
+ β3 × treatment × timeij + bi + εij.

The initial values for β0,β1,β2, and β3 are 13, 0.75,
0.11, -0.19, 0.20 respectively. The initial value for standard
deviation σ of the random effect bi is 4.57. In generat-
ing these data sets, we assumed that (1) the measurement
at the first time point (j = 0) from the original data set
is completely observed, (2) the data are MCAR or MAR
mechanism, (3) the missing pattern is monotone, and (4)
there are different dropout rates. We considered the fol-
lowing two steps for generating the data sets. We called
these steps, M-step and D-step. We generated the longi-
tudinal measurements under the M-step and under the

D-step, we then generated data according to MAR and
MCAR mechanisms.
M-step: We generated five-repeated measurements for

each patient by a random number from amultivariate nor-
mal distribution. We used parameter estimates obtained
from fitting a linear mixed effect model to the data. We
repeated these processes 1000 times for 200 patients.
Patients were randomly assigned to two treatment (treat-
ment and placebo) arms in a ratio 1:1.
D-step: We generated missing data according to MCAR

and MAR mechanisms. Missing data were generated
through a logistic regression model. However, generat-
ing MCAR and MAR missing mechanisms involves two
different assumptions for the dropout mechanism. For
MAR, missing data were generated by dropping obser-
vations according to a logistic regression model relat-
ing the probability of dropout at particular time point
with changes from baseline to previous time point. For
MCAR, missing data were randomly generated by drop-
ping observations according to a logistic regressionmodel.
Specific values for the logistic regression were chosen in
order to yield the desire dropout rates in a given missing
data mechanism. Under each of the missing data mech-
anisms, we generate overall dropout rates at 5%, 20%,
30, and then 50%. Thereafter, we perform analyses using
ML, MI, LMCF, J2R, CDR and CR approaches and then
assess the performance of these methods in estimating
treatment effect.
The results from the simulation study under MCAR

and MAR mechanisms are shown in Appendix B. The
MCAR results are shown in Table 6 and the MAR results
are presented in Table 7. Under the MCAR mechanism,
it can be observed that all the methods produced unbi-
ased parameter estimates under the different missingness
rates. The root mean square error (RMSE) estimates of
prednisolone effect, produced by each methods under the
different missingness rates, are often higher compared
with the time and treatment-time interaction effects.
Most of the methods yielded unbiased estimates of treat-
ment effect and this may imply that the process that
generated the missing data is likely to be random. The
simulation results under the MAR mechanism revealed
that each of the methods yielded unbiased estimates
for prednisolone effect under the missingness rates with
less unbiased estimates for treatment effects when the
missingness rates are 5%, 20% and 50%. All the meth-
ods yielded unbiased estimate of time effect under the
different missingness rates. When missingness rate was
assumed to be 50%, the LMCF and the CDR methods
yielded less unbiased estimates of time effect. Each of
the methods showed no bias for treatment-time interac-
tion slope when the missingness rates were assumed to be
5%, 10% and 30% and bias for treatment-time interaction
slope when missingness rate was assumed to be 50% and
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20%. However, ML and MI, yielded unbiased estimates
for treatment-time interaction. These results suggested
that the four de facto assumptions proposed by Carpen-
ter and colleagues [1] are suitable for handling the missing
data in the IMPI clinical trial and other trials with similar
settings.

Discussion and conclusion
In this paper, we investigated the effect of TB pericardi-
tis treatment (prednisolone) on CD4 count changes over
time. We also conducted sensitivity analysis to investigate
sensitivity of statistical inferences underMAR analysis (de
jure option) to alternative plausible assumptions under
NMAR (de facto option) using the PM-MI approach [1].
These principles and methods quantify the robustness
of inferences to departures from the primary analysis
assumptions. We recognized that this case study cannot
cover the broad range of types and designs of clinical
trials. This is because the literature on sensitivity anal-
ysis is evolving. The primary objective of this paper is
to assert the importance of conducting some form of
sensitivity analysis and to illustrate principles in the IMPI
trial setting.
The study results show that inferences under the de

jure (MAR primary analysis) assumption are robust to
the inferences under the de facto (NMAR sensitivity
analysis) assumptions. This finding gives an indication
that the mechanism that generated the missing values
in the CD4 count measurements from the IMPI trial
is likely to be missing at random (MAR). The implica-
tions are that (1) the observed data are random sample
from the population patients with TB pericarditis and (2)
either the direct maximum likelihood (ML) approach or
the multiple imputation approach, under the assumption
that the data are MAR, can be used to produce valid
inferences.
The investigation of sensitivity of statistical inferences

to missing data is important and use of such methods
must be encouraged. This is because, such sensitivity anal-
ysis provides additional information to readers of a clinical
report to be able to interpret the results. This means
that clinical reports should describe the primary and
the sensitivity analyses to non-statisticians. This requires
that assumptions about missing data are articulated in
a transparent manner so that researchers and practic-
ing clinicians can assess their validity under the study
at hand [1]. Carpenter and colleagues [1] encourage the
need for such sensitivity analysis stating that “assump-
tions need to be assessable, so that in the context of
the trial at hand all stakeholders can understand whether
they are plausible. Then, departures from these assump-
tions also need to be relevant in the context of the trial
at hand, so that stakeholders can see if they require
investigation.” When data are missing, it is possible that

readers of a clinical report may doubt its conclusions
unless the conclusions are supported with sensitivity
analysis.
Our study results from both the combined monotone,

and the non-monotone and monotone showed that there
is no significant prednisolone effect in all the analyses.
The prednisolone-time interaction results show a very
slight reduction in CD4 count level among the patients
in the prednisolone arm compared with placebo arm
over time. However, this reduction is not significant. As
expected, there is a significant time effect indicating that
CD4 count level increases with increasing time. Patients
who are on ART treatment, at each scheduled visit, are
likely to have significantly higher CD4 count levels com-
pared with those who are not always on ART at each visit
time. The results also show that older patients are more
likely to have a lower CD4 count level. Also, there is no
prednisolone-ART interaction effect in all the analyses.
However, the prednisolone effects under the combined
monotone and non-monotone analyses are negatives
because the overall reduction in the CD4 count lev-
els among patients in the prednisolone arm is more
pronounced than that of the patients in the placebo
arm (see Fig. 1). On the contrary, the treatment
effects under the non-monotone analyses are positives
because the overall reduction in the CD4 count lev-
els among patients in the prednisolone arm is less
pronounced than that of the patients in the placebo
arm (see Fig. 4).
The IMPI trial was a cardiology trial and HIV-related

data were collected. However, the HIV data were not col-
lected as would have be in a HIV focused clinical trial, and
hence there are missing CD4 count. Despite the fact that
the IMPI trial is a cardiology trial, our analyses of the HIV
data provide reasonable information regarding the effect
of prednisolone on CD4 count changes over time.
In the IMPI trial prednisolone effect was not significant,

and hence patients CD4 count levels in the treatments
arms are comparable. If the prednisolone effect was signif-
icant, CD4 count levels for patients in the treatment arms
would have been different.
The missingness of CD4 values might be informative,

and hence later values of CD4 count might be missing
because patients died. This would require joint modeling
on the CD4 count and time to death.

Appendix A
This section presents the complete profile plots of CDR,
CR, and LMCF de facto hypotheses.

Appendix B
This section presents simulation results under MCAR
andMARmechanisms with varying missingness rates 5%,
10%, 20%, 30%, and 50% in Tables 6 and 7 respectively.
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Fig. 9 Copy increment from reference (CDR): placebo arm (top left panel) used as reference to impute data for the active arm (top right panel).
Active arm (bottom right panel) used as reference to impute data for the placebo arm (bottom left panel)

Fig. 10 Copy to reference (CR): placebo arm (top left panel) used as reference to impute data for the active arm (top right panel). Active arm
(bottom right panel) used as reference to impute data for the placebo arm (bottom left panel)
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Fig. 11 Last mean carried forward (LMCF): placebo arm (top left panel) used as reference to impute data for the active arm (top right panel). Active
arm (bottom right panel) used as reference to impute data for the placebo arm (bottom left panel)
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Table 6 MCAR mechanism by missingness rate

Missingness rates Treatment Time Treatment x Time Coverage probability

5% Analysis Bias RMSE Bias RMSE Bias RMSE Treatment Time Treatment x Time

ML -0.063 0.127 -0.005 0.015 0.028 0.033 94.10% 96.40% 93.50%

MI -0.0602 0.127 0.001 0.020 0.021 0.031 95.50% 94.10% 95.80%

LMCF -0.079 0.137 -0.049 0.051 0.032 0.039 93.50% 95.00% 95.60%

J2R (P-) -0.100 0.149 -0.006 0.016 0.050 0.054 92.70% 95.40% 94.30%

CDR (P-) -0.090 0.141 -0.006 0.016 0.040 0.046 93.10% 95.30% 94.20%

CR (P-) -0.095 0.146 -0.006 0.016 0.045 0.050 92.20% 95.30% 94.80%

10%

ML 0.112 0.157 -0.017 0,022 0.028 0.035 89.50% 94.50% 95.00%

MI 0.112 0.158 -0.018 0.024 0.030 0.040 90.50% 95.50% 95.00%

LMCF 0.095 0.150 -0.103 0.104 0.040 0.046 92.50% 87.50% 95.50%

J2R (P-) 0.072 0.133 -0.015 0.020 0.054 0.058 94.5% 87.50% 94.50%

CDR (P-) 0.088 0.143 -0.015 0.020 0.046 0.051 92.50% 86.50% 96.00%

CR (P-) 0.078 0.136 -0.015 0.020 0.052 0.057 93.50% 88.50% 95.50%

20%

ML -0.032 0.12 -0.0024 0.017 0.024 0.034 95.00% 94.50% 95.00%

MI -0.042 0.124 -0.005 0.022 0.033 0.045 94.50% 95.50% 95.00%

LMCF -0.099 0.154 -0.183 0.183 0.078 0.083 93.50% 90.50% % 94.50%

J2R (P-) -0.122 0.164 0.0002 0.016 0.092 0.100 89.50% 95.00% 94.50%

CDR (P-) -0.074 0.134 0.0002 0.016 0.057 0.063 95.50% 95.00% 93.50%

CR (P-) -0.099 0.149 0.0002 0.016 0.073 0.075 94.50% 95.00% 94.50%

30%

ML -0.092 0.149 -0.052 0.055 0.043 0.051 94.30% 94.50% 95.10%

MI -0.050 136 -0.030 0.039 0.005 0.037 94.40% 95.20% 95.80%

LMCF -0.136 0.184 -0.279 0.280 0.081 0.086 89.10% 85.70% 90.20%

J2R (P-) -0.220 0.252 -0.059 0.062 0.138 0.141 85.20% 94.50% 87.40%

CDR (P-) -0.160 0.200 -0.059 0.062 0.094 0.098 90.50% 94.10% 95.30%

CR (P-) -0.197 0.216 -0.059 0.062 0.109 0.112 90.90% 93.20% 92.70%

50%

ML 0.036 0.123 0.0004 0.022 0.009 0.033 96.60% 95.30% 95.40%

MI 0.039 0.136 -0.006 0.031 0.026 0.051 95.30% 95.10% 94.60%

LMCF -0.045 0.129 -0.360 0.360 0.084 0.088 94.30% 89.10% 95.40%

J2R (P-) -0.112 0.159 0.0004 0.023 0.127 0.130 89.50% 95.10% 90.60%

CDR (P-) -0.045 0.121 0.0004 0.023 0.088 0.089 94.70% 95.20% 93.40%

CR (P-) -0.087 0.142 0.0004 0.023 0.112 0. 115 91.20% 95.20% 89.50%
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Table 7 MAR mechanism by missing rate

Missingness rates Treatment Time Treatment x Time Coverage probability

5% Analysis Bias RMSE Bias RMSE Bias RMSE Treatment Time Treatment x Time

ML -0.153 0.189 -0.0112 0.018 0.009 0.022 87.50% 95.30% 95.10%

MI -0.155 0.191 -0.008 0.017 0.004 0.022 86.90% 95.50% 94.50%

LMCF -0.155 0.190 -0.033 0.036 0.011 0.023 85.90% 95.10% 95.30%

J2R (P-) -0.172 0.205 -0.012 0.019 0.023 0.031 82.50% 94.90% 95.20%

CDR (P-) -0.160 0.195 -0.012 0.019 0.015 0.025 87.30% 95.10% 94.50%

CR (P-) -0.165 0.199 -0.012 0.018 0.019 0. 027 83.70% 94.30% 95.50%

10%

ML 0.062 0.125 0.003 0.015 0.011 0.024 94.50% 95.10% 94.20%

MI 0.059 0.125 -0.007 0.017 0.016 0.030 94.20% 95.10% 94.30%

LMCF 0.031 0.11 -0.087 0.088 0.034 0.040 95.10% 93.30% 95.20%

J2R (P-) 0.013 0.110 -0.004 0.016 0.044 0.050 94.50% 95.20% 96.60%

CDR (P-) 0.036 0.115 -0.004 0.016 0.032 0.040 95.69% 95.90% 95.20%

CR (P-) 0.022 0.111 -0.004 0.016 0.040 0. 045 95.30% 95.10% 95.60%

20%

ML -0.043 0.012 -0.0061 0.018 0.009 0.025 94.10% 94.50% 95.30%

MI -0.036 0.125 -0.013 0.026 0.013 0.033 95.00% 94.50% 95.30%

LMCF -0.127 0.175 -0.180 0.180 0.066 0.070 87.90% 84.40% 94.50%

J2R (P-) -0.131 0.177 -0.002 0.017 0.078 0.083 86.80% 95.30% 95.10%

CDR (P-) -0.102 0.155 -0.002 0.017 0.054 0.059 85.30% 96.10% 95.50%

CR (P-) -0.115 0.163 -0.002 0.017 0.063 0. 067 89.60% 95.10% 95.40%

30%

ML 0.062 0.125 0.003 0.015 0.011 0.024 94.50% 95.40% 96.30%

MI 0.059 0.125 -0.007 0.017 0.016 0.030 95.10% 94.50% 96.20%

LMCF 0.031 0.11 -0.087 0.088 0.034 0.040 94.30% 95.50% 94.70%

J2R (P-) 0.013 0.110 -0.004 0.016 0.044 0.050 94.50% 96.10% 95.90%

CDR (P-) 0.036 0.115 -0.004 0.016 0.032 0.040 95.10% 94.30% 95.50%

CR (P-) 0.022 0.111 -0.004 0.016 0.040 0.045 94.50% 95.60% 96.20%

50%

ML 0.153 0.193 0.055 0.059 -0.071 0.077 87.80% 94.50% 96.10%

MI 0.144 0.195 0.050 0.059 -0.063 0.077 86.30% 95.40% 96.10%

LMCF 0.066 0.143 0.374 0.374 0.090 0.094 93.10% 67.80% 92.50%

J2R (P-) 0.142 0.185 0.054 0.060 0.122 0.125 87.70% 96.10% 89.50%

CDR (P-) -0.039 0.124 0.054 0.060 0.056 0.061 95.50% 94.80% 96.40%

CR (P-) -0.102 0.156 0.54 0.060 0.095 0.098 93.10% 92.70% 95.40%
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