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Spurious interaction as a result of
categorization
Magne Thoresen

Abstract

Background: It is common in applied epidemiological and clinical research to convert continuous variables into
categorical variables by grouping values into categories. Such categorized variables are then often used as exposure
variables in some regression model. There are numerous statistical arguments why this practice should be avoided,
and in this paper we present yet another such argument.

Methods: We show that categorization may lead to spurious interaction in multiple regression models. We give
precise analytical expressions for when this may happen in the linear regression model with normally distributed
exposure variables, and we show by simulations that the analytical results are valid also for other distributions.
Further, we give an interpretation of the results in terms of a measurement error problem.

Results: We show that, in the case of a linear model with two normally distributed exposure variables, both
categorized at the same cut point, a spurious interaction will be induced unless the two variables are categorized at
the median or they are uncorrelated. In simulations with exposure variables following other distributions, we
confirm this general effect of categorization, but we also show that the effect of the choice of cut point varies over
different distributions.

Conclusion: Categorization of continuous exposure variables leads to a number of problems, among them
spurious interaction effects. Hence, this practice should be avoided and other methods should be considered.

Keywords: Categorization, Dichotomization, Interaction, Regression, Measurement error

Background
It is common in epidemiological and medical research to
categorize exposure variables measured on a continuous
scale and treat them as categorical in the statistical ana-
lysis. The continuous variables can be dichotomized or
they can be divided into more than two groups, the
latter alternative allowing investigation of a possible
dose-response relationship. Examples of this practice in-
clude Body Mass Index (BMI) categorized according to
pre-defined values and nutritional intake categorized ac-
cording to observed quintiles. There may be several rea-
sons for this practice. The most common ones being
that it makes the analysis and the interpretation easier;
one avoids having to model the actual relationship be-
tween the exposure variables and the response, and that
it mimics clinical practice where one typically divides

patients into groups (hypertensive vs. normotensive,
obese vs. non-obese).
A number of papers have appeared, both in the bio-

statistical [1–7], epidemiological [8–13] and psycho-
logical [14–16] literature, pointing to problems with this
approach and arguing against it. Among the problems
are loss of information and power, but also an increased
risk of type I error if continuous confounder variables
are categorized. Recently, also predictive performance of
models with categorized predictors is criticized [7]. We
will not repeat their arguments here, but rather point to
a problem that has received much less attention; that
categorization of continuous exposure variables may lead
to spurious interaction effects in a multiple regression
model against an outcome.
This problem was observed already in 1974, by

Humphreys and Fleishman [17], in a simulation study of
the behavior of the ANOVA model in situations with
two categorized explanatory variables. Later, the same
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type of problem was also noted by Paunonen and
Jackson [18] in an investigation of possible effect modifi-
cation of the association between personality trait mea-
sures and resulting behavior. They noted that effect
modification, or interaction, was often observed if the
effect modifier in question was dichotomized and a
stratified analysis was performed, while if the same associ-
ation was investigated in a linear regression model, keeping
the effect modifier on its original scale and introducing a
product term, effect modification was less often observed.
This observation led Bissonnette et al. [19] to perform a
simulation study investigating the same problem. They also
found that when they simulated a model with no inter-
action, dichotomized the potential effect modifier and then
performed a stratified analysis, effect modification was
often observed. However, no real understanding of or ex-
planation for the findings was provided.
Maxwell and Delaney [14] carried out a formal analytical

investigation of the effects of dichotomizing the explanatory
variables in a linear regression model. Specifically, they
showed that in a model with two correlated explanatory
variables X1 and X2, if the true relationship between one of
the explanatory variables and the outcome Y was
non-linear, a spurious interaction effect appeared when di-
chotomizing X1 and X2 at the median. This result has later
been referred to by a number of other authors who have
discussed the practice of categorization [2, 16], and the
non-linear nature of the relationship between the explana-
tory variable and the outcome seems to have been taken as
the explanation of the spurious interaction.
In this paper we will look into this problem in some

more detail. We have two exposure variables X1 and X2

that are correlated, and where both of them are dichoto-
mized. The situation where only one of them is dichoto-
mized follows directly. Furthermore, they are both to be
related to an outcome variable Y by some regression
model. Throughout we will assume that there is no
interaction between X1 and X2. In much earlier work, it
has been assumed that the variables have been catego-
rized at the median. However, in many medical and epi-
demiological applications, it is more relevant to consider
categorization at more extreme values, and / or at sev-
eral cut points. This leads to some interesting findings.
In our analytical treatment of the problem, we take the

regression model to be linear, and we assume normally
distributed variables X1 and X2. However, the results apply
to regression models and distributions in general. We
have also carried out a small simulation study in order to
explore the effects for different distributions. We will first
give two examples to show the relevance of the problem.

Illustration 1, height and lung function
The first illustration uses data on lung function collected
among Norwegian medical students. Peak expiratory

flow (PEF), l/min, was measured six times for each stu-
dent; three times in sitting position and three times in
standing position. We will be using the mean of the six
measurements in this illustration. In addition to PEF, we
also measured the height of the students (cm) and we
have gender information. In total we have data from 377
students, and we will model PEF as a function of gender
and height (centered). Running the simple linear regres-
sion model PEF = β0 + β1 × gender + β2 × height + β3 ×
gender × height + ε leads to the following estimated

coefficients (SE): β̂0= 556.7 l/min (9.2 l/min), β̂1= − 129.7

l/min (11.0 l/min), β̂2 = 3.7 (l/min)/cm (0.9 (l/min)/cm),

β̂3 = − 0.8 l/min (1.1 l/min). Using the conventional 5%
significance level, we have clearly significant effects of
gender and height, but no interaction. Next, we
categorize height according to the gender specific 90th
percentiles; 189 cm for men and 175 cm for women,
coding zero if the subject is below the cut-off and one if
above. We will then run the same linear model as above,
but with the categorized version of height. This leads to

the following estimated coefficients (SE): β̂0=578.4 l/min

(6.4 l/min), β̂1 = − 168.8 l/min (8.1 l/min), β̂2 = 64.7 l/min

(17.3 l/min), β̂3 = − 48.5 l/min (22.6 l/min). We notice
that we have a significant interaction at the conventional
5% level (p = 0.03). This would indicate that the effect of
being among the higher 10% is significantly lower among
women than among men, and while being among the
10% highest males leads to an increased PEF of 64.7 l/
min, the same increase is only 16.2 l/min for females.

Illustration 2, myocardial infarction
The second example is taken from a huge Norwegian
health survey. During the period from 1985 until 1999 the
Norwegian government conducted health surveys inviting
men and women in the age of 40–42 years to participate.
We will be analyzing a subset of these data, collected dur-
ing the period 1985 to 1994. We have measured, among
other things, Body Mass Index (BMI) and systolic blood
pressure (BP) on a total of 133,139 subjects. These sub-
jects have been followed for on average 19 years, and
death of myocardial infarction is registered through a link-
age to the Norwegian Cause of Death Registry. We will re-
strict our analysis to subjects with BMI > 20 to avoid
having to deal with obvious non-linearities. This leaves us
with 132,150 subjects. Among these there were 2542
(1.9%) deaths. We fit a logistic regression model for the
odds of death by myocardial infarction as a linear function
of BMI (kg/m2) and BP (per 10mmHg) and the inter-
action between BMI and BP. The estimated coefficients
(SE) are 0.20 (0.04) for BMI, 0.61 (0.08) for BP, − 0.01
(0.003) for the interaction term and a constant term of
− 14.06 (1.20). Due to the large sample size, all the
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estimated effects are clearly significant at the conventional
5% level. However, the estimated interaction term has no
practical significance. Next, we divide the sample into two
BMI groups (obese vs. non-obese) by making a cut-off at
30 kg/m2, and we divide the sample into two BP groups
(hypertensive vs. normotensive) by making a cut-off at
140mmHg. Based on the two categorized variables we
run the same logistic model as above (main effects of BMI
and BP and the interaction BMI × BP). The estimated co-
efficients are 0.81 (0.09) for BMI, 1.03 (0.04) for BP, − 0.41
(0.11) for the interaction and a constant term of − 4.43
(0.03). This would indicate that the effect of being obese
varies between normotensive and hypertensive so that
among normotensive subjects there is an odds ratio of
death equal Exp(0.81) = 2.25, while among the hyperten-
sive the effect of being obese is reduced to an odds ratio
of Exp(0.81–0.41) = 1.49, a substantial difference.
Both examples show how categorization may lead to

substantial changes in the interpretation of the data in
practical data analysis.

Methods
Analytical developments, categorization in the bivariate
normal situation
Assume we have a linear relationship between two ex-
posure variables X1, X2, and an outcome variable Y, satis-
fying the linear regression equation.

Y ¼ β0 þ β1X1 þ β2X2 þ ε ð1Þ

where we assume ðX1;X2Þ∼Nð0;ΣÞ; Σ ¼ 1 ρ
ρ 1

� �
: No-

tice that there is no interaction in the true model. Fur-
thermore, assume ~X1 ¼ IðX1 > c1Þ; ~X2 ¼ IðX2 > c2Þ
where for simplicity we let c1 = c2 = c. Let us define μi j
¼ EðY j~X1 ¼ i; ~X2 ¼ jÞ; i; j ¼ 0; 1 . We have no inter-
action between ~X1 and ~X2 if and only if μ00 − μ10 = μ01
− μ11⇒ μ11 − μ01 − μ10 + μ00 = 0.
Based on model (1) we have

μ00 ¼ β0 þ β1EðX1jX1≤c;X2≤cÞ
þ β2EðX2jX1≤c;X2≤cÞ ð2Þ

μ01 ¼ β0 þ β1E X1 X1≤c;X2 > cjð Þ
þ β2E X2 X1≤c;X2 > cjð Þ ð3Þ

μ10 ¼ β0 þ β1E X1 X1 > c;X2≤cjð Þ
þ β2E X2 X1 > c;X2≤cjð Þ ð4Þ

μ11 ¼ β0 þ β1E X1 X1 > c;X2 > cjð Þ
þ β2E X2 X1 > c;X2 > cjð Þ: ð5Þ

In order to further investigate the relationships of
interest, we need to be able to calculate the conditional
expectations that enter these expressions. Define F00 =

P(X1 ≤ c ∩ X2 ≤ c), F01 = P(X1 ≤ c ∩ X2 >c), F10 = P(X1 > c ∩
X2 ≤ c), F11 = P(X1 > c ∩ X2 > c),
the probabilities of belonging to each of the four combi-
nations of ~X1; ~X2. Due to symmetry,

EðX1jX1 > c;X2 > cÞ ¼ EðX2jX1 > c;X2 > cÞ;
EðX1jX1≤c;X2 > cÞ ¼ EðX2jX1 > c;X2≤cÞ;
EðX1jX1 > c;X2≤cÞ ¼ EðX2jX1≤c;X2 > cÞ;
EðX1jX1≤c;X2≤cÞ ¼ EðX2jX1≤c;X2≤cÞ;

so in the following we will focus on the conditional
expectations of X1. Regier and Hamdan [20], using the
Mehler identity [21], gave the following identity:

F11E X1 X1 > c;X2 > cjð Þ ¼ φ cð Þ 1−Φ
c−ρcffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
 !" #

1þ ρð Þ; ð6Þ

where φ(⋅) denotes the normal density function and Φ(⋅)
denotes the corresponding cumulative distribution
function.
As indicated by Regier and Hamdan [20], correspond-

ing identities can be found by appropriate combinations
of integrals and we have that

F10EðX1jX1 > c;X2≤cÞ ¼ φðcÞ−F11EðX1jX1 > c;X2 > cÞ; ð7Þ

F01E X1 X1≤c;X2 > cjð Þ ¼ ρφ cð Þ−F11E X1 X1 > c;X2 > cjð Þ;
ð8Þ

F00E X1 X1≤c;X2≤cjð Þ ¼ E X1ð Þ−F11E X1 X1 > c;X2 > cjð Þ

−F01E X1 X1≤c;X2 > cjð Þ−F10E X1 X1 > c;X2≤cjð Þ:
ð9Þ

As mentioned, we have no interaction if μ11 − μ01
− μ10 + μ00 = 0. Using Eqs. (2), (3), (4), (5), this leads to

β1 þ β2ð Þ E X1 X1 > c;X2 > cjðð Þ þ E X1 X1≤c;X2≤cjð Þ

−E X1 X1≤c;X2 > cjð Þ−E X1 X1 > c;X2≤cjð ÞÞ ¼ 0

ð10Þ

From this, it is immediately clear that we can still have
a spurious interaction even in situations where one of
the two exposure variables is not associated with the
outcome (β1 or β2 equal zero) as the product in (10) can
still be different from zero. Furthermore, no spurious
interaction can take place if β1 = − β2. However, this last
point is a function of our highly symmetrical situation
and hence less relevant.
Using Eqs. (6), (7), (8), (9) and the fact that in our

example, E(X1) = 0 and F01 = F10, formula (10) can be
written
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β1 þ β2ð Þ 1þ ρð Þφ cð Þ
1−Φ

c−ρcffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
 !

F11
−

Φ
c−ρcffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
 !

F00
−

2Φ
c−ρcffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
 !

−1

F01

2
66664

3
77775 ¼ 0

ð11Þ

We have to remember that F11, F00 and F01 are also
functions of c and ρ. Solving this (numerically) leads to
ρ = 0 and / or c = 0, in addition to β1 = − β2 (and the de-
generate solution ρ = − 1 ). That is, we have no inter-
action if X1 and X2 are uncorrelated (ρ = 0) or if we split
at the median (c = 0). Otherwise, categorization leads to
spurious interaction. By the same arguments one can
show that a spurious interaction will also appear if only
one of the two variables X1 and X2 are categorized, or if
X1 and X2 are split into more than two categories.
One should remember that Eq. (11) is only relevant

for our specific situation, with normally distributed
variables and common cut point c. The important
message here is that the equation is true in only very
few situations, which means that with a few exceptions,
categorization leads to spurious interaction. This general
message is true also for other distributions.
Having established the presence of spurious inter-

action, it is of interest to investigate the potential size of
the problem. Based on the model above, we can investi-
gate the size of the induced interaction term relative to
main effects of the categorized versions of X1, X2.

Assume we fit a model Y ¼ ~β0 þ ~β1 ~X1 þ ~β2 ~X2 þ ~β3 ~X1 ~X2

þ~ε where ~X1; ~X2 are coded 0, 1. It is easy to show that
~β2 is given by μ01 − μ00 where μ00 and μ01 are given in

(2) and (3), and we have already established that ~β3 is
given by μ11 − μ01 − μ10 + μ00 . We can use this to investi-

gate the size of ~β3 relative to ~β2 for different choices
of β1, β2, the cut point c and the correlation ρ. Figure 1

gives the absolute value of ~β3=~β2 for varying c and ρ, for
β1 = β2 = 1. We observe that with increasing cut points,
the influence of the induced product term becomes sub-
stantial, even for moderate values of the correlation ρ. In

this case, the ratio of ~β3 to ~β1 will of course be the same

as to ~β2. As a bi-product we can also study the size of ~β1
and ~β2 as a function of the same cut point c and correl-
ation ρ (Fig. 2), and we observe that the estimated effects
increase quite rapidly with the more extreme cut points
and correlations.

Interpretation
Categorization of a continuous variable can be seen as
an extreme form of measurement error. If there is meas-
urement error in X1 and / or X2, and the error in X1 is
differential with respect to X2 (meaning the measure-
ment error in X1 varies with X2) or vice versa, it can be

shown that this leads to an induced interaction between
the observed versions of X1, X2 in a regression model
[22–25]. In our case, the measurement error can be
characterized by the reliability of the dichotomized vari-
able ~Xi , relative to the continuous variable Xi, i = 1, 2, as
measured by the point-biserial correlation. If Xi is nor-
mally distributed, this correlation is given by h=

ffiffiffiffiffi
pq

p
,

where h denotes the ordinate of the normal curve at the
cut point and p and q denote the proportion of the
population (or probability mass) above and below the
cut point. It is easily seen that this correlation will vary
with the other variable Xj, i ≠ j, as p and q will vary with
Xj. Hence, the measurement error is differential and an
induced interaction is to be expected.
Another way of looking at the same problem is as a

problem of residual confounding. If we have a situation
with a confounding variable where the effect of the con-
founder is not properly adjusted for, we are left with

Fig. 1 The figure gives the absolute value of the ratio between ~β3
and ~βi; i ¼ 1; 2 for ρ = 0.2 (blue line), 0.5 (red line) and 0.7 (green
line) as a function of the cut point c when β1 = β2 = 1

Fig. 2 The figure gives ~β2 for ρ = 0.2 (blue line), 0.5 (red line) and 0.7
(green line) as a function of the cut point c. True β2 = β1 = 1
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some residual confounding. This is exactly what is hap-
pening when a confounder is categorized. It is well
known that this leads to biased estimates of exposure -
outcome associations. In particular, Marshall and
Hastrup [26] showed through simulations that such re-
sidual confounding can lead to apparent effects of vari-
ables that are strongly correlated to the confounder, but
which in reality bear no association with the outcome.
Marshall and Hastrup termed this effect “resonance of
strong confounders”. Important for our investigation, dif-
ferences in residual confounding across strata may lead
to spurious interaction [27].

Simulations
To illustrate our findings and to further explore the ef-
fects of dichotomization in different situations we con-
ducted a small simulation study. Notice that our main
focus here has been to investigate the qualitative aspects
of the induced interactions, and hence, we used a rather
large sample size to minimize randomness.
We simulated X1, X2 according to three different dis-

tributions; standard bivariate normal, uniform [0,1], and
chi-square with 2 df. We let the correlation between X1

and X2, ρ, vary over 0.2, 0.5, and 0.7, and we categorized
at the 60th and the 80th percentiles, respectively. Fur-
thermore, we simulated a response Y according to the
following model, Y = β0 + β1X1 + β2X2 + ε with ε normally
distributed with zero expectation and variance σ2 and

independent of X1, X2. We then fit a model Y ¼ ~β0 þ ~β1 ~X1

þ~β2 ~X2 þ ~β3 ~X1 ~X2 þ ~ε where ~β3 is an interaction parameter.
In all our simulations we let β0 = 0 and β1 = β2 = 1.
Furthermore, we let the residual variance σ2 vary over the
distributions in such a way that Corr(Y, Xi) = 0.3, i = 1, 2,
when ρ = 0.5. The correlation ρ was then varied without
changing σ2. The results of these simulations are given in
Table 1. In addition, we repeated the situation with ρ = 0.7
and X1, X2 categorized at the 80th percentile, but now
with βi = 2 for i = 1, 2. Further, we simulated the same
situation once more with β1 = 1 and β2 = 0. The results of
these simulations are given in Table 2.
In order to generate correlated variates from the three

distributions, we generated bivariate normal variates
with a specified correlation structure in the standard
way. Furthermore, we generated uniform marginals by
applying the standard normal cumulative distribution
function to each of the normal variates. Finally, on the
basis of a uniform variate Vj, we can generate Xj ∼
chi-square with 2 df. by Xj = − 2 ln(Vj) [28]. It is an easy
task to adjust the pre-specified correlation structure so
that the observed correlations are as one wish. This is
done empirically, by running preliminary simulations.
For each setting we ran 1000 simulations with a sample
size of 10,000.

Results
Tables 1 and 2 give the results of these simulations.
There are some common trends, but also some interest-
ing differences between the distributions. First, the inter-
action effect becomes stronger with increasing correlation
for all the distributions. We also observe that, naturally,
the interaction effect becomes stronger with increasing
main effects (the difference between Table 1 and the sec-
ond situation in Table 2). In general, the normal distribu-
tion and the uniform distribution behave very similar. We

Table 1 Results of the simulation study
Normal Uniform Chi-square

60th percentile
ρ = 0.2

b~β1 1.74 (0.11) 0.54 (0.04) 2.99 (0.25)

b~β2 1.73 (0.11) 0.54 (0.04) 3.00 (0.26)

b~β3 −0.06 (0.20) − 0.03 (0.06) 0.63 (0.40)

60th percentile
ρ = 0.5

b~β1 1.89 (0.14) 0.59 (0.04) 2.81 (0.28)

b~β2 1.88 (0.14) 0.59 (0.04) 2.83 (0.29)

b~β3 −0.16 (0.21) − 0.08 (0.06) 1.38 (0.43)

60th percentile
ρ = 0.7

b~β1 1.95 (0.15) 0.62 (0.04) 2.60 (0.31)

b~β2 1.94 (0.15) 0.61 (0.04) 2.63 (0.32)

b~β3 −0.24 (0.22) − 0.12 (0.07) 1.82 (0.48)

80th percentile
ρ = 0.2

b~β1 1.96 (0.14) 0.57 (0.04) 4.22 (0.27)

b~β2 1.96 (0.14) 0.57 (0.04) 4.23 (0.28)

b~β3 −0.23 (0.26) − 0.11 (0.07) 0.25 (0.55)

80th percentile
ρ = 0.5

b~β1 2.22 (0.15) 0.67 (0.04) 4.35 (0.31)

b~β2 2.22 (0.16) 0.67 (0.05) 4.35 (0.32)

b~β3 −0.58 (0.25) − 0.27 (0.07) 0.50 (0.54)

80th percentile
ρ = 0.7

b~β1 2.35 (0.16) 0.74 (0.05) 4.35 (0.35)

b~β2 2.36 (0.18) 0.74 (0.05) 4.34 (0.35)

b~β3 −0.81 (0.26) − 0.40 (0.08) 0.58 (0.56)

The true regression coefficients βi = 1, i = 1, 2. The table gives estimated
regression coefficients with corresponding empirical standard errors
in parentheses

Table 2 Results of the simulation study

Normal Uniform Chi-square

80th percentile
ρ = 0.7 β1 = 1, β2 = 0

b~β1 1.65 (0.16) 0.50 (0.05) 3.35 (0.35)

b~β2 0.70 (0.18) 0.24 (0.05) 0.99 (0.35)

b~β3 −0.40 (0.26) − 0.20 (0.08) 0.29 (0.55)

80th percentile
ρ = 0.7
βi = 2, i = 1, 2

b~β1 4.72 (0.17) 1.48 (0.05) 8.69 (0.36)

b~β2 4.72 (0.18) 1.48 (0.05) 8.68 (0.37)

b~β3 −1.63 (0.27) − 0.79 (0.08) 1.16 (0.61)

The table gives estimated regression coefficients with corresponding empirical
standard errors in parentheses
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see a stronger interaction effect with the more extreme
cut-off (80th percentile vs. 60th percentile). In the skewed
chi-square distribution, we observe the opposite; the
stronger interaction effects appear with a cut-off at the
60th percentile. Furthermore, for the normal- and uniform
distributions, the estimated interaction parameter has a
negative sign, while for the chi-square distribution it has a
positive sign. Finally, we confirm the result from the the-
oretical calculations, that even in the situation with β2 = 0,
a spurious interaction appear.
If we look to the estimated standard errors, the inter-

action parameter becomes significant with a cut-off at the
60th percentile for the chi-square distribution in both
Table 1 and Table 2, with an exception of the situation
with the weaker correlation ρ = 0.2 in Table 1. For the
other two distributions, we need in general to go to the
more extreme cut-off (80th percentile) to find significant
effects. Here, however, there are few significant effects for
the chi-square distribution. It should be mentioned that
categorization in general will lead to efficiency loss and
the power to detect interaction effects will be low. For a
general treatment of this topic, see [29].
To explain our findings, it will again be instruc-

tional to look at the problem as a measurement
error problem. For the normal distribution, it is easy
to show that the correlation between the continuous
variable and the categorized version of the same
variable is at its maximum with a cut-off at the me-
dian value, and it is then decreased with more ex-
treme cut-off values. This means that there is more
measurement error with the more extreme cut-off
values. Based on the simulations, one can show that
this is also true for the uniform distribution. How-
ever, also based on the simulations, for the
chi-square distribution there is more measurement
error with a cut-off at the 60th percentile than with
a cut-off at the 80th percentile, as measured by the
point-biserial correlation. This explains why we find
the stronger interaction effects with a cut-off at the
60th percentile for the chi-square distribution, and
with a cut-off at the 80th percentile for the two
other distributions, as there will be more residual
confounding, and hence more room for “resonance”
in situations with more measurement error.

Furthermore, let us look into the differentiality of the
measurement error. Thinking to the standard measure-
ment error situation, with β1 and β2 > 0 we will have a
positive interaction when there is less attenuation in the
effect of X1 for higher values of X2 (and opposite), mean-
ing the measurement error decreases with increasing X2.
Again based on the simulated data, we can look at the
measurement error (the point-biserial correlation) of X1

for ~X2 ¼ 0 vs. ~X2 ¼ 1. For the normal- and the Uniform
distribution, we find more measurement error in X1 for
the lower category of ~X2, while for the chi-square distri-
bution, there is more measurement error in X1 for the
higher category of ~X2 . This explains why the sign of the
interaction term differs between the distributions.

Collapsing categorical covariates
We will briefly mention another consequence of this
type of induced interaction. It is well known that tests of
interaction usually have rather low power. When model-
ling an interaction between categorical exposure vari-
ables that takes more than two categories, a number of
extra parameters have to be introduced. A common
advice is then to combine exposure groups in order to
decrease the number of extra parameters and hence, in-
crease power (see e.g. Kirkwood & Sterne, Ch. 29.5) [30].
However, by doing this we will again run the risk of
introducing a spurious interaction, which can be easily
realized by the following illustration.
Assume we have one binary exposure variable X1 (e.g.

gender) and one categorical exposure variable X2 with
four categories. These two exposure variables are to be
related to a binary outcome (diseased / not diseased).
Assume the data look as in Table 3.
As seen from the table, there is no interaction between

X1 and X2, as the association between X2 and the out-
come as measured by the relative risk (RR) is constant
across the two levels of X1. Next, we will combine cat-
egories 1 and 2, and 3 and 4 of X2, producing a new
variable ~X2 taking only two categories. This leads to
Table 4.
As observed, the association between ~X2 and the out-

come now differs between the two levels of X1 and a spuri-
ous interaction is introduced. Although the effect is not

Table 3 Illustration of the effect of collapsing exposure categories

X1=1 X1=2

X2 Diseased Not diseased Total RR X2 Diseased Not diseased Total RR

1 20 380 400 1.0 1 5 95 100 1.0

2 30 270 300 2.0 2 20 180 200 2.0

3 30 170 200 3.0 3 45 255 300 3.0

4 20 80 100 4.0 4 80 320 400 4.0

The table gives the true situation
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particularly strong in this example, an apparent increase in
power may partially be due to such an induced interaction.

Discussion
We have given yet another argument to why continuous
explanatory variables should not be categorized when en-
tered into a regression model. If we have correlated expos-
ure variables and categorize, this may lead to spurious
interactions in the regression model. Furthermore, we
have given an interpretation of this as a measurement
error problem.
Statistical interaction is scale dependent, both with

regard to model and measurement. An additive effect
on a linear scale may appear as multiplicative on a
transformed scale, like the logit. In the same way, any
monotone transformation of the measurement scales
of X1, X2 may lead to interactions. Hence, statistical
interactions need to be interpreted relative to the
scales on which they appear. As such, the main prob-
lem with the type of interaction discussed in the
present work is not its existence but the fact that it
is typically interpreted relative to its original measure-
ment scale.
Our formal development has been within the frame-

work of the linear regression model. However, based on
the considerations above, it is easy to realize that this
holds also for other regression models. Indeed, we have
shown the appearance of such an interaction effect in
logistic models through an example.
The practical implication of this is that whenever an

interaction effect appears in an analysis based on catego-
rized explanatory variables, the categorization itself should
be considered as a possible explanation. However, one
should also be aware that such an induced interaction may
counteract any possible true interaction present in the data,
and hence, mask this true interaction. It should be
mentioned that in a practical data analysis, one will need a
rather large sample size or strong effects for these interac-
tions to appear as statistically significant.

Conclusion
In summary, categorization of continuous variables should
be avoided. It leads to a number of problems, including
biased estimates, loss of power, inflated type-I error, and
spurious interaction effects. If the true effect of the expos-
ure variable(s) in question cannot be easily modelled by

classical parametric models, non-parametric regression
methods should be preferred in order to avoid the
above-mentioned problems and to gain insight into the
underlying relationship. If one choose to categorize des-
pite such warnings, it is generally preferable to categorize
into more than two groups in order to minimize the infor-
mation loss.
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