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Abstract

Background: At the diabetic clinic of Jimma University Specialized Hospital, health professionals provide regular
follow-up to help people with diabetes live long and relatively healthy lives. Based on patient condition, they also
provide interventions in the form of counselling to promote a healthy diet and physical activity and prescribing
medicines. The main purpose of this study is to estimate the rate of change of fasting blood sugar (FBS) profile
experienced by patients over time. The change may help to assess the effectiveness of interventions taken by the
clinic to regulate FBS level, where rates of change close to zero over time may indicate the interventions are good
regulating the level.

Methods: In the analysis of longitudinal data, the mean profile is often estimated by parametric linear mixed effects
model. However, the individual and mean profile plots of FBS level for diabetic patients are nonlinear and imposing
parametric models may be too restrictive and yield unsatisfactory results. We propose a semi-parametric mixed
model, in particular using spline smoothing to efficiently analyze a longitudinal measured fasting blood sugar level of
adult diabetic patients accounting for correlation between observations through random effects.

Results: The semi-parametric mixedmodels had better fit than the linear mixedmodels for various variance structures
of subject-specific random effects. The study revealed that the rate of change in FBS level in diabetic patients, due to
the clinic interventions, does not continue as a steady pace but changes with time and weight of patients.

Conclusions: The proposed method can help a physician in clinical monitoring of diabetic patients and to assess the
effect of intervention packages, such as healthy diet, physical activity and prescribed medicines, because
individualized curve may be obtained to follow patient-specific FBS level trends.
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Background
Diabetes mellitus is a metabolic disorder of multiple eti-
ology characterized by chronic hyperglycaemia with dis-
turbances of carbohydrate, fat and protein metabolism
resulting from defects in insulin secretion, insulin resis-
tance, or both [1]. The long-term effects of untreated
diabetes mellitus might results in health complications,
such as visual disability and nerve disease [2–5], among
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others. A person is considered to be diabetic if he or she
has fasting blood sugar (FBS) level value of greater than or
equal to 7.0 mmol/L (126 mg/dL) or 2-h blood sugar level
of greater than or equal to 11.1 mmol/L (200 mg/dL) or
glycated hemoglobin (HbA1) level of 6.5% or higher [6].
There are three main types of diabetes, namely type

1 diabetes, type 2 diabetes and gestational diabetes. The
type 1 diabetes is caused by an auto-immune reaction,
in which the patient body defense system attacks the
insulin producing beta cells in the pancreas and hence
the body can no longer produce the insulin it needs.
Whereas in type 2 diabetes, the body is able to produce
insulin, however it becomes resistant so that the insulin
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is ineffective. The type 2 diabetes is characterized by high
levels of blood sugar or glucose resulting from defects
in insulin production, insulin action, or both. The gesta-
tional diabetes is a form of diabetes that appears during
pregnancy. It can lead to serious health risks for both the
mother and child [7]. The risk factors that are associated
with type 1 diabetes include family history of diabetes
(diabetes history in one parent or both), infections and
other environmental influences such as exposure to a
viral illness, the presence of damaging immune system
cells, i.e. autoantibodies and dietary factors low vitamin D
consumption [8]. Whereas, for type 2 diabetes the risk
factors are excess body weight, physical inactivity, poor
nutrition, family history of diabetes, past history of ges-
tational diabetes and older age [9]. The risk factors for
increase or decrease in fasting blood sugar level of a
patient include overweight, family history of diabetes,
age, type of diabetes, blood pressure and gender [7]. The
focus of this study however is on type 1 and type 2
diabetes.
In year 2015, there were an estimated 415 million

adults aged 20–79 years living with diabetes worldwide
[10], including 193 million who are undiagnosed. There
were approximately 5 million people estimated to have
died from diabetes worldwide in the same year, and a
majority of these were the result of cardiovascular com-
plications. In Africa Region, the number of adults liv-
ing with diabetes estimated at 14.2 million whereas in
Ethiopia the number is estimated 1 to 10 million in year
2015. The Region has the highest proportion of undi-
agnosed diabetes, 9.5 million (about 66.7%) of people
with diabetes are unaware they have the disease and
in Ethiopia there are 500 thousand to 5 million such
cases [11, 12].
At the diabetic clinic of Jimma University Spe-

cialized Hospital (JUSH), health professionals pro-
vide regular follow-up to help people with diabetes
live long and relatively healthy lives. Depending on
patients conditions, e.g. FBS level, they also provide
interventions in the form of counselling to promote
a healthy diet and physical activity and prescribing
medicines.
The main objective of the current study is to assess

the factors that affect the FBS level of adult dia-
betic patients. In addition to assessing the factors that
affect the FBS level over time, we are also interested
to estimate the rate of change of FBS profile expe-
rienced by patients over time. The change may help
to assess the effectiveness of interventions taken by
the clinic to regulate FBS level, where rates of change
close to zero over time may indicate the interventions
are good regulating the level. These changes are deter-
mined using first derivatives of penalized regression
splines [13, 14].

The FBS level data of diabetic patients in this study are
collected repeatedly over time hence the data have lon-
gitudinal time series profiles and the data also have con-
tinuous nature. For statistical inferences, therefore, it is
necessary to capture properly the form of the evolution of
profiles over time. In the analysis of longitudinal data, the
mean profile is often estimated by parametric linearmixed
effects model, for instance recently Mehari [15] analyzed
the FBS level profiles of diabetic patients using paramet-
ric linear mixed effects model. However, the individual
and mean profile plots of FBS level for diabetic patients
(see Fig. 1) are nonlinear and imposing parametric mod-
els may be too restrictive and yield unsatisfactory results.
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Fig. 1 (a) individual profile and (b) mean profile plots for FBS level of
diabetes patients in JUSH, September 2011 - June 2014
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In the present paper, we propose a semi-parametric
mixed model in particular using spline smoothing
[16, 17] to efficiently analyze a longitudinal measured fast-
ing blood sugar level of adult diabetic patients account-
ing for correlation between observations through random
effects. The model assumes that the mean of FBS level
is an arbitrary smooth function of time and paramet-
ric functions of other covariates. The link between
mixed model and smoothing provides a flexible frame-
work for estimating the patient profiles in a data driven
way [13].
The rest of the paper is organized as follows. The

data, some basic review of variance-covariance structure
of the parametric linear mixed model, semi-parametric
mixed models and inferences related them are intro-
duced in “Methodology” section. The results from apply-
ing these methods on the the study data are discussed in
“Results” section. Finally discussion, and conclusions and
pointers for future study are given in “Discussion” and
“Conclusion” sections respectively.

Methodology
Study data
The fasting blood sugar (FBS) level data used in this paper
arises from a retrospective study conducted in JimmaUni-
versity Specialized Hospital (JUSH) diabetic clinic. The
hospital is located in Jimma town 352 km to the Southwest
of Addis Ababa, the capital of Ethiopia. It is a teaching
hospital and gives service to the southwestern part of Oro-
mia region, some part of southern nations and nationali-
ties and Gamella regions of Ethiopia. All diabetic patients
aged 18 years or older, who were coming to JUSH diabetic
clinic for their regular follow up during periods Septem-
ber 2011 and June 2014 were eligible for this study. During
their follow up, patients FBS level along with other charac-
teristics such as weight are measured and recorded in the
individual follow up chart. The data in the chart include
time (measured in months, where baseline or initial date
was given a value 0), patient gender, age, type of diabetes
( Type 1 diabetes or Type 2 diabetes) and family diabetes
history. The duration between initial and the last recorded
visits ranged from one to 36 months. Patients with at least
two observations were included in the analyses leading
to a total of 534 patients and 4390 observations. Permis-
sion of the study was obtained from Postgraduate research
office of Jimma University, College of Natural Sciences
and JUSH.

Variance-covariance structures and inference
Variance-covariance structures
The FBS level data of this study fall within the framework
of continuous longitudinal data and hence can be mod-
eled by use of a parametric linear mixed model. Let Yij
denote the FBS level of the ith patient observed at time

tij, i = 1, . . . , n and j = 1, . . .mi. The parametric linear
mixed model can be expressed as

Yij =
p∑

k=0
βk tkij +

L∑

l=1
θl xijl +

q∑

u=0
bui tuij + εij. (1)

That is, the population level mean response is mod-
eled as a polynomial function of time, tij, a linear func-
tion of covariates xijl, l = 1, . . . , p where some of them
may be time-varying covariates or interaction effects each
has corresponding regression parameter coefficient θl, a
function of subject-specific random coefficient terms and
measurement error εij. The coefficients βk , k = 1, . . . , p
and θl, l = 1, . . . , L are fixed effect parameters and bui ,
u = 0, . . . , q are subject-specific random coefficients.
It is assumed that bui ∼ N

(
0, σ 2

bu

)
, εij ∼ N

(
0, σ 2

e
)
,

cov
(
bui , bui′

) = σbub′
u and cov

(
bui , εij

) = 0. We have
examined models for p = 2 which represents quadratic
polynomial and bui with u = 0, 1, 2 represent a subject-
specific random intercept, slope and quadratic coeffi-
cients, respectively for selection of a variance-covariance
structure (see Table 1). The variance profile plot of FBS
level shows (for the sake of brevity this plot is not
reported) the variance changes overtime, therefore to
allow for more flexibility to estimate between subject
variability we have considered the above three variance-
covariance structures.
In Table 1, for instance the subject-specific random

intercept b0i in the quadratic random effects model (M3)
is considered to capture correlation of the FBS level mea-
surements over time within the patient and it is assumed
that subject-specific random slopes for linear as well as
for quadratic time effects to capture different evolution
of FBS level over time. Note that these subject-specific
random structures are different for each patient.

Table 1 Linear mixedmodels for selection of variance-covariance
structure for FBS level, JUSH, September 2011 - June 2014

Subject-
specific
random
effect

Linear mixed model

M1: Random
intercept

Yij = β0 + β1 tij + β2 t2ij + ∑L
l=1 θl xijl + b0i + εij

M2: Linear
random
effects

Yij = β0 + β1 tij + β2 t2ij + ∑L
l=1 θl xijl + b0i + b1i tij + εij

M3:
Quadratic
random
effects

Yij =β0+β1 tij+β2 t2ij +
∑L

l=1 θl xijl+b0i +b1i tij+b2i t
2
ij +εij
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Tests for zero variance components
Adequate variance-covariance structure is essential to
obtain valid model based inferences for the fixed effects
or for parameters in the mean structure of the model
[18]. Over-parametrization of the variance-covariance
structure leads to inefficient estimation and potentially
poor assessment of standard errors for the estimation
of the mean structure, i.e. fixed effects, whereas a too
restrictive specification invalidates inferences about the
mean response profile when the assumed structure does
not hold.
The likelihood ratio test for testing, for example H0 :

σ 2
b0 = 0 versus H1 : σ 2

b0 > 0 for model M1, has an
asymptotic 0.5χ2

0 + 0.5χ2
1 mixture distribution under H0

[19], if the vector of FBS level can be divided into a large
number of independent and identically distributed sub-
vectors both under H0 and H1. However, this assumption
usually does not hold, for example in linear mixed mod-
els or for unbalanced data [20–22]. Note that the FBS
level data are unbalanced in the sense that all patients
do not have equal number of measurements, hence the
independent and identically distributed assumption can
be violated in the linear mixed models used in this paper.
Therefore, we used the exact finite sample null distribu-
tion of the restricted likelihood ratio test (RLRT) statistic
derived by Crainiceanu and Ruppert [22] to test a zero
random effect variance in M1. However, since models M2
andM3 contain more than one random effect, the tests for
a zero random effect variance in these models were done
using the exact finite sample null distribution of the RLRT
statistic derived by Greven et al. [21].

Semi-parametric mixed effects model
Given the mean profile plots over time in Fig. 1b, impos-
ing parametric functions to describe the mean FBS level
evolution may not be easy and also too restrictive [17]. As
an alternative, we can model the mean profiles over time
with a semi-parametric smooth function, f (tij). Using the
pth degree truncated power basis, f (tij) can be written as

f
(
tij

) = β0+β1 tij+β2 t2ij+. . .+βp t
p
ij+

K∑

l=1
bl

(
tij − κl

)p
+ ,

(2)

here z+ = max{0, z}. The function f
(
tij

)
is a combi-

nation of fixed effects parameters β0,β1, . . . ,βp and pth
degree splines evaluated at time tij with knots at distinct
locations κ1, κ2, . . . , κK in the range of tij and correspond-
ing coefficients b1, b2, . . . , bK . The function f

(
tij

)
can be

estimated among others, with penalized splines. The coef-
ficients of spline basis functions bl are assumed to follow
a Gaussian distribution such that bl ∼ N

(
0, σ 2

b
)
, where

σ 2
b is a variance component controlling the smoothness of

f
(
tij

)
. Then, incorporating f

(
tij

)
in model (1), the general

semi-parametric mixed effects model can be expressed as

Yij = f
(
tij

) +
L∑

l=1
θl xijl +

q∑

u=0
bui tuij + εij. (3)

Estimation of parameters
Let yi = (

yi1, yi2, . . . , yimi

)′ be the mi × 1 vector of
responses for the ith patient, i = 1, . . . , n. Under the linear
mixed model formulation, model (3) with subject-specific
quadratic random effects can be expressed succinctly in
matrix form as

yi = Xi β + Zi(f) v + Zi(u) ui + ei (4)

where β = (
β0,β1, . . . ,βp, θ1, . . . , θL

)′ is a (p+ L+ 1) × 1
vector of fixed effects which is common to the n individ-
uals, Xi is an mi × (p + L + 1) design matrix associating
β to yi, v = (b1, b2, . . . , bK ) is a K-dimensional vec-
tor of random coefficients in the summand in Eq. (2),
Zi(f ) is the mi × K matrix for the pth-degree spline basis
functions, ui = (

b0i , b1i , b2i
)′ is subject-specific vector of

random effects, Zi(u) is an mi × 3 design matrix which
relates ui to the response yi and ei = (

e1i, e2i, . . . , eimi

)′

is an mi-dimensional vector of within-individual errors.
Furthermore, it is assumed that v ∼ N

(
0, σ 2

b IK
)
, ui ∼

N (0,G), ei ∼ N (0,Ri), v, ui and ei are assumed to
be pairwise independent with and between subjects for
i = 1, 2, . . . , n. Note that G and Ri are 3 × 3 and mi × mi
variance-covariance matrices, respectively.
The overall model for n individuals has the form

y = Xβ + Zb + e

where

y =

⎛

⎜⎜⎜⎝

y1
y2
...
yn

⎞

⎟⎟⎟⎠ X =

⎛

⎜⎜⎜⎝

X1
X2
...
Xn

⎞

⎟⎟⎟⎠ ,

Xi =

⎛

⎜⎜⎜⎝

1 ti1 t2i1 . . . tpi1 xi11 . . . xi1L
1 ti2 t2i2 . . . tpi2 xi21 . . . xi2L
...

...
...

. . .
...

...
. . .

...
1 timi t2imi

. . . tpimi
ximi1 . . . ximiL

⎞

⎟⎟⎟⎠ ,

Z =

⎛

⎜⎜⎜⎝

Z1(f ) Z1(u) 0 . . . 0
Z2(f ) 0 Z1(u) . . . 0
...

...
...

. . .
...

Zn(f ) 0 0 . . . Zn(u)

⎞

⎟⎟⎟⎠ ,

Zi(u) =

⎛

⎜⎜⎜⎝

1 ti1 t2i1
1 ti2 t2i2
...

...
...

1 timi t2imi

⎞

⎟⎟⎟⎠ ,
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Zi(f ) =

⎛

⎜⎜⎜⎝

(ti1 − κ1)
p
+ (ti1 − κ2)

p
+ . . . (ti1 − κK )

p
+

(ti2 − κ1)
p
+ (ti2 − κ2)

p
+ . . . (ti2 − κK )

p
+

...
...

. . .
...

(timi − κ1)
p
+ (timi − κ2)

p
+ . . . (timi − κK )

p
+

⎞

⎟⎟⎟⎠ ,

e =

⎛

⎜⎜⎜⎝

e1
e2
...
en

⎞

⎟⎟⎟⎠

and b = (b1, b2, . . . , bk , b01 , b11 , b21 , . . . , b0n , b1n , b2n)′ .
Estimation of the coefficients of penalized and unpe-
nalized terms in model (4) was done using a penalized
iteratively reweighted least squares (P-IRLS) based on 20
equidistant knots in the range of FBS level and a smooth-
ing parameter selection was done by REML [23].
The correspondence between the penalized spline

smoother and the optimal predictor in a mixed model
framework enables us to take advantage of the exist-
ing methodology for mixed model analysis and the use
of mixed model software, such as the function gamm in
mgcv R package, for fitting the penalized spline model
and the MIXED and GLIMMIX procedures in SAS [24].
This implementation of penalized smoothing in the lin-
ear mixed model framework also provides an automated
approach to obtain a smoothing parameter and flexibility
to extend the models [17].
In this paper, parameters in the fitted models are esti-

mated by restricted maximum likelihood (REML) method
because the statistical hypotheses that were considered
have the same mean structures between models under the
null and alternative hypotheses. Furthermore, maximum
likelihood estimators of variance components are biased
downward as they do not take into account the degrees
of freedom lost in the estimation of fixed effects (e.g. see
Ruppert et al. [16]).

Model selection and inference
The model building process of this work includes selec-
tion of suitable variance-covariance structure for random
effects, testing whether the inclusion of spline effects in
the parametric model improves model fit or not and also
selection of covariates. The linear mixed model frame-
work provides a unified approach to do all these [25].
In the parametric cases, the best fitting model can be
selected by employing a commonly used selection crite-
ria, Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) or by a likelihood ratio test.
However, since the semi-parametric mixed models that
we considered here are differ in both the fixed effects
and the nonparametric part, model selection is done
via adjusted Akaike’s information criterion, abbreviated
AICadj, using the effective number of parameters in the
model [16, 26]. Let C = [X Zf ] be the design matrix

with appropriate fixed effects components and the cor-

responding smoothing matrix, B =
(
0 0
0 G−1

)
where G

is the variance-covariance matrix of random effects used
in the model and R = diag{R1,R2, . . . ,Rn}, i.e. R is the
block diagonal variance-covariance matrix of error terms
with blocks Ri on the main diagonal and zeros elsewhere.
Then the effective number of parameters and AICadj may
be computed as

Ep = trace
{(
C′ R−1 C

)−1 C′ R−1 C
}

and AICadj = −2 log(Lik) + 2Ep, respectively. Unlike
the marginal AIC which penalizes only for the number
of parameters in fixed effects vector and variance com-
ponents, the penalty of AICadj takes into account the
additional parameters introduced into a model via f

(
tij

)

or smoothing by including the design matrix Zf in C [17].
Like the marginal AIC, the smaller the AICadj value, the
better the model.
Testing whether the inclusion of spline effects in the

parametric model improves model fit or not is equiva-
lent to testing H0 : σ 2

b = 0 versus H1 : σ 2
b > 0.

In this paper, due to the second objective of the study,
a quadratic penalized spline was added in Eq. (1),
therefore neither of the two methods discussed in
“Variance-covariance structures and inference” section
can be used to test H0 : σ 2

b = 0 [27] instead an approx-
imate F-test of Hastie and Tibshi [28] was applied. For
Hastie and Tibshi approximate F-test, residual degrees of
freedom for the null and alternative model fits are used in
the place of the number of parameters in each model.

Rate of change over time and simultaneous confidence
bands
The change in smoothing function f (t) overtime, for
selected semi-parametric mixed model, can be estimated
by taking the derivative of f (t) with respect to time t. For
example, let f (t) be a quadratic penalized spline, that is

f (t) = β0 + β1 t + β2 t2 +
K∑

l=1
bl

(
tij − κl

)2
+ .

Taking the first derivative with respect to time t yields

f ′(t) = β1 + 2β2 t + 2
K∑

l=1
bl

(
tij − κl

)
+ .

An estimate of f ′(t), denoted f̂ ′(t), is obtained by sub-
stituting the quadratic fit parameter estimates β̂1, β̂2, and
b̂1, b̂2, . . . , b̂K . However, the construction of simultane-
ous confidence bands requires the variance-covariance
matrix for the vector of contrasts between the esti-
mated and true parameters for the fixed and random
effects. Let C = [X Zf ] be a design matrix containing



Aniley et al. BMCMedical ResearchMethodology           (2019) 19:13 Page 6 of 11

quadratic time effects and a truncated quadratic basis, B
is a matrix constructed from variance components corre-
sponding to smoothing, i.e. Var(v) in model (4). Then, a
variance-covariance matrix for the vector of contrasts is
given by

Var
([

β̂ − β

v̂ − v

])
� (

C′R−1 C + B
)−1

Ruppert et al. [16], where R is the block diagonal
variance-covariance matrix of error terms defined in
“Semi-parametric mixed effects model” section. Let g =
(g1, g2, . . . , gT ) be a grid of equally spaced time points.
Define

f̂g − fg = Cg

(
β̂ − β

v̂ − v

)

whereCg isCwith designmatricesX andZf are evaluated
over g. Assuming the vector of contrasts have approxi-
mately multivariate distribution with mean vector 0 and
variance-covariance matrix

(
C′R−1 C + B

)−1 [16, 29], i.e.
(

β̂ − β

v̂ − v

)
∼ N

(
0,

(
C′R−1 C + B

)−1) (5)

a 100 (1 − α)% simultaneous confidence bands for fg is
given by

f̂g ± h(1−α) sg (6)

where sg=
(
ŜD

(
f̂g1−fg1

)
, ŜD(f̂g2−fg2), . . . , ŜD

(
f̂gT −fgT

))′

with

ŜD
(
f̂gm − fgm

)
=

√
the (m,m)th diagonal element of Var

(
f̂g − fg

)

and Var
(
f̂g − fg

)
= Cg

(
C′R−1 C + B

)−1 C′
g , and h(1−α)

is the (1 − α) quantile of

sup

∣∣∣∣∣∣
f̂ (t) − f (t)

ŜD
{
f̂ (t) − f (t)

}

∣∣∣∣∣∣
≈ max

1≤m≤T

∣∣∣∣∣∣∣∣∣

(
Cg

[
β̂ − β

v̂ − v

])

ŜD
{
f̂ (gm) − f (gm)

}

∣∣∣∣∣∣∣∣∣

.

(7)

The quantile h(1−α) can be approximated using
simulations. First we simulate from realization of (5) and
computation of (7) can be repeated for a large number of
times, say N times, to obtain h̃11−α , h̃21−α , . . . , h̃

N
1−α . The

value with rank N × (1 − α) is used as h1−α .
The proposed semi-parametric mixed models were fit-

ted with the the gamm function available in R package mgcv
[29] and the linear mixed models using the lme function
available in R package nlme.

Results
Patients baseline characteristics
A total of 534 adult diabetic patients were in the study,
of which 342 (64.04%) were male, 399 (74.72%) were
Type 2 diabetic patients and 417 (78.09%) didn’t have
family history of diabetes. The patients mean (SD) age
at the first visit (or baseline) was 45.40 (14.62) years
and ranges between 18 and 93 years, weight was 62.83
(13.36) kgs and FBS level was 164.72 (86.20) mg/L.
There were significant differences of these means
between Type 1 and Type 2 diabetic groups (Table 2).The
results in Table 2 also show that, at baseline there
was a significant association between family history
of diabetes and type of diabetes (p-value <0.0001).
However, the association between patient gender and
type of diabetes was nonsignificant (p-value = 0.9935).
The median (first quartile - third quartile) time
between first and last clinic visits of patients was 15.25
(7.25 - 24.75) months and ranged from as few as 0.5
month between visits to as much as 6 months between
visits.

Parametric mixedmodels
Mean structure
Themain interest of this study is to apply semi-parametric
mixed models, however for comparison purpose here
we start the analysis by fitting parametric mixed mod-
els. Scatter plot smoothing was used to examine changes
in FBS level over time and also to asses the interac-
tions of each categorical covariate with time [30, 31].
The smoothing plots suggest the changes in FBS can be

Table 2 Baseline characteristics of adult diabetic patients in JUSH, September 2011 - June 2014

Type of diabetes

Characteristics Type 1 Type 2 p-value Overall

Gender Male, N (%) 87 (16.29%) 255 (47.75) 0.9935 342 (64.04%)

Female, N (%) 48 (8.99%) 144 (26.97%) 192 (35.96%)

Family history No, N (%) 37 (6.93%) 380 (71.16%) < 0.0001 417 (78.09%)

Yes, N (%) 98 (18.35%) 19 (3.56%) 117 (21.91%)

Age, mean (SD) 34.55 (11.92) 48.63 (13.78) < 0.0001 45.4 (14.62)

Weight, mean (SD) 58.83 (11.10) 64.02 (13.74) < 0.0001 62.83 (13.36)

FBS, mean (SD) 171.38 (102.39) 162.73 (80.66) 0.0139 164.72 (86.20)
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described by quadratic trend. Furthermore, due to the
non-crisscrossing of trends representing Type 1 and Type
2 diabetes groups, and with family history and no fam-
ily history groups Type × time and Family history × time
were not included in the mixed models. However, the
trend representing male and female crossing at one time
point. Therefore, we start with very general model that
includes time (in quadratic form), other fixed effects and
the necessary interactions, that is

E(Yij) = β0 + β1 time + β2 time2 + β3 Age + β4 Gender + β5 Gender × time
+β6 Type + β7 F .History + β8 Weight + β9 Weight × time,

(8)

where Type and F.History represent diabetes type and
family history of diabetes, respectively.

Variance-covariance structure for random effects
The above mean structure fitted with subject-specific ran-
dom intercepts, linear random time effects and quadratic
random time effects. For each of the models, the indepen-
dent error structure is assumed and the results are given
in Table 3.
The fixed effect estimates were consistent in sign but

have slight differences in magnitude across the three
different variance-covariance structures. The variables
age, gender, diabetes type, family history, and time

by weight and gender by time interactions were sta-
tistically nonsignificant in all models, except for time
by weight interaction where its p-value marginally
significant for subject-specific random intercept and
slope model (i.e. linear random effects model). The
covariates that were statistically significant at 5%
level, i.e. Time, Time2 and weight and the time by
weight interaction were retained for the subsequent
analysis.
The Crainiceanu and Ruppert [22] RLRT statistic for

testing H0 : σ 2
b0 = 0 against H1 : σ 2

b0 > 0 in model
M1 takes the value RLRT = 738.24 with p-value < 0.0001.
The large value of the test statistic or a very small p-value
strongly suggests a rejection of the null hypothesis (i.e.
H0 : σ 2

b0 = 0) that no subject-specific random effects
should be included in the model. Similar tests were con-
ducted using the exact finite sample null distribution of
the RLRT statistic of Greven et al. [21] to testH0 : σ 2

b1 = 0
against H1 : σ 2

b1 > 0 and H0 : σ 2
b2 = 0 against H1 : σ 2

b2 > 0
in models M2 and M3, respectively. The RLRT statistic is
3.944 with p-value = 0.0207 for H0 : σ 2

b1 = 0 indicating
rejection of the null hypothesis which implies the need
for subject-specific random slopes. Whereas the RLRT
statistic for H0 : σ 2

b2 = 0 is 0.639 with p-value = 0.1859
suggesting a non-rejection of the null hypothesis H0 :
σ 2
b2 = 0 which implies no quadratic random effect should

be included in the model. Therefore, in the subsequent

Table 3 Parameter estimates (standard errors, s.e.), p-values for associated t-tests and model fit criteria, FBS level of diabetes patients in
JUSH, September 2011 - June 2014

Variance-components

Effects Random intercept Linear random effects Quadratic random effects

Estimate (s.e.) p-value Estimate (s.e.) p-value Estimate (s.e.) p-value

Fixed effects

Intercept 304.362 (14.616) < 0.0001 306.756 (15.743) < 0.0001 303.139 (15.678) < 0.0001

Age 0.252 (0.183) 0.1693 0.212 (0.179) 0.2362 0.197 (0.179) 0.2699

Gender, Male -2.605 (5.487) 0.6352 -1.968 (5.983) 0.7424 -2.609 (5.933) 0.6603

Diabetes type, Type 2 -9.758 (8.697) 0.2624 -10.553 (8.814) 0.2317 -10.581 (8.852) 0.2325

Family history, Yes -12.763 (8.478) 0.1328 -12.335 (8.606) 0.1523 -12.593 (8.643) 0.1457

Time -4.462 (0.870) < 0.0001 -5.614 (1.071) < 0.0001 -5.549 (1.116) < 0.0001

Time2 0.123 (0.018) < 0.0001 0.135 (0.020) < 0.0001 0.153 (0.025) < 0.0001

Weight -1.981 (0.196) < 0.0001 -1.991 (0.216) < 0.0001 -1.906 (0.215) < 0.0001

Time × Weight 0.016 (0.013) 0.2139 0.032 (0.016) 0.0439 0.025 (0.016) 0.1162

Gender, Male × Time -0.412 (o.363) 0.2563 -0.482 (0.443) 0.2761 -0.425 (0.444) 0.3390

Variance components

var(b0) 2135.023 2797.766 3352.606

var(b1) 4.575 40.343

var(b2) 0.048

Residual 5023.386 4873.227 4723.609
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analysis we use the following parametric linear mixed
model, called M4:

yij = β0 + β1 weight + β2 tij + β3 tij × weight + β4 t2ij + b0i + b1i tij + eij .

(9)

The analysis results for model M4 are presented in
Table 4. Except the time × weight interaction effect,
which is marginally non-significant at 5% level, all the
fixed effects are highly significant.

Semi-parametric mixedmodel
The observed mean FBS level profile of patients is shown
in Fig. 1b. The plot in this figure shows that the linear-
ity assumption is not reasonable. Therefore, the analysis
had to account for the longitudinal data structure and the
observed nonlinearity of FBS level estimated with smooth
effects in the mixed model framework. Given our spe-
cific interest in rate of change in FBS level due to clinic
interventions, its functional form (over time) can affect
the rate of change. Since the rate of change involves tak-
ing derivatives of the smooth function f (tij), we choose
to use quadratic penalized spline to model the FBS level
mean response [31]. Following results from the previous
section, we propose the following semi-parametric mixed
model with linear random effects structure, called M5

yij = β0 + β1 weight + β2 tij + β3 tij × weight + β4 t2ij

+
K∑

l=1
bl (tij − κl)

2+ +
1∑

u=0
bui tuij + eij.

(10)

Using appropriately constructed matrices this
model can be represented using a matrix notation of
“Tests for zero variance components” section. This model
is fitted using the random intercept and linear random

Table 4 Parameter estimates (standard errors, s.e.) and p-values
for associated t-tests for model M4, FBS level of diabetes patients
in JUSH, September 2011 - June 2014

Effects Estimate (s.e.) p-value

Fixed effects

Intercept 302.931 (13.330) < 0.0001

Time -5.815 (1.061) < 0.0001

Weight -1.968 (0.212) < 0.0001

Time × Weight 0.031 (0.016) 0.0509

Time2 0.134 (0.020) < 0.0001

Variance components

var(b0) 2797.887

var(b1) 4.601

Residual 4877.259

effects variance structures of the previous section and the
results are displayed in Table 5.
The results in Table 5 show that the fixed effects esti-

mates were consistent in sign but have slight difference
in magnitude in both semi-parametric and parametric
mixed models (see Table 4), except for the effect of
time where both the sign and magnitude of its coef-
ficient estimates were different in the two models and
the effect of "time square" was nonsignificant in the
semi-parametric mixed models. Further, the interaction
of weight with time was not statistically significant in
any of the semi-parametric mixed model. Except for the
subject-specific random slope variance component, there
is a slight decrease in subject-specific random intercept
and residual variance components in the semi-parametric
model compared to variance components in the linear
mixed model M4 (see Table 4).
To compare the two variance structures under the

semi-parametric mixed model given in Eq. (10), we com-
puted AIC, BIC and adjusted AIC (see Table 6). Adjusted
AIC shows that the semi-parametric mixed model with
subject-specific intercepts as well as slopes (or random
linear effects) value is smaller than that of the random
intercept. Therefore, the semi-parametricmodel with ran-
dom linear effects is the preferred model.

Model selection
In this section we are focusing on assessing whether the
inclusion of spline effects improves model fit compared to
parametric counterpart. This is equivalent to testing H0 :
σ 2
b = 0 versus H1 : σ 2

b > 0 in model M5, where σ 2
b is a

variance component controlling the smoothness of

f (tij) = β0 + β1 tij + β2 t2ij +
K∑

l=1
bl (tij − κl)

2+.

The approximate F-test statistic for testing the above
hypotheses, i.e. quadratic form of f (tij) against a quadratic
penalized splines, is 83.63 with p-value < 0.0001. This
strongly suggests a rejection of the null hypothesis H0 :
σ 2
b = 0. Thus, the shape of the function f (tij) is statistically

different from a quadratic trend.
Furthermore, consider the semi-parametric mixed

model M5 in Eq. (10) with random linear effects variance-
covariance structure and the linear mixed model M4 in
Eq. 9. The fit statistics from fitting these two models are
displayed in Table 6. The−2 log(Lik), AIC and BIC values
indicate a substantial improvement in the fit of M5 com-
pared to M4, implying model with penalized spline rep-
resentation of FBS level was preferred over its parametric
counterpart.
The overall results show that, out of the models evalu-

ated, FBS level of diabetes patients at the JUSH diabetic
clinic during the study period best characterized by a
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Table 5 Parameter estimates (standard errors, s.e.), p-values for associated t-tests and variance components estimates of
semi-parametric models under various variance structures, FBS level of diabetes patients in JUSH, September 2011 - June 2014

Variance structures

Effects Random intercept Linear random effects

Estimate (s.e.) p-value Estimate (s.e.) p-value

Fixed effects

Weight -1.908 (0.191) < 0.0001 -1.899 (0.212) < 0.0001

Time 28.264 (6.087) < 0.0001 26.742 (6.359) < 0.0001

Time × Weight 0.017 (0.013) 0.1837 0.031 (0.016) 0.0536

Time2 0.408 (0.402) 0.3095 0.448 (0.421) 0.2875

s(Time)Fx1 -2971.649 (551.992) < 0.0001 -3014.737 (579.734) < 0.0001

Variance components

Standard deviation

Intercept 2104.479 2796.166

Linear 4.814

Residual 4919.429 4762.647

s(Time) 13.287 < 0.0001 13.939 < 0.0001

penalized spline model with truncated quadratic basis,
with subject-specific random intercept and slope effects
and with linear function of weight and time, called the
final model, M6.

Simultaneous confidence band
The first derivative of mean response function, i.e. f̂ ′(.),
with respect to time was estimated for the final model,
M6 holding weight constant. The rate of change in mean
response of FBS level then investigated using the 95%
simultaneous confidence bands for the model. The con-
fidence bands were constructed following the discussion
in “Estimation of parameters” section. A gride g of time
points (0, 35) were defined by increments of one month
such that there are T = 36 equally spaced time points.
The resulting simultaneous confidence bands displayed in
Fig. 2 where the solid line and shaded region represent,
respectively, the mean predicted FBS level and the confi-
dence bands. Visual inspection indicates that on average
diabetes patients were able to decrease or control their
FBS level, due to JUSH clinic interventions, in the first
five months period after their initial visit. However, after

Table 6 Fit statistics for model M5 and M4, FBS level of diabetes
patients in JUSH, September 2011 - June 2014

Fit statistics

Variance structure −2 log(Lik) AIC BIC Ep AICadj

M5

Random intercept 50538.54 50554.54 50605.63 7.087 50545.627

Random linear 50507.09 50527.09 50590.96 7.260 50514.350

M4 50583.51 50601.51 50658.98

month 5, the slope of the curve starts changing it signs,
this might imply that patients do actually not follow-up
the intervention packages properly or not come to the
clinic for treatment due to some unknown reason.
The confidence bands become noticeably wider after 27

months of follow-up period, demonstrating the increased
variability. This increase may be due to a smaller number
of FBS level recordings being observed at the later period
of the study or a potential artifact induced by the spline
smoothing [32]. In practice spline smoothing creates a
challenge in semi-parametric regression settings through
the inherent bias from using truncated basis functions.
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Fig. 2 95% simultaneous confidence bands for FBS level of diabetes
patients in JUSH, September 2011 - June 2014
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The confidence bands obtained for FBS level does not
account for this function bias. However, this bias could be
corrected, e.g. using bootstrapping methods [33].

Discussion
This study focused on longitudinal data analysis of fasting
sugar level of adult diabetic patients at Jimma University
Specialized Hospital diabetic clinic using an application
of semi-parametric mixed model. The study revealed that
the rate of change in FBS level in diabetic patients, due
to the clinic interventions, does not continue as a steady
pace but changes with time and weight of patients. Fur-
thermore, it clarified the associations between FBS level
and some characteristics of adult diabetic patients that
weight of a diabetes patient has a significant negative
effect whereas patient gender, age, type of diabetes and
family history of diabetes did not have a significant effect
on the change of FBS level. The result on gender agrees
with the findings of [34] where the gender effect on fast-
ing blood glucose level of type 2 diabetes was statistically
nonsignificant.
Under the two variance-covariance structures of

subject-specific random effects, the semi-parametric
mixed models had better fit than their parametric coun-
terparts. This was likely due to the localized splines
which captured more variability in FBS level than the
linear mixed models. The methodology used in the anal-
ysis has implications for clinical monitoring in regular
followup of diabetic patients and to assess the effect
of intervention packages, such as healthy diet, physical
activity and prescribed medicines, because individualized
curve may be obtained to follow patient-specific FBS level
trends [31].
The main limitation of the study is the limited infor-

mation on important predictors such as type of interven-
tions including treatment types and nutritional status of
a patient that may have influenced the rate of change in
FBS level. Due to lack of data on these potential predic-
tors for most of the patients involved in the study, we were
unable to include them in the analyses. Therefore, more
public health and epidemiology researches are needed to
examine the impact of treatments and interventions on
population health in general and in particular, people liv-
ing with diabetes to avoid its complications over time and
to identify new risk factors for diabetes.

Conclusion
In this paper, we demonstrate the use of semiparametric
mixed effect model for estimation of the rate of change
of fasting blood sugar (FBS) level experienced by patients
over time. The proposed method can help a physician
in clinical monitoring of diabetic patients and to assess
the effect of intervention packages such as healthy diet,
physical activity.
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