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Abstract

Background: In clinical trials and survival analysis, participants may be excluded from the study due to withdrawal,
which is often referred to as lost-to-follow-up (LTF). It is natural to argue that a disease would be censored due to death;
however, when an LTF is present it is not guaranteed that the disease has been censored. This makes it important to
consider both cases; the disease is censored or not censored. We also note that the illness process can be censored by
LTF. We will consider a multi-state model in which LTF is not regarded as censoring but as a non-fatal event.

Methods: We propose a multi-state model for analyzing semi-competing risks data with interval-censored or missing
intermediate events. More precisely, we employ the additive and multiplicative hazards model with log-normal frailty
and construct the conditional likelihood to estimate the transition intensities among states in the multi-state model.
Marginalization of the full likelihood is accomplished using adaptive importance sampling, and the optimal solution of
the regression parameters is achieved through the iterative quasi-Newton algorithm.

Results: Simulation is performed to investigate the finite-sample performance of the proposed estimation method in
terms of the relative bias and coverage probability of the regression parameters. The proposed estimators turned out
to be robust to misspecifications of the frailty distribution. PAQUID data have been analyzed and yielded somewhat
prominent results.

Conclusions: We propose a multi-state model for semi-competing risks data for which there exists information on
fatal events, but information on non-fatal events may not be available due to lost to follow-up. Simulation results
show that the coverage probabilities of the regression parameters are close to a nominal level of 0.95 in most cases.

event, Multi-state model, Semi-competing risks data

Regarding the analysis of real data, the risk of transition from a healthy state to dementia is higher for women;
however, the risk of death after being diagnosed with dementia is higher for men.

Keywords: Additive and multiplicative hazards model, Interval censoring; log-normal frailty, Missing intermediate

Background

In classical time-to-event or survival analysis, subjects are
under risk for one fatal event. However, subjects do not
fail from just one certain type of event in some appli-
cations, but are under risk of failing from two or more
mutually exclusive types of events. When an individual
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is under risk of failing from two different types of event,
these different event types are called competing risks. One
of the events censors the other, and vice versa, in these
competing risks frameworks [1-3]. However, many clini-
cal trials have revealed that a subject can experience both
a non-fatal event (e.g., a disease or relapse) and a fatal
event (e.g., death), where the fatal event censors the non-
fatal event but not vice versa. We call these types of data
semi-competing risks data [4—6].
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In clinical trials, the occurrence of a non-fatal event can
be detected in conjunction with possibly incessant mon-
itoring during periodic follow-up. For illustration pur-
poses of our methodologies, a dataset named PAQUID
(Personnes Agées Quid) is analyzed to investigate the
meaningful prognostic factors associated with dementia.
These data were initially analyzed by [7] using the con-
ventional Cox model [8, 9]. Complete descriptions of the
PAQUID data can be found in Conclusions section. In this
paper, we employ a semi-competing risks model where
death may occur after dementia has occurred (i.e., been
diagnosed), but death censors the disease. An illness-
death model [10] is perhaps one of the most commonly
and frequently used semi-competing risks models. Many
studies have been conducted under semi-competing risks
frameworks [4, 5, 11].

As shown in the PAQUID data, dementia can be cen-
sored informatively by death. Furthermore, an additional
informative censoring process can also occur. That is,
participants may be excluded from the study due to with-
drawal, which is often referred to as lost-to-follow-up
(LTF). It is clear that dementia would be censored due
to death; however, when an LTF is present it is not guar-
anteed that dementia has been censored. This makes it
important to consider both cases; dementia is censored
or not censored. We also note that the illness process
(dementia) can be censored by LTF. This forces us to con-
sider a multi-state model in which LTF is not regarded
as censoring but as a non-fatal event. Considerable stud-
ies have utilized this multi-state model. For example, [12]
proposed a nonparametric method to estimate the sur-
vival function associated with disease occurrences, while
[6, 13] used the Cox proportional hazards model [8, 9] to
estimate regression coefficients.

In the meantime, most non-fatal events are observed
periodically. That is, the event time is not observed exactly
but lies on an interval of the form (L, R], where L is the last
time a subject visited without possessing a disease and R
is the first time that the subject was diagnosed with a dis-
ease. This type of censoring is called interval censoring.
We could emulate what [6] did and assume that a non-
fatal event of a subject occurs uniformly on the interval
(L, R]. However, using the methods proposed by [14, 15],
we instead partition the interval (L, R] into a few sub-
intervals, in which a non-fatal event can occur. Ultimately,
different weights can be assigned to each sub-interval.
Thus, the former method corresponds to an uncondi-
tional probability approach with equal weight on all of
the sub-intervals, whereas the latter utilizes a conditional
probability approach with a specific weight, depending on
the sub-interval.

In our study, we use the latter method to deal with
non-fatal events that are interval-censored on an inter-
val. In addition, we propose an additive-multiplicative
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model by combining the Cox proportional hazards model
with the additive risk model of [16], in accordance with
a multi-state model. The additive-multiplicative model
was initially introduced by [17] and has since been devel-
oped by a number of researchers. Scheike and Zhang [19]
incorporated time-varying covariates for the additive part
and time-independent covariates for the multiplicative
part. On the other hand, [18] estimated relevant parame-
ters by considering time-varying covariates for both addi-
tive and multiplicative parts. We also consider the frailty
effect as a latent variable to incorporate possible connec-
tions between events; this is done because each individual
is exposed to several events, including the occurrence of
illness, LTF, and death.

The rest of the paper is organized as follows. First, we
explain notations and procedures for parameter estima-
tion along with the proposed models. Second, extensive
simulation studies are presented to investigate the model
performances in terms of the relative bias and coverage
probability of the proposed estimates. We also provide the
results of real data analysis. Finally, we present a summary
and concluding remarks, including some of the drawbacks
of the proposed models and directions for future research.

Methods

Models

As depicted in Fig. 1, the proposed model in this study
consists of five states: healthy (H), non-fatal (NF), fatal
(F), lost-to-follow-up (LTF), and unobserved non-fatal
(NF(LTE)). Each state is denoted by numbers 0 through
4, respectively. A total of seven possible transitions exists
in the model: 0 - 1,0 — 2,0 - 3,1 — 2,3 — 2,
3 — 4, and 4 — 2. However, among these transitions,
both 3 — 4 and 4 — 2 (displayed as dotted lines in Fig. 1
are unobservable and should be regarded as potential
transitions.

Let ¢ be the time from study entry. Additionally, S;
is defined as the state that each subject can take at
t > 0. Then, S; € {0,1,2,3,4}. Let A = {(r,9)
(r,s) = (0,1),(0,2),(0,3),(1,2),(3,2),(3,4), (4,2)}. Also,
define X,5(¢) to be the transition intensity from states r to
s at time ¢. That is,

Pr(Sivdr = 8ISt = 1)
dt

Ars(B) = dltiglo for (r,s) € A,

and A,(¢) = O for (r,s) ¢ A. As mentioned above, the data
corresponding to transitions 3 — 4 and 4 — 2 are not
observable, requiring the following assumptions for Az4(f)
and Ago(2):
)‘-34(t) = }"Ol(t)r t=> 0, (1)
dap(t) = r12(t), t = 0. (2)

Assumptions (1) and (2) imply that the transition
intensities of H to NF and NF to F may be the same,
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Fig. 1 Five-state model

irrespective of the occurrence of LTF. As mentioned in
Background section, given covariates z = (zl,zz, ... ,zp)/
and w = (wy,wo,...,w,), along with frailty u, we con-
sider additive and multiplicative models defined as

Ars(tlz, w, 1) = 1 (B2 + exp (o) w) Grsy,sty'fl) for (r,s) € A,

3)

where 6,5(> 0) and y,s(> 0) are the scale and shape
parameters of a Weibull distribution, respectively, and 8,
and «, are vectors of the regression coefficients for the
additive and multiplicative parts, respectively. Moreover,
n = exp(u) is the frailty for a log-normal distribution
and u is assumed to follow a normal distribution with
a mean of zero and variance o2. Thus, we use a Weibull
distribution as a baseline transition intensity and impose
a multiplicative frailty effect on the transition intensities.
Since the parameters 034,042, Y34, Y42, 034, 042, B34, and
B4 related to transitions 3 — 4 and 4 — 2 should satisfy
the assumptions in (1) and (2), the parameter vector estimated
for the model in (3) is ¢ = (0*,;/*,05*,,3*,02),, where
0" = (601,002,603, 612,032), ¥* = (Yo1, Vo2, Y03, V12, V32),
a = (top @gpr 00z, @y, @), and - B =
(Bo1» Boz Bz B'as Bly). According to the model in (3),
the cumulative hazard functions Hy(¢1,£) (k = 0,1, 3,4)
for leaving state k between ¢; and £, can be represented as

5]
Ho(ty, o)z wyu) = / (how (sl ws ) + 2oz (sl Wy ) + Aos ()2 w, 1)} dis
t

3
= Z 1 {(Bor2) (2 — 1) + exp (g, w) bor (£ — 1)},

r=1

12}
/ r2(s|z, w, u)ds

ty
1 {(Blaz) (b2 — t1) + exp ()W) 612 (8 — £]2)},

H(t1, t2]2, w, u)

b
Hs(tl,tzlz,w,u)=/ {A32(slz, w, u) + A3a(s|z, w, u)}ds
t

= r]{ (/3’322) (ty —t1) +exp (dézw) 632 (téfsz — t{gz)
+ (B542) (t2 — t1) + exp (ahyw) B30 (57 — £7*) },

12}
Hi(ty, o)z w, ) = f Mz slz, w, w)ds
ty

=n{(B12) (t2 — 1) + exp (W) 02 (5 — 1{7) }.
Based on Assumptions (1) and (2), we note that 83, = B,

B = Biy a34 = a1, ®42 = ®12, 634 = o1, bap = 612,
y34 = Yo1, and y49 = yj2 in the equations of H3 and Hj.

Parameter estimation

As shown in Fig. 1, a total of six routes can be experienced
by a subject from the beginning to the end of the study.
These are route 1 (0 — 0), route 2 (0 — 2), route 3 (0 —
1), route 4 (0 — 1 — 2), route 5 (0 — 3), and route 6 (0
— 3 — 2). In particular, route 5 can be classified into two
paths, i.e., 0 —> 3 and 0 — 3 — 4, depending on whether or
not a subject experiences the unobservable NF state. Sim-
ilarly, route 6 can be classified into two paths: 0 — 3 —
2 and 0 — 3 — 4 — 2. We introduce notations to define
the likelihood associated with each route. Consider three
random variables R, L, and 7, each of which represents a
time from the start of the study until the occurrence of a
non-fatal event, LTF, and a fatal event, respectively. Fur-
thermore, let #(s) be the set of subjects staying in state O
at time s. That is,

Ho(s) ={RALAT > s}.

Let H3z(s) be the set of subjects who have already expe-
rienced LTF at time f and remain in state 3 at time s.
Then,
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Hzr(s) = {L =f,RAT > s,f <s}.

Now, let ¢; be the entry time of study, a; be the last time the
i subject visited before a non-fatal event was observed,
and b; be the first time a non-fatal event is observed by
the ith subject for i = 1,2,...,n. Consider an indicator
function Jj;, which is 1 if subject i follows route j and zero
otherwise for j = 1,2,...,6. Let B; = {i : I = 1}. For
subject i € By U By, we have a;, b; > ¢; this is the case
because a non-fatal event has not been observed before
time t;. For subject i € B3U By, we have a; < b; < ;; thisis
the case because a non-fatal event has occurred between
a; and b;. When subject i is a member of Bs U Bg, LTF
has occurred at time a;, which yields a; < ¢; however,
b; < t; or b; > t;, depending on whether an unobservable
non-fatal event has occurred. Thus, ¢; would be a censor-
ing time for i € By U B3 U B5, whereas it would be a time
of death for i € By U B4 U Bg. Therefore, likelihood func-
tions Q1 and Qy can be constructed for routes 1 and 2,
respectively. These are given as follows:

Qi1 = Pr(R; AL; AT > ti|Hole), zi, Wi, u;)
= exp{—Ho(e;, ti|zi, w;, u;)}, i € By. (4)

Qiz = Pr(T =t;, R AL > ti|Holey), zi, wi, ;)
= Qi X roa(tilzi, wi, uy), i € By. (5)

Likelihood functions can also be constructed for routes 3
and 4:

s = Pr(R; € (ai, bi],Li > t;, T; > ti|Ho(e:), zi, Wi, i)
b;
= / [ exp{—Ho((e;, s|zi, Wi, ui) }ho1 (s|zi, wi, u;)
a;

x exp{—H1(s, ti|zi, wi, u,')}:|ds. (6)

= Pr(Rie(ai,bil,Li>t;, Ri < T; = ti|Hole;), zi, wi, u;)
= Q5 x Mia(tilzi, wi, uy), i € Ba. @)

Equations (6) and (7) are derived by assuming that a non-
fatal event of subject i in the set B3 U By can occur
uniformly on the interval (a;, b;] [6]. However, we parti-
tion the interval (a;, b;] into several sub-intervals where
non-fatal events could occur and assign different weights
to each interval [15].

® Let Ry € (ay, by] be an interval for the occurrence of
non-fatal events associated with subjects in routes 3
or 4. Let s1 be the smallest value among all ;’s for
subjects in the set B3 U By. Let s3 be the smallest
value among all b;’s corresponding to subjects having
ay greater than or equal to s;. This process is
repeated until we have no subjects with a; greater
than or equal to s, (m = 1,2,...). Thus, we can have
a refined set of time points
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O0=s50 <81 <8 <+ <§ <841 = O0.

e We can define the weight wy,, at time s,
(m=1,2,...) for subject i’ in the set B3 U By :

diym exp{—Ho (ey, sm|Wi, 2y, up)} Aot (Sm|Wi, zir, uir)

Witm = )
I
D =1 Birme exp {—Ho(ey, Sy IWir, 2ir, )} kot (S [Wyr, Zir, )

(8)

where dy,, = I(s, € (ay,by]). Subsequently, likelihood
functions incorporated with weight w;,, in (8) for routes
3 and 4 are given by

!
Qiz =Y dimWim exp{—Ho(ei, $m|zi, Wiy i) Yho1 (sl zis Wiy 1)

m=1
x exp{—Hi (S, tilzi, wi, u;)}, i € Bs.

)

Qia = Qi3 x Aia(tilzi, wi, ui), i € Ba. (10)
Finally, likelihood functions for routes 5 and 6 are given by
Qis = Pr(R; A T; > ti|H3 4;(ai), zi, Wi, u;)
+Pr(R; € (ai, 4], T; > tiH3u,(a:), zi, wi, u;)

= exp{—Ho(e;, ailzi, wi, u;) } o3 (ailzi, wi, u;)

X [ exp{—H3(a;, tilzi, wi, u;)}
ti
+/ exp{—H3(ai, s|zi, Wi, u;) }A34.(5|2;, Wi, ;)
a;

x exp{—Ha(s, t;|zi, Wi, Mi)}d5:|: i€ Bs, (11)

Qis =Pr(R; > T;, T; = t;| H3, o;(ai), zi, Wi, u;)
+Pr(R; € (ai, ti], Ri < T; = ti|H3 a4, (ai), zi, Wi, u;)

= exp{—Ho(e;, ai|zi, w;, u;) }Ao3 (@i|zi, wi, u;)

X [eXP{_H3(ﬂi: tilziﬂ wi, ui)})"32 (tilzi, Wi, ui)
ti
+ { / exp{—Hz(a;, s|zi, Wi, i) }A34(s|zi, w;, u;)
aj

x exp{—Ha(s, t;|z;, Wi, Mi)}dS}Mz(tiIZi, wi, uz’)], i€ Be.
(12)

Therefore, based on Egs. (4)-(5) and (9)-(12), the likeli-
hood function for the parameter vector ¢ is
n

6
) =[11[1e;

i=1 | j=1

¢ (0’0,2; Mi)’ (13)

where ¢ (-) is the probability density function of a nor-
mal distribution with a mean of zero and variance
2. In our analysis, we use the NLMIXED procedure
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of the SAS software to estimate ¢. For the sake of
parameter estimation procedures, we define the marginal
likelihood as

m(e) =/-~~fL<c>du1---dun.

Then, we find the value of ¢ that minimizes f(¢) =
—logm(¢), which is referred to as ¢. Consequently, the
inverse of the Hessian matrix evaluated at Z is defined as
the estimated variance-covariance matrix of ¢. Numerical
integration is required for the frailty distribution. For this
purpose, we use the adaptive importance sampling [20].
Finally, we employ quasi-Newton optimization, which uti-
lizes the gradient vector and the Hessian matrix of f(¢), to
achieve the optimal solution of ¢.

Results

Simulation studies

Extensive simulation is performed to investigate the
finite-sample properties of the estimators proposed in
Methods section. As mentioned earlier, we assume a
Weibull distribution with a shape parameter of y,s = 1 as
the baseline transition intensity and a log-normal distri-
bution for frailty n = exp(u), where u is generated from
a normal distribution with a mean of zero and a variance
of 0.01. Furthermore, we use a binary covariate for z (gen-
erated from a Bernoulli trial with a success probability of
0.5) and a continuous covariate for w (generated from a
standard normal distribution). We fix the sample size » at
200 and the censoring time C at 365. A total of 500 repli-
cations is used in our simulations. The following presents
the details related to the generation of random variates for
the i (i = 1,2,..., n) subject.

e Step 0: We may allow the total number of
occurrences for non-fatal events to be 24 times in a
12-month period, such as 15, 31, . . ., 349, 365 days.
However, the actual visiting time of each subject can
be different from the designated times. Hence, we
add random numbers, generated from a normal
distribution with a mean of zero and a variance of 9,
to each designated time point. Subsequently, the

actual observed time points will be defined as
0=ly<hi<- <ly;<ly =366

Let uo1;, 4o2i, and up3; be random numbers generated
from a uniform distribution on the interval (0, 1).
Additionally, let R;, T;, and L; be, respectively, the
roots s of the equations:

Ao1(slzi, wi, u;) + log(1 — up1;) =0,
Ao (slzi, wi, u;) + log(1 — uga) = 0,

and

Ao3(slzi, wi, u;) + log(1 — ug3;) =0,
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where
Aoj(slzi, wi, ui) = n; [ (Bojzi) s + explagywi}ys™ ] forj=1,2,3.

Step 1: If C < R; A T; A L;, then the i subject is
defined as being censored without experiencing a
non-fatal event, i.e, i € B1. If T; = R; A T; A L;, then
the /™ subject is defined as being dead without
experiencing a non-fatal event, i.e., i € By. However,
if R; = R; A T; A L;, proceed to Step 2, and if

L; = R; A T; A L, proceed to Step 3.

Step 2: Let u19; be a random number generated from
a uniform distribution on the interval

(1 — exp{A12(Ri|zi, wi, u;)}, 1), where

Ara(slzi wi, u) = n; [(Br2zi)s + exp{a1aw;}6125"2].
Redefine T; as the root s of the equation,
A1a(slzi, wi, u;) + log(1 — u1z;) = 0.

If C < Tj, then the i subject is defined as being
censored after experiencing a non-fatal event, i.e.,

i € Bs. Otherwise, the i subject is defined as being
dead at time T; after experiencing a non-fatal event,
i.e., i € By. Moreover,

-IfR; € (0,1q;),leta; = 0and b; = [3;. If

R; € (lk—l,i: lki): let a; = lx_1,; and b; = [y; for
k=2,3,...,23.

- However, if R; € (lo3,;, C), the type of path should
be redefined because a non-fatal event for the subject
did not occur before the time of the last observation.
Thus, if C < T, the it subject is defined as being
censored without experiencing a non-fatal event, i.e.,
i € B;. Otherwise, the i subject is defined as being
dead at time T; without experiencing a non-fatal
event, i.e., i € Bs.

Step 3: Let u3p; and u34; be random numbers
generated from uniform distributions on the intervals
(1 — exp{A32(Lilzi;, wi, u;)}, 1) and

(1 — exp{Asa(Lilzi, wi, u;)}, 1), respectively, where

Asj(slzi, wi, ui) = n; [ (Bsjzi)s + explaw;}03;s"¥ ], for j = 2,4.

Now redefine R; and T; as the roots s of the
equations:

A32(s|zi, wi, u;) +log(1l — u3z) =0
and

A34(slzi, wi, u;) +log(l — uzq;) = 0,

respectively. If C < R; A Tj, the it subject is defined
as being censored without experiencing a non-fatal
event after LTF, i.e., i € Bs. If T; < R;, then the ith
subject is defined as being dead without experiencing
a non-fatal event after LTF, i.e., i € Bg. However, if
R; < T;, move to Step 4.
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Table 5 Patients’ characteristics of ages at entry, at demensia (DM) diagnosis, at death after DM, at death without DM, and at death

after LTF
Gender
Women Men
Certificate Certificate
All With Without With Without
mean mean mean mean n mean
Age n (£SD) n (£SD) n (£SD) n (£SD) n (£SD)
atentry 1000 75.0 456 76.0 122 744 306 74.7 116 728
(+£6.84) (£7.03) (£7.02) (£6.67) (£5.61)
at DM diagnosis 186 833 109 84.2 17 833 45 815 15 81.9
(£5.46) (£5.60) (45.39) (+4.92) (+4.99)
at death after DM 127 876 72 88.8 10 88.9 36 854 9 84.8
(£5.93) (£6.21) (£5.19) (£5.23) (+£4.12)
at death without DM 438 84 170 859 47 84.5 161 828 60 81.1
(£7.03) (£7.17) (£6.91) (£6.44) (£6.78)
at death after LTF 159 87.2 80 87.7 20 86.3 43 873 16 85.9
(£6.42) (£6.04) (+6.85) (£6.75) (£7.12)

e Step 4: Let ugo; be a random number generated from
a uniform distribution on the interval
(1 — exp{ A4 (Ri|zi, wi, u)}, 1), where

Aga(slzi wi ui) = 1 [(Baazi)s + exp{aaaw;}642572 ] .
Redefine T; as the root s of the equation,
Ao (slzi, wi, i) +1og(1 — uaz;) = 0.

If C < Tj, then the i subject is defined as being
censored at time C after experiencing LTF and a
non-fatal event, i.e., i € Bs. Otherwise, the i subject
is defined as being dead at time T after experiencing
LTF and a non-fatal event, i.e., i € Bg.

In the simulation settings, we consider three types of
regression coefficients (i.e., ‘even, accelerated (‘acc’), and
decelerated (‘dec’)) as well as three types of LTF propor-
tions (i.e., low, ‘moderate; and ‘high’). For the ‘even’ type,
there are no differences in the effects of the covariates
on the hazard rate of death before and after experienc-
ing a non-fatal event. That is, «pp = a1 = 0.01 and
Boz = B12 = 0.004. Meanwhile, for ‘acc’ and ‘dec; increas-
ing and decreasing effects are noted on the hazard rates

Table 6 P-values of the test used to check the proportional
hazard assumption for each transition model

Transition models

Covariate

0—1 0—2 1—2 0—3 3—>2
Gender 0.063 < 0.001 0.093 0.354 0.062
Certificate 0.963 < 0.001 0.147 0.754 0.148

of death, respectively. That is, ag; = 0.01, a1 = 0.0125,
Bo2 = 0.004, and B12 = 0.005 for ‘acc, whereas agy = 0.02,
ayy = 0.01, Bpz = 0.008, and B2 = 0.004 for ‘dec’
For the rest of the regression coefficients, we set o1 =
/303 = ﬁgg = 0.004 and 0ol = 0OGp3 = 03 = 0.01.
Moreover, we set 6p3 = 0.00075, 6p3 = 0.002, and Gy3 =
0.004 for the ‘low; ‘moderate; and ‘high’ types, respectively.
The remaining shape parameters of the baseline transi-
tion intensities were set as 6p; = 033 = 0.002 and 6y =
0.001. Tables 1, 2, and 3 provide the relative bias (‘r.Bias’),
standard deviation (‘SD’), average of the standard errors
(‘SEM’), and coverage probability (‘CP’) of 95% confidence
intervals for the regression parameters and the variance
estimate of the frailty distribution, respectively, according
to the three LTF proportions. For comparison purposes
with the proposed approach (‘proposed’), each table also
displays the results obtained by simply assuming that a
non-fatal event occurred at the end of the right endpoint
of the interval (‘imputed-by-the-right-endpoint’). When
the type of the regression coefficients is fixed at ‘even, ‘acc,
or ‘dec; the CPs of the regression parameters correspond-
ing to the ‘proposed’ case are close to a nominal level of
0.95 irrespective of the LTF proportions, whereas those of
the regression parameters such as bg; and bg3, are much
smaller than 0.95 for the ‘imputed-by-the-right-endpoint’
case. For the results based on the ‘proposed’ method,
as the proportion of LTF increases, the mean squared
error (MSE) for estimates of some regression parameters
(e.g., a3, a32, and b3y) decreases, while the MSE of other
regression parameters (e.g., o2, bo2, and bp3) increases,
regardless of the type of regression coefficients.
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Sensitivity analysis is also conducted to investigate how
the estimator of the parameter behaves with different
frailty distributions. For simplicity of computation, we
consider only the ‘even’ case for the regression parame-
ters and the ‘moderate’ LTF proportion. Three different
frailty distributions are used, along with a normal distri-
bution with a mean of zero and a variance of 0.01. These
are uniform, double exponential, and gamma distributions
with specific parameter value(s), for which the mean and
variance of each distribution are the same as those of
the normal distribution. Simulation results are provided
in Table 4. We compare the results of the three distribu-
tions with those of the normal distribution. The uniform
and double exponential distributions are symmetric, like
the normal distribution. However, the uniform distribu-
tion has thinner tails than the normal distribution, while
the double exponential distribution has heavier tails than
the normal distribution. Alternatively, unlike the normal
distribution, the gamma distribution is an asymmetric
distribution. Overall, there are no differences in the val-
ues of r.Bias and CP between the three distributions and
the normal distribution. This implies that the proposed

estimators are robust to misspecifications of the frailty
distribution.

lllustrative data analysis

PAQUID data were collected to investigate the effects of
dementia on mortality. Samples were taken from com-
munity residents of two southwestern regions (Gironde
and Dordogne) of France [7]. The population consists of
elderly people of ages 65 or above, between 1988 and
1990, whose socio-demographic characteristics and men-
tal health status were recorded every two to three years.
A total of 3675 persons was selected to participate in the
study; among these individuals, 832 (22.6%) were diag-
nosed with dementia, 639 of whom died. The remaining
2843 participants (77.4%) did not experience dementia but
2298 of them died.

In this article, we performed an analysis based on
‘paql000’ data, which included 1000 randomly selected
observations from the PAQUID data [21]. The paql000
data consist of several pieces of information, such as
the mental health status (diagnosed with dementia or
dementia-free), dead or alive status, age (including a n’s
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age at the start of study, their age at the last dementia-free
visit, their age when they were diagnosed with dementia,
their age at their time of death, and their age at censoring),
gender, and educational background (educated or non-
educated in terms of graduation of elementary school, say
certificate). When a person who was not diagnosed with
dementia at their last visit has not been traced for more
than four years, this person is assigned to the LTF cate-
gory. Table 5 shows summary statistics to briefly grasp the
subjects’ characteristics including ages at entry, at demen-
tia diagnosis, at death after dementia, at death without
dementia, and at death after LTF. A total of 231 persons
was categorized as LTF; among these, 159 (68.8%) died.
Moreover, 127 (68.3%) persons out of the 186 who experi-
enced dementia died, and 438 (75.1%) persons out of the
583 dementia-free persons died. Moreover, age at demen-
tia diagnosis is higher for women than for men regardless
of the education group (with certificate or without cer-
tificate). The same trend is observed both at age after
dementia and at age without dementia. Meanwhile, age at
death after LTF is a bit higher for women than for men.
First, we check to see whether each covariate satis-
fies the proportional hazards assumption by using the
test procedure of [22] and the Schoenfeld residual [23].
Figure 2 shows diagnostic (scattered) plots of the scaled
Schoenfeld residual versus age. In each plot, we mark a
spline smoother (solid line) as well as two standard devia-
tion bands (dashed lines). In the curve showing the effect
of gender, there is a decreasing trend on transitions 0 — 1
and 0 — 2, an increasing trend on 1 — 2 and 3 — 2,
and a quite steady pattern for 0 — 3. In the curve showing
the effect of certificate, there is a prominent decreasing
trend for transition 0 — 2, while the other transitions
show steady patterns. Table 6 provides the p-values for the
test results [11]. For the gender effect, only the p-value
for transition 0 — 3 is greater than 0.1, which seems
to violate the proportional hazards assumption. Alterna-
tively, the p-values for all transitions for the certificate
effect, with the exception of 0 — 2, are greater than 0.1.
This seems to satisfy the proportional hazards assump-
tion. Thus, we put ‘gender’ into the additive side and
‘certificate’ into the multiplicative side for future analyses:

Ars(t|z = gender, w = certificate, )

exp(u) { Brsz + exp(ctrsw)Orsyrst? !}

for (r,s) € A.

Table 7 shows a summary of the estimation procedures.
We provide the estimates of the regression coefficients
along with their standard errors and p-values. For the
transition from H to LTF (0 — 3), the intensities for
women are larger than for men, with a value of 0.00849
(849 out of 100000 persons). However, this turned out
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Table 7 Regression parameter estimates (Est) with the
accompanying standard errors (SE) and p-values (P)

Covariate Param Est SE P

Gender Bor -0.0156 0.0132 0.245
Boz 0.0295 0.0136 0.004
B2 0.0101 0.205 0.961
Bo3 -849x1073 00108 0439
B3> 6.19x1073 157x1073 < 0001

Certificate a1 -210x1073 0.190 0991
a0 -3.00x 107> 0.128 0.999
an 3.90x 107 0621 0.999
a03 -9.80x 1074 0.151 0.995
a3 3.85%1074 1133 0.999
o’ 0.999 255%1073 < 0001

to be insignificant with a p-value of 0.439. For the inten-
sity of the 3 — 2 transition, a reversed outcome was
obtained, with a value of 0.00619 for men with a very
significant p-value of less than 0.001. For the 0 — 1 tran-
sition, women showed a larger intensity than men with
a value of 0.0156, yielding a non-significant result with
a p-value of 0.245. For the 1 — 2 transition, the inten-
sity for men is similar to that for women, with a value of
0.0101 and a p-value of 0.961. Finally, for the 0 — 2 tran-
sition, the intensity for men is larger than for women with
a value of 0.0295 along with a significant p-value of 0.038.
Meanwhile, all transition intensities of the non-educated
group are similar to those of the educated group. Finally,
the estimate for the variance o2 on the common frailty
is 0.999 with a highly significant p-value less than 0.001,
showing non-homogeneity between clusters classified by
the age at entry. Figure 3 shows five transition intensities
over age by gender and certificate and estimated normal
frailties of each cluster. As presented in Fig. 3, the tran-
sition intensities of 0 — 1 and 0 — 3 are higher for
women than for men over age regardless of the education
group, while these trends are reversed for the 0 — 2 and
3 — 2 transitions. For the transition 1 — 2, no difference
is observed between women and men, but there is a sig-
nificantly monotone increasing trend over age. These are
consistent with the results in Table 7.

Conclusions

We considered a multi-state model for semi-competing
risks data, for which there exists information on fatal
events, but information on non-fatal events may not be
available due to lost to follow-up. More precisely, we
proposed an additive and multiplicative random effect
model by combining the additive risk model [16] with
the proportional hazards model [8, 9] in order to derive
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the conditional likelihood function. An adjusted impor-
tance sampling method was used to compute the marginal
likelihood function, where the MLEs for the regression
coefficients were obtained by an iterative quasi-Newton
algorithm. The proposed model was illustrated using
PAQUID data and yielded several promising results. The
risk of transition from a healthy state to dementia is
higher for women. However, the risk of death is higher
for men regardless whether a subject is diagnosed with
dementia or not. Meanwhile, the risk of transition from a
healthy state to dementia is higher for the educated group.
The risk of death after being diagnosed with dementia is
higher for the educated group; however, a reversed result
is observed for non-diagnosed subjects. Furthermore, we
conducted simulations with finite-sample sizes to investi-
gate the efficiency of the proposed estimators. In partic-
ular, we considered nine combinations of three different
types of regression coefficients and three different types
of LTF proportions. In general, the coverage probabilities
of the regression parameters are close to a nominal level
of 0.95 in most cases. Moreover, according to a referee’s
suggestion, we investigated influence of parameter esti-
mation when LTF is omitted (not censoring) in our sim-
ulation studies. Finally, we performed simulations with
the same realizations generated from each configuration
included in Tables 1, 2, and 3. Based on the results not
reported here, the CP of parameter fBo; is extremely lower
than a nominal level of 0.95 for all configurations. In

addition, when the type of regression coefficients is ‘dec;
the CP of parameter Sy, is much smaller than 0.95 regard-
less of types of LTF proportions. Moreover, compared to
each table, namely, Tables 1, 2, and 3, the relative bias
of Bo1 increases around ten times for all configurations.
This is the reason omitting LTF results in route changes
of subjects included in routes 5 and 6 at the data gener-
ation stage, i.e., from route 5 to 1 (when the fatal event
is censored) or from route 6 to 2 (when the fatal event is
observed) according to the fatal status of subjects.

The proposed model has some drawbacks. At the ini-
tial stage of this research, as developed in [8, 9, 16], we
intended to consider a semi-parametric model incorporat-
ing five transition intensity models. However, it was quite
difficult to handle nonparametric estimation procedures
for the baseline transition intensity associated with the
nuisance parameter because the total number of param-
eters is proportional to the number of subjects. Rather,
we assumed a Weibull distribution for the baseline tran-
sition intensity; further research should be carried out to
avoid the use of this specific distribution. To circumvent
arbitrariness, it is necessary to calculate the Nelson-Aalen
estimators for the cumulative baseline transition intensity
[8,9, 16] and extend this method to semi-competing risks
models based on the profile likelihood function. Another
plausible remedy would be to apply a spline smoothing
method on the baseline transition intensity proposed by
[24, 25]. In the additive and multiplicative hazards model
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with frailty, one could use a semi-parametric Bayesian
approach by assuming a prior distribution on the log-
normal frailty. Subsequently, conventional Markov Chain
Monte Carlo computation would be proceeded for the full
conditional distribution on the frailty [26, 27].
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