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Dynamic prediction of repeated events data
based on landmarking model: application to
colorectal liver metastases data
Isao Yokota1* and Yutaka Matsuyama2

Abstract

Background: In some clinical situations, patients experience repeated events of the same type. Among these,
cancer recurrences can result in terminal events such as death. Therefore, here we dynamically predicted the risks
of repeated and terminal events given longitudinal histories observed before prediction time using dynamic
pseudo-observations (DPOs) in a landmarking model.

Methods: The proposed DPOs were calculated using Aalen–Johansen estimator for the event processes described
in the multi-state model. Furthermore, in the absence of a terminal event, a more convenient approach without
matrix operation was described using the ordering of repeated events. Finally, generalized estimating equations
were used to calculate probabilities of repeated and terminal events, which were treated as multinomial outcomes.

Results: Simulation studies were conducted to assess bias and investigate the efficiency of the proposed DPOs in a
finite sample. Little bias was detected in DPOs even under relatively heavy censoring, and the method was applied
to data from patients with colorectal liver metastases.

Conclusions: The proposed method enabled intuitive interpretations of terminal event settings.

Keywords: Dynamic prediction, Landmarking, Pseudo-observations, Repeated events, Terminal event

Background
Events of interest are repeatedly observed during
follow-up of some diseases. For example, in colorectal
liver metastases following curative surgical resection, the
incidence of recurrence is as high as 75% [1]. Surgical
re-resection for recurrence is performed when possible,
and repeat recurrences are often resected until lesions
are unresectable or fatal. The most recent clinical obser-
vations of tumors are highly predictive of subsequent re-
currence, particularly in patients with multiple tumors
or previously resected tumors that may result in
recurrence. Risk of recurrence or death can be predicted
easily by a conventional approach with time to
recurrence-free survival. Prediction of the risk of recur-
rence and the risk of death separately has more clinical
importance because a recurrent case may undergo

re-resection, unlike a fatal case, in other words, a recur-
rent case is still at risk. Furthermore, the prediction of the
number of recurrences will be helpful for recognition of
its severity. Therefore, personalized predictions of each
risk of recurrence and death can be used to communicate
his/her prognosis to the patient and decide optimal exam-
ination intervals for detecting recurrences.
Dynamic prediction has an intuitive expression associ-

ated with the estimated probability of event occurrence
within (t, t +w), assuming that the patient is at risk at
prediction time t. For univariate survival outcomes, this
probability can be calculated using the Breslow estimator
based on Cox proportional hazards models [2]. However,
for repeated events data, dynamic prediction models are
required to estimate the probability of numbers of
events within (t, t +w), assuming being risk set at time t.
Marginal Cox models [3] can be used to estimate
k-times event probability as the difference between the
marginal probabilities of kth and (k − 1)th events.* Correspondence: isao-yokota@umin.ac.jp
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During following up subjects, we often observe a ter-
minal event, such as death, which preclude subsequent
repeated events and induce informative censoring be-
cause of correlations between repeated events and a ter-
minal event [4]. Thus, using joint frailty models [5–7],
terminal events were regarded as informative censoring,
and conditional distributions of repeated events on
frailty could be obtained. This modeling of repeated
events adjusted for the correlation between repeated
events and a terminal event may be difficult to interpret
clinically. Instead, a comprehensive approach should
consider probabilities or hazards of both repeated and
terminal events that are subject to estimation. In this
context, numbers of repeated and terminal events are
regarded as semi-competing risks [8, 9] that encompass
an illness–death process [10]. Our proposed method is
based on the illness–death process and dynamically pre-
dicts the probability of terminal events.
Researcher might include longitudinal data such as

biomarkers, health status, and disease histories as
time-dependent covariates in a prediction model. These
clinical measures are usually internal covariates and re-
quired extra modeling to predict survival functions ac-
curately [11, 12], and joint modeling and landmarking
are major approaches and explored the predictive per-
formance [13–15]. The former couples longitudinal tra-
jectory and survival models [16–20], and for continuous
variables observed at some interval; the model explicitly
specifies its trajectory for accurate predictions. The latter
landmarking approach is robust to model misspecifica-
tion for longitudinal processes [21–24] and uses only
longitudinal data Z(s) accumulated until a certain fixed
(landmarking) time s. This procedure treats longitudinal
data as fixed external covariates and leads to adequate
modeling for time-dependent internal covariates. Re-
cently parsimonious modeling approach in longitudinal
data was proposed [25]. Landmarking models of residual
lifetimes t – s have been developed [21, 26], and compet-
ing risks data have been considered in landmarking
models after extension based on Fine-Gray [27] models
[28] and on dynamic pseudo-observations (DPOs) [29].
Mauguen et al. [18] and Musoro et al. [24] examined

dynamic prediction on repeated events data. The former
was interested in dynamic prediction of death using can-
cer relapse, which is repeated events data. Because of the
dependency of death and relapse, time to death and time
to relapse were linked by joint frailty term. The latter
was interested in the dynamic prediction of infection
risk using longitudinal marker and history of infection.
Because patients repeat infection events, Cox frailty
model was employed and landmarking technique was
used for the longitudinal marker. The above methods
cannot be used as they are in situations where the risk of
each number of repeated event and the risk of a terminal

event are predicted in parallel. Therefore, we propose a
prediction method using DPOs for repeated events data in
the presence and absence of terminal events.
DPOs are proposed in the framework of pseudo-obser-

vations, which are each subject’s contribution to occurring
the event replace each observed or censored event indica-
tor at some time point. Although the realized value of
event indicator is unknown on the censored subject, the
contribution can be calculated by jackknife estimates. So
covariate information on a censored subject can be
incorporated into a generalized linear model directly.
Unlike multiple imputations, it is unnecessary of pseudo-
observations to repeat the creation of datasets nor com-
bine results obtained from datasets. DPOs are extended
such pseudo-observations in dynamic prediction for com-
peting risks [29], and the idea of DPOs was applied to
illness-death process [30]. So our proposal is regarded as
an extension of DPOs for semi-competing risks settings,
and that provides a dynamic prediction method in the
presence of a terminal event. It is unnecessary to specify
the correlation between repeated events and a terminal
event, or model hazard function addressed by existing
methods mainly. Although the asymptotic behavior of this
approach has been demonstrated [29, 31–33], few studies
have assessed the performance of pseudo-observations in
finite samples. Thus, we conducted simulations to evalu-
ate bias and efficiency of DPOs. Finally, we applied the
proposed method to data of Japanese patients with colo-
rectal liver metastases.

Method
Dynamic prediction and landmarking
For subject i (i = 1, …, n), let Tij, Ti

D, and Ci be times for
jth (j = 1, 2, …, Ji) repeated events, a terminal event and
censoring time, respectively, and let Zi(t) = [Zi1(t),
…,Zip(t)]

T be the time-dependent covariate vector at time
t. Therefore, potential data {{Tij}, Ti

D, Ci, Zi(t)} in subject i
are assumed to be independent from {{Ti’j}, Ti’

D, Ci’, Zi’(t)}
in another subject (i’) (assumption 1). If a terminal event
is not considered,Ti

D is set to ∞. Because dynamic predic-
tion estimates a conditional probability of an event based
on at risk at a certain time point s, we refined notations of
random variables of repeated events time as follows: Let
T �

mik be k
th (k = 1, 2, …) repeated event time counted from

mth (m = 0,…, M) conditional(landmark) time sm. For ex-
ample, if the subject i has experienced two events until sm,
time T�

mi1;T
�
mi2;T

�
mi3 is assigned to Ti3, Ti4, Ti5, respect-

ively. For parsimonious definition, the number of events
occurred before sm could be treated as covariates Z(s) or
stratified factor to taking into consideration for dynamic
prediction. We would illustrate the former approach with
a real example in section 2.5. We abbreviate sm and T �

mik

to s and T �
k , respectively.
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Hence, the probability of just k-time events occur-
ring within (s, s + w) and a terminal event occurring
after s + w given the subject being at risk at time s is
expressed as follows:

Fk sþ wjsð Þ ¼ Pr T�
k ≤sþ w;T�

kþ1 > sþ w;TD > sþ w TD > s
��� �

;

fork ¼ 0; 1;…;

ð1Þ
and the probability of a terminal event is expressed as

follows:

FD sþ wjsð Þ ¼ Pr TD≤sþ wjTD > s
� �

; ð2Þ
where w (w > 0) is the prediction window. To make these
probabilities {FD, F0, F1, …} mutually exclusive and equal
to a total of 1, we define dynamic prediction to estimate
conditional probabilities {FD, F0, F1, …} and ‘at risk’ as
the status of subjects who have experienced neither cen-
soring nor terminal events.

Proposed DPOs
The predicted probabilities presented in eq.(1) and
eq.(2) are regarded as expectations of event indicators.
For example, EfIðT �

k ≤sþ w;T�
kþ1 > sþ wjTD > sÞg

represents the probability of k-times repeated events. If
there are no censored subjects, this expectation can be
calculated as the average of indicators for each subject.
Conversely, these indicators must be unknown for the
censored subject. Andersen et al. proposed that indica-
tors among all subjects could be replaced with
pseudo-observations [34], and Nicolaie et al. extended
them to dynamic predictions named dynamic pseudo-
observations (DPOs) [29]. Pseudo-observations are calcu-
lated by the difference between the estimates of predicted
probability multiplied by sample size n and the
leave-one-out estimates multiplied by n-1, and looked
upon as predicted indicators if censoring does not occur in
any subjects. In addition to this, predicted probabilities can
be calculated from the generalized linear model with re-
gression pseudo-observations on some covariates, directly.
For subject i at risk at landmark time s, DPOs of

k-times repeated events and the terminal event were de-
fined as follows, respectively:

θ̂ik sð Þ ¼ ns � F̂k sþ wjsð Þ− ns−1ð Þ � F̂ −ið Þ
k sþ wjsð Þ; fork ¼ 0; 1; …;

ð3Þ

θ̂
D
i sð Þ ¼ ns � F̂D

sþ wjsð Þ− ns−1ð Þ � F̂D; −ið Þ
sþ wjsð Þ; ð4Þ

where ns is the number of risk sets at the landmark time s,
and F̂k and F̂

D
are consistency estimates of Fk and FD, re-

spectively, as described in 2.2.1 and 2.2.2. The superscript
(−i) represents corresponding leave-one-out estimates
from datasets that are omitted only for subject i.

We have added the following assumptions that under-
lie the landmark dataset.

� Censoring time Ci is independent on potential event
times {T*

ij}, Ti
D, and covariates Zi(s); noninformative

censoring (assumption 2)
� G(·) denotes the survival function of censoring.

Hence, for any τ; τ > s +w, G(τ) > 0. (assumption 3)

From previous researches [29, 31], assumptions 1–3
were required for the DPOs listed in sections DPOs in
the absence of a terminal event and DPOs in the
presence of a terminal event to maintain consistency of
estimated regression coefficients and corresponding
variances, as presented in section Construction of the
dynamic prediction regression model.

DPOs in the absence of a terminal event
In the presence of repeated events only, a terminal
event may be treated as usual censoring, and we tar-
get the probability in eq.(1). Assuming the multi-state
model in repeated events process (Fig. 1a), prediction
probabilities can be obtained using the product–inte-
gral as the state occupation probability (detailed in
Additional file 1: Appendix). Under Markov processes
between states, this transition probability matrix is
termed Aalen–Johansen (AJ) estimator [35] and has
consistency in O(n1/2) with assumptions 1,2 and some
regulatory conditions [36]. Furthermore, Datta and
Satten [37] showed that empirical state occupation
probabilities for the whole dataset could be consist-
ently estimated using the product integral, in the
same manner as that using the AJ estimator. Hence,
the estimated transition matrix using product integral
is referred to as the AJ estimator regardless of
Markovian principles.
Because all subjects belong to state 0 (initial state) at

the landmark point in the multi-state model for re-
peated events (Fig. 1a), the probability of the kth re-
peated event is denoted by P0k(t), which is the
transition probability from state 0 to state k pictured in
Fig. 1a. Accordingly, DPOs for the k-time event in
eq.(3) are calculated as follows:

θ̂ik sð Þ ¼ ns � P̂0k s; sþ wð Þ− ns−1ð Þ � P̂ −ið Þ
0k s; sþ wð Þ ð5Þ

This method is referred to as the DPOs-based on the
AJ estimator.
The method described in eq.(5) requires difficult

matrix computation because of the product integral.
Thus, to improve convenience, we propose another
DPO using the sequence of repeated events and rewrite
the k-times event probability function Fk(s + w|s) as
follows:
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Fk sþ w sjð Þ ¼ E I T�
k ≤sþ w;T�

kþ1 > sþ w
� �� �

¼ E 1−I T�
k > sþ w

� �� � � I T�
kþ1 > sþ w

� �� �

¼ E I T �
kþ1 > sþ w

� �
−I T �

k > sþ w
� �� �

¼ E I T�
kþ1 > sþ w

� �� �
−E I T�

k > sþ w
� �� �

¼ S�kþ1 sþ wð Þ−S�k sþ wð Þ

where S�kð�Þ is survival function for T�
k . The probability

of the k-times event is expressed as the difference be-
tween the survival probability of the (k + 1)th event and
the kth event. Subsequently, S�kð�Þ can be directly and
consistently estimated using Kaplan–Meier (KM)
estimators [38] or using the exponential transformed
Nelson–Aalen estimator in O(n1/2). However, we only
consider using the KM estimator to estimate S�kð�Þ , and
DPOs based on KM estimator was calculated as follows:

θ̂ik sð Þ ¼ ns � Ŝ
�
kþ1 sþ wð Þ−Ŝ�k sþ wð Þ

n o
− ns−1ð Þ

� Ŝ
�; −ið Þ
kþ1 sþ wð Þ−Ŝ�; −ið Þ

k sþ wð Þ
n o

ð6Þ

DPOs in the presence of a terminal event
The illness-death model is applicable to situations
with only one terminal event and one non-terminal
event. As an extension of the illness-death model, the
multi-state model shown in Fig. 1(b) expresses re-
peated event processes in the presence of a terminal
event. Accordingly, DPOs for repeated events are as
in eq.(5), and DPOs for a terminal event in eq.(4) are
described as follows:

θ̂
D
i sð Þ ¼ ns � P̂0D s; sþ wð Þ− ns−1ð Þ � P̂ −ið Þ

0D s; sþ wð Þ:
ð7Þ

Construction of the dynamic prediction regression model
To demonstrate dynamic prediction at one fixed land-
mark time s, the relationships between event probabil-
ities and landmarking covariates Zi(s) are constructed in
the generalized linear model framework. The fixed land-
mark regression model is described as follows:

g θi sð Þf g ¼ β sð Þ⊤Z�
i sð Þ

where g denotes a link function. Accordingly, we regard
θiðsÞ ¼ ½θi1ðsÞ; θi2ðsÞ;⋯; θiJ sðsÞ�⊤ as multinomial prob-
ability and exclusion of θi0(s) from θi(s) evaded param-
eter redundancy. Note that Z�

i ðsÞ is among baseline and
longitudinal covariates up to the landmark time s and
the intercept. For example, when we assume a multi-
nomial model [39, 40] with a generalized logit link to
DPOs, the link function is logit and covariates Z�

i ðsÞ are
formed as follows:

Z�
i sð Þ ¼

1 Zi sð Þ⊤ 0
1 Zi sð Þ⊤

⋱
0 1 Zi sð Þ⊤

0
BB@

1
CCA:

The regression coefficient vector β is calculated by
solving the following estimating equation:

U β sð Þf g ¼
X
i

Di sð Þ⊤V−1
i sð Þ θ̂i sð Þ−θi sð Þ

n o

¼ 0; Di sð Þ ¼ ∂θi sð Þ
∂β sð Þ ;

where Vi(s) follows a multinomial distribution.

a

b

Fig. 1 Assumed multi-state model for repeated events processes; (a) when no terminal event was assumed, (b) when a terminal event was assumed
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Accordingly, asymptotic variance of β(s) is calculated from
model variance as Varfβ̂ðsÞg ¼ f

X
i

D̂iðsÞ⊤V̂−1
i ðsÞD̂iðsÞg

−1
.

Estimation in event probability is transformed from β̂ðsÞ
using the inverse link function, and its variance is calculated

from Varfβ̂ðsÞg using the delta method.
Because predicted probabilities at each time point

were estimated from different fixed landmark regression
models, predicted probabilities tend to vary with pro-
ceeding landmark times. Especially when the number at
risk is small, predicted probabilities take a large value
change. Hence, to enhance an interpretation, the
smoothers f(s) against landmark times are included in
regression coefficients to continuously predict event
probabilities. In addition, the precision of predicted
probabilities is likely improved because the information
from several landmark times can be used. This super-
model is described that regression coefficients are di-
vided into polynomial smoother parts and invariant
parts and are multiplied by β(s) = f(s) · β. In practice, the
following covariates are stacked for several landmark
times, and their interactions are described in the follow-
ing polynomial function f0(s), f1(s), ⋯, fh(s),

~Z
�
i ¼

f 0 s0ð ÞZ�
i s0ð Þ ⋯ f h s0ð ÞZ�

i s0ð Þ
⋮

f 0 sMð ÞZ�
i sMð Þ ⋯ f h sMð ÞZ�

i sMð Þ

0
@

1
A; f 0 �ð Þ ¼ 1:

Similarly, DPOs are stacked as θ̂i ¼ ½θ̂iðs0Þ⊤;⋯; θ̂iðs0Þ⊤�⊤.
However, because multiple DPOs from the same subject
are present, a generalized estimating equations approach
[41] was adapted and solved as follows:

U ~β
� � ¼

X
i

~Di
⊤ ~V

−1
i θ̂i−θi
n o

¼ 0; ~Di ¼ ∂θi
∂~β

:

The robust (sandwich) estimator is used for the covari-

ance matrix of ~β and only specified as the independent
type because of consistencies of estimating equations [42].

Simulation studies
Because the above asymptotic properties of DPOs were
already shown, to assess the performance of proposed
DPOs in a finite and realistic sample (n = 100), we con-
ducted Monte Carlo simulation studies. Conditions WITH-
OUT/WITH terminal events are described in Predictions
of repeated events without a terminal event and Prediction
of repeated events WITH a terminal event, respectively.

Predictions of repeated events without a terminal event
Repeated events for subject i were limited to two, and
corresponding times were represented as ti1 and ti2. Sub-
sequent exponential distribution with hazards λi1 and λi2
resulted in the first event time ti1 and the lag time be-
tween the first and second time ti2 − ti1 as follows:

λi1 ¼ uiλ01; λi2 ¼ uiλ02;

where ui denotes the frailty parameter, and λ01 and λ02
are baseline hazards. To assume heterogeneity of event
occurrence between subjects, ui must follow a gamma
distribution with shape and rate parameters of 0.5.
Moreover, the correlation between ti1 and ti2 − ti1 is the-
oretically 0.5 according to Kendall’s tau, and when ui is
constant at 1, no heterogeneity is present. Baseline haz-
ards λ01 and λ02 are set to reflect Markov or semi-
Markov process. In particular, λ01 = λ02 = 1 under the as-
sumption of Markovian event processes. When λ01 = 1
and λ02 = 2, a semi-Markov process is assumed, such
that the first event accelerates the hazard of the second
event. Finally, probabilities for each number of events at
time 1 were calculated from generated data (n = 100),
and empirical probabilities were considered to be true
values for each replication.
Right censoring was generated using an exponential dis-

tribution that is independent of repeated event processes,
with hazards λc = 0.5 or λc = 2. Proposed DPOs based on
the AJ (eq.(5)) and KM (eq.(6)) estimators were applied to
these right-censored data, and expectations of these DPOs
were calculated as dynamic predicted values. In all scenar-
ios, bias, and efficiency of prediction at t = 0 with window
w = 1 were evaluated from 1000 repetitions of true and dy-
namic predicted values using the absolute bias, and the
root mean squared error (RMSE), respectively.

Prediction of repeated events WITH a terminal event
To examine the performance of DPOs in eq.(5) and eq.(7)
in the presence of terminal events, we performed simula-
tion studies as described in section Predictions of repeated
events without a terminal event. In addition to the two re-
peated event times, the potential time for the occurrence
of a terminal event tiD was generated using the following
exponential distribution with hazard λiD:

λi1 ¼ uiλ01; λi2 ¼ uiλ02; λiD ¼ uiλ0D;

where λ0D is a baseline hazard and is fixed at 0.3. The
frailty parameter ui was subject to a gamma distribution;
therefore, correlations of any pair among ti1, ti2 − ti1 and
tD were of the same strength. Other procedures were
similar to those described in section Predictions of
repeated events without a terminal event.

Application of the DPOs to colorectal liver metastases data
We applied the proposed DPOs method to colorectal liver
metastases data of 263 patients from Japan [1]. The data-
base had been prospectively collected from 263 patients
who underwent upfront hepatic resections from January
1996 to December 2010 at the Hepato-Biliary-Pancreatic
Surgery Division, Department of Surgery, Graduate School
of Medicine, The University of Tokyo. No included patient
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had received postoperative adjuvant chemotherapy or was
enrolled in clinical trials. A total of 202 patients (76.8%)
suffered first recurrences and 108 (53.3%) of these were
re-resected. Patients had up to four recurrences, and dy-
namic predictions of 3-year event risks were calculated
using information from the most recent tumor to identify
patients at high risk of recurrence.
In these analyses, 3-year risks of recurrence were

classified as no recurrence, single recurrence or mul-
tiple recurrences, and were dynamically predicted ac-
cording to numbers of recurrences (≥1 vs. 0),
numbers of tumors (single or multiple) and tumor
lengths (> 2 cm or ≤ 2 cm) before landmark time. Ini-
tially, DPOs from eq.(5) and eq.(6) were applied, and
death was thought as censoring. In addition to the
fixed landmark regression model, a supermodel was
constructed using cubic smoothers against landmark
time as follows: f(s) = [f0(s), … , f3(s)] = [1, s, s2, s3].
To take a terminal event into consideration, 3-year

risks of recurrence were classified as no recurrence, sin-
gle recurrence, multiple recurrence or death. DPOs in
eq.(5) and eq.(7) were applied and a fixed landmark
model and a supermodel with cubic smoothers against
landmark time were constructed.

Results
Simulation
Performance of DPOs in the absence of a terminal event
To examine scenario characteristics, the mean true
probability of event numbers, censored proportions and
Kendall’s tau between ti1 and ti2 − ti1 were calculated
(Table 1). In all scenarios, true probabilities of event
numbers were > 10%, and event times were censored
heavily at λc = 2 and could be observed the event time at
< 25% subject.
Absolute bias and RMSE values are presented in

Table 2. In all scenarios, both methods resulted in ap-
proximately zero bias indicating accurate estimates of

event processes based on the use of Markovian or
semi-Markovian principles and heterogeneity of event
occurrences between subjects. RMSE in the method
based on the AJ estimator was less than or equally effi-
cacious compared with the method based on the KM es-
timator, and RMSE ratios were 0.9–1.0.

Performance of DPOs in the presence of a terminal event
Scenario characteristics are shown in Table 3. Results of
absolute bias and RMSE analyses are shown in Table 4.
Little bias was observed, and RMSE values were consist-
ent with those described in section 3.1.1.

Application of the DPOs to a real example
First, we applied two-types DPOs described in eq.(5) and
eq.(6). Parameter estimates from the supermodel are shown
in Table 5, and few differences in parameter estimates from
the two types of DPOs were observed. Predicted probabil-
ities are shown in Additional file 2.
Further, we applied DPOs that included terminal events.

Predicted probabilities among patients with data for single
and small (≤2 cm) tumors are shown in Fig. 2, and other
predicted probabilities and parameter estimates of the
supermodel are shown in Additional file 2. Patients who
had experienced recurrences before landmark time had
higher risks of recurrence and death than those who have
not experienced recurrences, whereas among patients
with single and small tumors at the first hepatic resection
and no recurrence for approximately 3 years, subsequent
recurrences were very rare. In contrast, patients with re-
currences before landmark time had a moderate risk of
re-recurrence. Also, multiple tumors resulted in worse
prognoses compared with single tumors.

Discussion
Here we applied dynamic prediction methods for re-
peated events using pseudo-observations and examined
that performance using simulation studies. Prediction
biases of the ensuing DPOs were calculated in a finite

Table 1 Summary of data generated in the absence of a terminal event

Simulation parameters True proportion of event numbers Censored
proportion

Kendall’s tau
between ti1 and ti2 − ti1ui λ01 λ02 λc No events 1 2

1 1 1 0.5 36.7 36.8 26.5 35.7 −0.001

1 1 2 0.5 36.7 23.3 40.0 33.4 −0.001

Γ(0.5,0.5) 1 1 0.5 57.5 19.4 23.1 35.2 0.497

Γ(0.5,0.5) 1 2 0.5 57.5 13.1 29.4 33.7 0.497

1 1 1 2 36.7 36.8 26.5 81.2 −0.001

1 1 2 2 36.7 23.4 39.9 77.5 −0.001

Γ(0.5,0.5) 1 1 2 57.4 19.6 26.0 79.8 0.496

Γ(0.5,0.5) 1 2 2 57.4 13.4 29.2 77.0 0.496
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sample and indicated good performance regardless of
processes for repeated events, which were assumed to be
Markovian or semi-Markovian in the presence or ab-
sence of frailty. These assumptions were not testable
using the observed data; therefore, independence of the
present DPOs enables application of dynamic prediction
based on landmarking to most types of time-to-event
data observed in medical studies. Through real example,
we drew the predicted probabilities of various type of
events, such as repeated and terminal events. These

comprehensive graphs must improve a subjective under-
standing of the disease.
In practice, it is easier to calculate proposed DPOs

based on the KM estimator than on the AJ estimator
using standard analysis packages because the AJ estima-
tor requires matrix multiplication using proc. IML in
SAS. A structure of landmark dataset and program
codes of AJ estimator are shown in our website(https://
github.com/yokotai/ and http://yokotai.wordpress.com/).
Although repeated events can be modeled using

Table 2 Simulation results in the absence of a terminal event

Scenario DPOs based on AJ estimatora DPOs based on KM estimatorb

ui λ01 λ02 λc no events 1 event 2 events No events 1 event 2 events

Absolute biasc

1 1 1 0.5 −0.0005 0.0004 0.0001 −0.0005 0.0008 −0.0004

1 1 2 0.5 −0.0005 0.0005 −0.0001 −0.0005 0.0011 −0.0006

Γ(0.5, 0.5) 1 1 0.5 −0.0006 0.0004 0.0002 −0.0006 0.0003 0.0003

Γ(0.5, 0.5) 1 2 0.5 −0.0006 0.0006 −0.00004 −0.0006 0.0007 −0.0001

1 1 1 2 −0.0034 0.0086 −0.0052 −0.0044 0.0102 −0.0063

1 1 2 2 −0.0057 0.0105 −0.0048 −0.0067 0.0127 −0.0066

Γ(0.5, 0.5) 1 1 2 −0.0066 0.0112 −0.0047 −0.0066 0.0088 −0.0022

Γ(0.5, 0.5) 1 2 2 −0.0113 0.0174 −0.0061 −0.0113 0.0129 −0.0016

Root Mean Squared Error (RMSE)

1 1 1 0.5 0.0282 0.0340 0.0270 0.0282 0.0347 0.0280

1 1 2 0.5 0.0282 0.0304 0.0281 0.0282 0.0328 0.0310

Γ (0.5, 0.5) 1 1 0.5 0.0260 0.0264 0.0220 0.0260 0.0284 0.0243

Γ (0.5, 0.5) 1 2 0.5 0.0260 0.0241 0.0245 0.0260 0.0268 0.0270

1 1 1 2 0.0837 0.0969 0.0733 0.0851 0.1004 0.0758

1 1 2 2 0.0840 0.0935 0.0813 0.0855 0.0997 0.0852

Γ (0.5, 0.5) 1 1 2 0.0702 0.0762 0.0606 0.0703 0.0797 0.0641

Γ (0.5, 0.5) 1 2 2 0.0695 0.0693 0.0628 0.0696 0.0753 0.0682
a Proposed in eq.(5)
b Proposed in eq.(6)
c Mean differences between true values and dynamic predicted values; True values are empirical probabilities of event numbers calculated from potential event
times. Dynamic predicted values are the expectations of proposed DPOs

Table 3 Summary of data generated in the presence of a terminal event

Simulation parameters True proportion of event numbers Censored
proportion

Kendall’s tau

ui λ01 λ02 λ0D λc No events 1 2 terminal (ti1, ti2 − ti1) (ti1, tiD) (ti2 − ti1, tD)

1 1 1 0.3 0.5 27.3 27.2 19.5 26.0 34.1 −0.0003 0.002 0.001

1 1 2 0.3 0.5 27.3 17.1 29.5 26.0 34.1 −0.0003 0.002 0.001

Γ(0.5,0.5) 1 1 0.3 0.5 52.7 14.4 11.8 21.1 35.2 0.501 0.500 0.499

Γ(0.5,0.5) 1 2 0.3 0.5 52.7 10.3 16.0 21.1 35.2 0.501 0.500 0.499

1 1 1 0.3 2 27.2 27.2 19.6 26.9 77.9 −0.001 0.0003 0.002

1 1 2 0.3 2 27.2 17.4 29.5 26.9 77.7 −0.001 0.001 0.004

Γ(0.5,0.5) 1 1 0.3 2 52.3 14.7 12.2 20.9 78.6 0.499 0.498 0.497

Γ(0.5,0.5) 1 2 0.3 2 52.2 10.8 16.2 20.9 78.5 0.497 0.495 0.495
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marginal Cox model, DPOs are preferable to dynamic
predictions for the following reasons: First, DPOs are
free of the proportional hazards assumptions that are
imposed on marginal Cox models. Second, generalized
linear models with the supermodel can be used to
smoothly predict probabilities against landmark time,
whereas the supermodel of the marginal Cox modeling
approach returns wiggly function of predicted probabil-
ities against landmark time because of the step functions
for estimates of baseline hazards. Since it is hard to
think that the predicted probabilities repeat increasing
and decreasing over time within a short time-span, it
would be better to get the smooth curves for interpret-
ation. Finally, the present DPOs have sufficient flexibility
to accommodate the use of several link functions.
Although a prediction model based hazard function is
an analog of generalized linear model linked with com-
plementary log-log function, our methods do not restrict
any link function such as log, logit or probit.
Fitting DPOs to generalized linear models as

multinomial outcomes may present practical issues be-
cause of the absence of standard analytic tools. Therefore,
we recommend multivariate binary models after
transformation using multinomial models to provide cor-
rect point estimates [39, 40]. Although variance estimates

based on multivariate binary models have suspicious zero-
covariance estimates between multinomial outcomes,
these estimates can be used in practice because stand-
ard errors from binary models may slightly differ
from those from multinomial models. In addition, be-
cause other covariates, model forms and selections of
link function affect the lengths of confidence inter-
vals, precision may be of less importance than accur-
acy in the prediction context.
There were two reasons why the simulation did not

deal with the evaluation of predictive performance if
we use longitudinal covariates available. First, model
performance depends on specification of model form.
On landmark supermodel, predicted probabilities at a
certain time point was affected from another time
point through smoothers f(s). This fact may cause
more efficiency and more bias. The number of land-
marking time and the interval of landmarking on a
supermodel are worth investigating, but we have to
make sure in a broad situation, and we would like to
make it a future work. Second, there are few methods
of predictive performance which can use for repeated
events with terminal events. Model selection and
model validation require the performance measures.
We believe that loss function approaches with

Table 4 Simulation results in the presence of a terminal event

Scenario DPOs based on AJ estimatora

ui λ01 λ02 λ0D λc no events 1 event 2 events a terminal event

Absolute biasb

1 1 1 0.3 0.5 0.0003 − 0.00002 0.0006 −0.0008

1 1 2 0.3 0.5 0.0003 −0.0004 0.0010 −0.0008

Γ (0.5, 0.5) 1 1 0.3 0.5 0.0011 −0.0002 − 0.0011 0.0002

Γ (0.5, 0.5) 1 2 0.3 0.5 0.0011 −0.0002 − 0.0010 0.0002

1 1 1 0.3 2 −0.0025 −0.0017 0.0040 0.0002

1 1 2 0.3 2 −0.0057 0.0088 −0.0032 0.0001

Γ (0.5, 0.5) 1 1 0.3 2 −0.0081 0.0086 0.0055 −0.0060

Γ (0.5, 0.5) 1 2 0.3 2 −0.0094 0.0137 0.0010 −0.0053

Root Mean Squared Error (RMSE)

1 1 1 0.3 0.5 0.0264 0.0316 0.0241 0.0245

1 1 2 0.3 0.5 0.0264 0.0270 0.0281 0.0245

Γ (0.5, 0.5) 1 1 0.3 0.5 0.0261 0.0238 0.0207 0.0211

Γ (0.5, 0.5) 1 2 0.3 0.5 0.0261 0.0214 0.0225 0.0209

1 1 1 0.3 2 0.0724 0.0836 0.0697 0.0681

1 1 2 0.3 2 0.0704 0.0749 0.0783 0.0687

Γ (0.5, 0.5) 1 1 0.3 2 0.0703 0.0644 0.0526 0.0562

Γ (0.5, 0.5) 1 2 0.3 2 0.0701 0.0609 0.0620 0.0575
a Proposed in eq.(5) and eq.(7)
b Mean differences between true values and dynamic predicted values; True values are empirical probabilities of event numbers calculated using potential event
times. Dynamic predicted values are expectations of proposed DPOs
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squared error, such as Brier scores in survival ana-
lyses [43, 44], should be applicable.

Conclusion
In this article, we proposed a dynamic prediction method
for repeated events data regardless of whether or not to

consider a termination event. The method can predict the
event probabilities consistently regardless of processes for
repeated events, which were assumed to be Markovian or
semi-Markovian in the presence or absence of frailty.
Through a simulation study, the method works well in a
relatively small finite sample. We contributed a new

Table 5 Parameter estimates in landmarking supermodel using two-types of dynamic pseudo observations (DPOs)

DPOs based on AJ estimator (eq.(5)) DPOs based on KM estimator (eq.(6))

1 recurrence 2 or more recurrences 1 recurrence 2 or more recurrences

estimate robust s.e. estimate robust s.e. estimate robust s.e. estimate robust s.e.

Intercept −1.22 1.99 1.30 4.27 −1.06 1.97 −0.13 4.23

Time (year)

s 2.19 3.28 −6.24 6.28 1.92 3.24 −3.98 6.15

s2 −1.53 1.64 2.42 2.69 −1.41 1.62 1.38 2.61

s3 0.22 0.24 −0.32 0.34 0.21 0.24 −0.19 0.33

The number of recurrences (1 or more / 0)

Intercept 1.92 2.12 0.49 4.72 1.84 2.09 1.51 4.54

s −2.87 3.26 3.36 7.01 −2.70 3.21 1.78 6.73

s2 1.65 1.55 −2.26 2.99 1.58 1.53 −1.55 2.87

s3 −0.24 0.22 0.38 0.38 −0.23 0.22 0.29 0.37

Multiple tumors / single tumor

Intercept 4.46 2.09 −2.27 4.32 4.31 2.05 −1.30 4.44

s −7.87 3.21 3.16 6.64 −7.57 3.15 1.38 6.77

s2 3.86 1.50 −0.91 2.89 3.71 1.48 0.01 2.91

s3 −0.53 0.21 0.09 0.37 −0.51 0.21 −0.04 0.36

The length of tumor (> 2 cm / ≤2 cm)

Intercept −0.10 1.87 −1.19 4.07 −0.09 1.89 −0.66 4.00

s 0.31 2.88 4.08 6.21 0.30 2.91 3.29 6.04

s2 −0.21 1.34 −2.05 2.70 −0.19 1.37 −1.74 2.58

s3 0.03 0.19 0.29 0.35 0.02 0.20 0.26 0.33

Fig. 2 Stacked 3-year event probability in subjects with single tumors of≤ 2 cm. Stacked graphs show predicted risks of no recurrence for 3 years
after landmark time (blue), 1 time recurrence (yellow), ≥2 recurrence (orange) and death (purple). Circles and error bars show point estimates and
95% CI, respectively, from the fixed landmark regression model. Filled areas show point estimates from the supermodel

Yokota and Matsuyama BMC Medical Research Methodology           (2019) 19:31 Page 9 of 11



modeling method of repeated events data with a terminal
event which provided predicted probabilities of his/her
prognosis and had an intuitive interpretation.
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